
LECTURE 6

A first look at maximal tori and Lie algebras

13. Motivation: tori in reductive group schemes

Definition 13.1. Let k be an algebraically closed field an G a connected affine algebraic
group over k, that is, a connected affine smooth group scheme over k.

One knows that all maximal tori T of G have the same dimension; in fact they are all
conjugate under G(k). Their common dimension is called the reductive rank of G and denoted
by rkred(G).

One also knows that there exists a largest normal smooth connected solvable (resp. unipotent)
subgroup of G, it is called the radical (resp. unipotent radical) of G and is denoted by rad(G)
(resp. radu(G)).

One