
LECTURE 7

Infinitesimal liftings and Hochschild cohomology: the beauty of
SGA3, Exp. III

15. Group cohomology and extensions

Remark 15.1. For simplicity, we have written this section in the category C = (Sets), so
that a C -group G is just a usual group. However, the results remain valid if we replace (Sets) by
an arbitrary category C with fiber products, G by a group-object in C , and the abelian group
V by a contravariant functor F : C → (Abelian groups) on which G acts linearly, provided
that the set-theoretic sections considered in the proof of Lemma 15.4 exist as morphisms in C ;
see [SGA31], Exp. III, Section 1.

Definition 15.2. Firstly, let G be an abstract group and V a G-module. The cohomology
groups H i(G, V ) are the cohomology groups of the following complex, where Hom denotes maps
of sets:

(15.1) 0 // V
d0 // Hom(G, V )

d1 // Hom(G2, V )
d2 // Hom(G3, V )

d3 // · · ·

where d0(v) is the map g 7→ gv − v, then, given f : G → V , d1(f) is the map (g1, g2) 7→
g1f(g2)− f(g1g2) + f(g1), then, given f : G2 → V , d2f is the map

(g1, g2, g3) 7→ g1f(g2, g3)− f(g1g2, g3) + f(g1, g2g3)− f(g1, g2).

More generally, for n ≥ 2 and f : Gn−1 → V , dn−1(f) is the map

(15.2) dn−1f(g1, . . . , gn) = g1f(g2, . . . , gn) +
n−1∑
i=1

(−1)if(g1, . . . , gigi+1, . . . , gn)

+ (−1)nf(g1, . . . , gn−1).

Clearly, H0(G, V ) = V G is the submodule of invariants. Then H1(G, V ) is the quotient
of the Z-module Z1(G,M) = {f : G → V | f(g1g2) = g1f(g2) + f(g1)} of 1-cocycles by the
submodule B1(G, V ) = {d0(v) | v ∈ V } of 1-coboundaries. Consider the semi-direct product
E0 = V o G and, for each f ∈ Z1(G, V ), denote by σf the automorphism of E0 defined by
σf (u, g) = (u− f(g), g).

Lemma 15.3. Then f 7→ σf is a group isomorphism between Z1(G, V ) and the group of
automorphisms of E0 which restrict to the identity on V and on the quotient E/V ; and for each
v ∈ V the coboundary d0(v) corresponds under this isomorphism to the inner automorphism
(u, g) 7→ v(u, g)v−1 = (u+ v − gv, g).

Proof. The proof is easy and left to the reader. �

In the next lemma, V is just an abelian group, without a given structure of G-module.

Lemma 15.4. Each exact sequence of groups:

(15.3) 1 // V // E
π // G // 1
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38 7. INFINITESIMAL LIFTINGS AND HOCHSCHILD COHOMOLOGY

makes V into a G-module and defines a class c(E) ∈ H2(G, V ).
This class is zero if and only if there exists a morphism of groups τ : G → E such that

π ◦ τ = idG, that is, if and only if E is a semi-direct product of G and V .
In this case, the set of all such τ ′ is τ +Z1(G, V ), and the set of all such τ ′ up to conjugacy

by the elements of V is τ +H1(G, V ).

Proof. Let s be a set-theoretic section of π. For each g ∈ G, consider the automorphism
c(g) of V defined c(g)(v) = s(g) v s(g)−1. Since V is abelian, one sees that:

(1) Any other section s′ of π defines, for each g ∈ G, the same automorphism c(g) of V .

(2) The resulting map c : G → Aut(V ) is a morphism of group. Indeed, for g1, g2 ∈ G, one
has π(s(g1g2)) = g1g2 = π(s(g1)s(g2)) hence the element

(15.4) s̃(g1, g2) = s(g1g2)s(g2)−1s(g1)−1

is in V and hence for any v ∈ V one has c(g1g2)(v) = c(g1)
(
c(g2)(v)

)
. Thus, setting gv = c(g)(v),

one obtains that V is a G-module.

Now, to any set-theoretic section s of π one associates the function s̃ : G2 → V defined in
(15.4) above. One checks easily that s̃ is a 2-cocycle, i.e. it belongs to the Z-module:

Z2(G,M) = {f : G2 → V | g1f(g2, g3) + f(g1, g2g3)− f(g1, g2) = 0}.
Indeed, in E one has the equality:

d2s̃(x, y, z) = (x · s̃(y, z)) s̃(x, y)−1 s̃(xy, z)−1 s̃(x, yz)

= s(x)s(yz)s(z−1)s(y−1)s(x−1)s(x)s(y)s(xy)−1s(xy)s(z)s(xyz)−1s(xyz)s(yz)−1s(x−1) = e.

Next, denote by B2(G, V ) = Im(d1) the submodule of 2-coboundaries. If s, s′ are two set-
theoretic sections of π, there exists f : G → V such that s′(g) = f(g)−1s(g) for all g, and one
has in E the equalities:

s̃′(x, y) = s′(xy)s′(y−1)s′(x−1) = f(xy)−1s(xy)s(y−1)f(y)s(x−1)f(x)

= f(xy)−1s̃(x, y)s(x)f(y)s(x−1)f(x) = s̃(x, y)f(xy)−1(x · f(y))f(x),

where in the last equality we used that V is a normal abelian subgroup of E. Writing additively
the group law of V , one has f(xy)−1(x · f(y))f(x) = xf(y) − f(y) + f(x) = d1f(x, y). This

shows that s̃′ = s̃+ d1f . This proves two things:

(1) The image of s̃ in H2(G, V ) = Z2(G, V )/B2(G, V ) does not depend on the choice of the
set-theoretic section s; it it the class c(E) of the extension.

(2) A section s′ is a group homomorphism if and only if s̃′ = 0. Since, with the notation

above, s̃′ = s̃+ d1f for some f , this is the case if and only if c(E) = 0.

Now, assume c(E) = 0 and let τ be a section of π which is a group homomorphism. By the
above, any other such τ ′ has the form fτ , with f ∈ Z1(G, V ). Further, for any v ∈ V one has:

v−1τ ′(g)v = v−1
(
τ ′(g)vτ ′(g)−1

)
τ ′(g) = (d0v)(g)τ ′(g).

Thus the set of τ ′ up to conjugacy by the elements of V identifies with τ +H1(G, V ). �

Now, let φ : Y → G be a morphism of groups. Using φ we can form the group Eφ = E ×G Y
and pull-back the exact sequence (15.3) to obtain the following exact sequence of groups:

(15.5) 1 // V // Eφ
πφ // Y // 1

where V is sent into Eφ via the inclusion into E and via the unit morphism to Y . Note that
the resulting action of Y on V is the same as the one derived from the G-action through the
morphism φ : Y → G.
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Further, any map of sets ψ : Y → E lifting φ defines a set-theoretic section of πφ. Denoting
by pr1 the first projection Eφ → E, one sees easily that the map τ 7→ pr1 ◦ τ is a bijection from
the set of sections of πφ to the set of liftings of φ; further, under this bijection the sections and
liftings which are group homomorphisms correspond to each other.

Therefore, the question of lifting φ to a group homomorphism ψ : H → E is reduced to the
question of finding a splitting of (15.5). By the previous discussion with G replaced by Y , we
obtain the:

Corollary 15.5. Consider the exact sequence (15.3) and let φ : Y → G be a morphism of
groups.

(1) Suppose that H2(Y, V ) = 0. Then φ lifts to a morphism of groups ψ : Y → G.

(2) Suppose further that H1(Y, V ) = 0. Then any two such lifting are conjugate by an
element of V , that is, by an element of E whose image in G is the identity.

The following lemma will be useful in the next section.

Lemma 15.6. Let N be an abelian group. Let Ind(N) = Hom(G,N) be the induced G-
module, where G acts on a function φ : G → N by (gf)(g′) = φ(g′g) for all g, g′ ∈ G. Then
Ind(N) is acyclic, i.e. H i(G, Ind(N)) = 0 for all i > 0.

Proof. Set P = Ind(N). For n > 0 let sn : Hom(Gn+1, P )→ Hom(Gn, P ) be given by

sn(f)(g1, . . . , gn)(g) = f(g, g1, . . . , gn)(e).

Then, for f ∈ Hom(Gn, P ) one has

sndnf(g1, . . . , gn)(g) = dnf(g, g1, . . . , gn)(e) = f(g1, . . . , gn)(g)− f(gg1, g2, . . . , gn)(e)

+
n−1∑
i=1

(−1)i+1f(g, . . . , gigi+1, . . . , gn)(e) + (−1)n+1f(g, g1, . . . , gn−1)(e),

dn−1sn−1f(g1, . . . , gn)(g) = f(gg1, g2, . . . , gn)(e) +
n−1∑
i=1

(−1)if(g, . . . , gigi+1, . . . , gn)(e)

+ (−1)nf(g, g1, . . . , gn−1)(e)

and hence f = sndnf + dn−1sn−1f . Thus, if dnf = 0 then f = dn−1sn−1f , hence Hn(G,P ) = 0
for n > 0. �

Remark 15.7. For simplicity, we have worked with G-modules, i.e. modules over the group
ring Z[G]. If Λ is any commutative ring, the same discussion applies to Λ[G]-modules V , and
then the cohomology groups H i(G, V ) are Λ-modules.

16. Hochschild cohomology

In this section, Λ is a ring and G is a flat1 affine group scheme over S = Spec Λ, given by the
Λ-Hopf algebra A. Denote by c : A → A ⊗ A its comultiplication (we write ⊗ instead of ⊗Λ)
and by ε it counit. Let L be a Λ-module endowed with a structure of G-module, that is, we are
given a Λ-linear coaction µL : L→ L⊗ A satisfying the conditions seen in Def. 2.1.

Definition 16.1. The Hochschild complex of L is

(16.1) 0 // L
d0 // L⊗ A d1 // L⊗ A⊗ A d2 // L⊗ A⊗ A⊗ A d3 // · · ·

1Flatness ensures that the category of A-comodules is abelian, see e.g. [SGA31], Exp. I, Cor. 4.7.2.1.



40 7. INFINITESIMAL LIFTINGS AND HOCHSCHILD COHOMOLOGY

where d0(v) = µL(v)− v ⊗ 1 and, for n ≥ 1:

(16.2) dn(v ⊗ a1 ⊗ · · · ⊗ an) = µL(v)⊗ a1 ⊗ · · · ⊗n +
n∑
i=1

(−1)iv ⊗ a1 ⊗ · · · c(ai)⊗ · · · ⊗ an

+ (−1)n+1v ⊗ a1 ⊗ · · · ⊗ an ⊗ 1.

Its cohomology groups are denoted by H i(G,L).

Remark 16.2. Let C denote the category of affine schemes over S and let W (L) be the
functor such that W (L)(T ) = L ⊗ O(T ) for any object T of C . Then G(T ) acts linearly on
W (L)(T ): for any g ∈ G(T ), i.e. any Λ-algebra morphism g : A→ O(T ) and x⊗ 1 ∈ L⊗O(T ),
one has g(x⊗ 1) = (idL ⊗ g)µL(x).

Further, one has HomC (Gn,W (L)) = L ⊗ A⊗n. Thus we see that Hochschild cohomology
can be viewed as the cohomology of groups in C . The results of Section 15 about lifting of
homomorphims remain valid, provided that there exist morphisms of schemes that replace the
set-theoretic sections used in Section 15. This will be ensured by the hypothesis that the group-
scheme G is smooth and that we are concerned with infinitesimal liftings.

Analogously to Lemma 15.6, one has:

Lemma 16.3. For a Λ-module N , let Ind(N) = N ⊗A regarded as A-comodule via idN ⊗ c :
N ⊗ A→ N ⊗ A⊗ A. Then H i(G, Ind(N)) = 0 for all i > 0.

Proposition 16.4. Suppose that G = D(M)S is a diagonalisable group. Then H i(G,L) = 0
for i > 0 and any G-Λ-module L.

Proof. 2 Let L a G-module. Recall that L =
⊕

m∈M Lm, where Lm = {x ∈ L | µL(x) =
x ⊗m}. Let (pm)m∈M denote the corresponding family of projectors. Note first that the map
µL : L → Ind(L) is a morphism of A-comodules: indeed, by one of the defining properties of
comodules, the diagram below is commutative:

L
µL //

µL

��

Ind(L)

idL⊗c
��

L⊗ A µL⊗idA // Ind(L)⊗ A.

Now the map r : Ind(L)→ L sending each finite sum
∑

m xm⊗m to
∑

m pm(xm) is a retraction
of µL, because writing x =

∑
m pm(x) we have µL(x) =

∑
m pm(x)⊗m and hence r(µL(x)) = x.

Further, r is a morphism of A-comodules, that is the diagram below is commutative:

Ind(L)
r //

idV ⊗c
��

L

µL

��
Ind(L)⊗ A r⊗idA // L⊗ A.

Indeed, an element y =
∑

m xm⊗m of Ind(L) is sent by idV ⊗ c to
∑

m xm⊗m⊗m which goes
by r ⊗ idA to

∑
m pm(xm)⊗m, which is also µL(r(y)). Thus L is a G-module direct summand

of Ind(L) and since the latter is acyclic, so is L. �

Remark 16.5. Let Λ→ Λ′ be a flat map, set L′ = L⊗Λ′ and let S ′ = Spec Λ′ and G′ = GS′ .
Let C•(G,L) denote the Hochschild complex of L. Then C•(G,L) ⊗ Λ′ identifies with the
Hochschild complex C•(G′, L′) hence, since Λ → Λ′ is flat, one has H i(G,L) ⊗ Λ′ ' H i(G′, L′)
for all i ≥ 0.

2This neat proof is taken from [DG70], §II.3, Prop. 4.2.
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Corollary 16.6. Let G be a MT-group of type M over S and L a G-Λ-module. Then
H i(G,L) = 0 for i > 0.

Proof. By hypothesis, there exist faithfully flat morphisms U ′i → Ui, where the Ui and U ′i
are affine and the Ui form an open covering of S = Spec Λ, such that GU ′

i
' D(M)U ′

i
. Since S is

affine, hence quasi-compact, it is covered by finitely many of the Ui. Then the disjoint sum S ′ of
the corresponding U ′i is affine and faithfully flat over S, and GS′ ' D(M)S′ . Set Λ′ = O(S ′) and
L′ = L⊗Λ′. By the previous remark and proposition, one has 0 = H i(GS′ , L′) ' H i(G,L)⊗Λ′.
Since Λ′ is faithfully flat over Λ, it follows that H i(G,L) = 0 for i > 0. �

17. Infinitesimal liftings and Hochschild cohomology

In this section, we fix a nilpotent ideal I in a ring Λ and denote by S ⊃ S0 the spectra of Λ
and Λ/I; they have the same underlying topological space. For every S-scheme X we denote by
X0 its pullback over S0.

Further, we fix affine S-group schemes G and Y , with G smooth and Y flat and such
that Y0 is of multiplicative type. The goal of this section is to prove the following theorem,
where int(g) denote the automorphism of conjugation by g.

Theorem 17.1. Let u0 : Y0 → G0 be a morphism of S0-group schemes. Then:

(1) There exists a morphism of S-group schemes u : Y → G that lifts u0.

(2) If v is another such morphism, there exists g ∈ Ker(G(S) → G(S0)) such that v =
int(g) ◦ u.

(3) More generally, if v : Y → G is a morphism of S-group schemes and g0 ∈ G(S0) is such
that v0 = int(g0) ◦ u0, there exists a lifting g of g0 such that v = int(g) ◦ u.

Let n be the smallest positive integer such that In = 0. Assume first that n = 2 and that
assertions (1) and (2) are proved for n = 2. Let v : Y → G be a morphism of S-group schemes
and g0 ∈ G(S0) such that v0 = int(g0) ◦ u0. Since G is smooth, g0 lifts to an element g′ ∈ G(S);
set u′ = int(g′) ◦ u. Then v0 = u′0 hence, by (2), there exists g′′ ∈ Ker(G(S)→ G(S0)) such that
v = int(g′′) ◦ u′. Then v = int(g′′g′) ◦ u, and g′′g′ is a lifting of g0. This proves (3) for n = 2.

Now, let n ≥ 2, assume the theorem proved for all ideals J such that Jn = 0 and let I be
such that In+1 = 0. Set J = I2 and SJ = Spec(Λ/J), then Jn = 0 and the image I of I in

Λ/J satisfies I
2

= 0. By the case n = 2 and the induction hypothesis, u0 lifts to a morphism
of SJ -group schemes uJ : YJ → GJ and uJ lifts to a morphism of S-group schemes u : Y → G.
This proves (1).

Further, let v : Y → G be a morphism of S-group schemes and g0 ∈ G(S0) such that
v0 = int(g0) ◦ u0. By the case n = 2 and the induction hypothesis, g0 lifts to an element
gJ ∈ G(SJ) such that vJ = int(gJ)◦uJ and gJ lifts to an element g ∈ G(S) such that v = int(g)◦u.
This proves (3), and of course (2) is the special case g0 = e. Thus, it suffices to prove the following
proposition. From now on we assume that I2 = 0.

Proposition 17.2. Suppose that I2 = 0 and let u0 : Y0 → G0 be a morphism of S0-group
schemes. Then:

(1) There exists a morphism of S-group schemes u : Y → G that lifts u0.

(2) If v is another such morphism, there exists g ∈ Ker(G(S) → G(S0)) such that v =
int(g) ◦ u.

Recall now the notation introduced in Definition 14.1. In particular, we have an exact
sequence of group functors:

(17.1) 1 // L′G
// G

π // G+ // 1.
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We are going to describe the functor L′G in order to prove Proposition 17.2.

We have the smooth affine group-scheme G = Spec(A), where A is a Λ-Hopf algebra. Let
c : A→ A⊗A and ε : A→ Λ be the comultiplication and augmentation (or counit) maps, which
correspond to the multiplication of G and to the unit section S → G. Recall that Λ0 = Λ/I and
that the pull-back of a S-scheme X to S0 = Spec Λ0 is denoted by X0.

Definition 17.3. Let m = Ker ε; sinceG is smooth over S, m/m2 is a locally free Λ-module of
finite rank (equal to the relative dimension d ofG over S). Further, one has (m/m2)⊗Λ0 ' m0/m

2
0

with obvious notation.
By definition, Lie(G/S) is the Zariski tangent space to G along the unit section, i.e. it is the

Λ-module Lie(G/S) = HomΛ(m/m2,Λ). It is locally free of rank d. Similarly for Lie(G0/S0)
over Λ0.

Definition 17.4. The left action of G on itself by inner automorphisms, that is, int(g)(g′) =
gg′g−1, induces a structure of left A-comodule µ : V → A⊗ V on V = A, which corresponds to
the linear right action of G on A given (φ · g)(g′) = φ(gg′g−1) for φ ∈ A and arbitrary R-points
g, g′ ∈ G(R). Clearly, m = Ker ε is stable by this G-action, as well as m2, hence there is a
natural right action of G on the cotangent space m/m2 which is called the coadjoint action. The
induced action on the dual space Lie(G/S) is called the adjoint action.3

Lemma 17.5. Let T = SpecB for some Λ-algebra B. Consider the B0-module F (T ) =
HomΛ0(m0/m

2
0, IB).

(1) L′G(T ) is the set of Λ-algebras morphisms of the form φ = ε+D, with D ∈ F (T ).

(2) The resulting identification L′G(T ) = F (T ) respects the group laws and the conjugation
action of G on L′G(T ) corresponds to the action on F (T ) induced by the coadjoint action
on m/m2.

(3) If T is flat over S, setting L0 = HomΛ0(m0/m
2
0, I) one has F (T ) = L0 ⊗Λ0 B0.

Proof. (1) By definition, L′G(T ) is the set of algebra morphisms φ : A → B which reduce
to ε modulo I. Thus, for any a ∈ A, we can write φ(a) = ε(a) + D(a), with D(a) ∈ IB. One
has A = Λ1⊕m and φ(1) = 1 = ε(1), so we may consider D as a Λ-linear map m→ IB. Since
(IB)2 = 0, the condition that φ be a morphim of algebras becomes:

ε(a1a2) +D(a1a2) = φ(a1a2) = φ(a1)φ(a2) = ε(a1a2) + ε(a1)D(a2) + ε(a2)D(a1),

which is equivalent to

(17.2) D(a1a2) = ε(a1)D(a2) + ε(a2)D(a1).

One expresses this equality by saying that D is an ε-derivation A → IB. This implies that D
vanishes on m2. Conversely, one sees that any Λ-linear map m/m2 → IB defines a map D as
above. This proves the first equality below, and the second follows since IB is annihilated by I:

L′G(T ) = HomΛ(m/m2, IB) = HomΛ0

(
(m/m2)⊗ Λ0, IB

)
.

Finally, since (m/m2)⊗ Λ0 ' m0/m
2
0, one obtains assertion (1).

(2) Let φ ∈ m. Since A = Λ1⊕m one can write uniquely:

(17.3) c(φ) = λ1⊗ 1 + φ1 ⊗ 1 + 1⊗ φ2 +
∑
i

ψi ⊗ θi

with φ1, φ2 and the ψi, θi in m. Since φ = (id⊗ ε)c(φ) = (ε⊗ id)c(φ), and ε(φ) = 0, one obtains
successively that λ = 0 and φ1 = φ = φ2.

3Over a base field, the adjoint action is considered as the primary object and the coadjoint action is its dual,
but over an arbitrary base one has to note that the action on m/m2 (which is ε∗(ΩG/S)) comes first.
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Now, let g1, g2 ∈ L′G(T ) and write gi = ε + Di for i = 1, 2. Recall that the product g1g2 is
mB ◦ (g1⊗g2)⊗ c, where mB is the multiplication of B. It follows from (17.3) that for any φ ∈ m
one has

(g1g2)(φ) = D1(φ) +D2(φ) +
∑
i

D1(ψi)D2(θi) = (D1 +D2)(φ)

where in the second equality we have used that (IB)2 = 0. This proves the first part of (2),
i.e. that under the identification gi ↔ Di the group law of L′G(T ) transforms into the addition
law of the B0-module F (T ).

Next, let g ∈ G(T ) and g1 = ε + D1 ∈ L′G(T ). For any φ ∈ m, let φ denote its image in
m/m2. Then int(g)(g1) sends φ to

φ
(
c(g)(g1)

)
= (φ · g)(g1) = g1(φ · g) = (ε+D1)(φ · g) = D1(φ · g)

and on the right-hand side this is the action of G on F (T ) induced by the coadjoint action on
m/m2. This completes the proof of (2).

(3) Suppose that B is flat over Λ. Then we have isomorphims I ⊗ B0 = I ⊗ B ∼−→ IB and
hence, since B0 is flat over Λ0 and m0/m

2
0 is locally free of finite rank, one obtains

F (T ) ' HomΛ0(m0/m
2
0, I)⊗Λ0 B0 ' Lie(G0/S0)⊗Λ0 I ⊗Λ0 B0.

Thus, setting L0 = HomΛ0(m0/m
2
0, I) ' Lie(G0/S0)⊗Λ0 I, one has F (T ) = L0 ⊗Λ0 B0. �

We can now prove Proposition 17.2

Proof of proposition 17.2. Let Y = SpecB be a flat affine group scheme over S, with
Y0 of multiplicative type and suppose given a morphism of S-group functors φ : Y → G+,
i.e. a morphism of S0-groups u0 : Y0 → G0. Since G is smooth and I nilpotent, there exists a
morphism of S-schemes s : Y → G lifting u0.

As in Section 15, we can use φ to form the S-group functor E = G×G+ Y and pull-back the
short exact sequence (17.1) to obtain the following short exact sequence of S-group functors:

(17.4) 1 // L′G
// E

π // Y // 1.

The morphism of S-schemes s : Y → G is a section of π. Proceeding as in Section 15, we obtain
a morphism s̃ : Y 2 → L′G defined for arbitrary points y1, y2 ∈ Y (T ) by

s̃(T )(y1, y2) = s(y1y2)s(y1)−1s(y2)−1.

This is an element of L′G(Y 2), which equals L0 ⊗ B0 ⊗ B0 since B is flat over Λ. By Yoneda
lemma, the fact that s̃(T ) is a cocycle for group cohomology, for any T , translates into the fact
that s̃ defines a class in the Hochschild cohomology group H2(Y0, L0). But the latter is 0 by
Cor. 16.6 since Y0 is of multiplicative type. Therefore, u0 can be lifted to a morphism of S-group
schemes u : Y → G.

Then, as in Section 15, any other such morphsim v has the form v = fu, where f is a
morphism Y → L′G, i.e. an element of L′G(Y ) = L0⊗B0, which is a 1-cocyle. Since H1(Y0, L0) =
0, one obtains by Corollary 15.5 that v = int(g) ◦ u for some g ∈ Ker(G(S) → G(S0)). This
completes the proof of Proposition 17.2. �

Notes for this Lecture

The cohomology of groups in a category is defined in Exp. I, §5.1. Then Lemma 15.4 and Corollary 15.5 are
proved in Exp. III, Prop. 1.2.4 but are standard results in group cohomology, as well as Lemma 15.6.

Hochschild homology is defined in Exp. I, §5.3, where Prop. 16.4 is proved as Th. 5.3.3 (whereas Lemma 16.3
is contained in the proof of 5.3.1.1). The extension to groups of multiplicative type (Cor. 16.6) is Exp. IX, Th. 3.1.

Theorem 17.1 corresponds to Theorems 3.2 and 3.6 of Exp. IX, whose proofs rely on Exp. III, Th. 2.1 and

Cor. 2.5.




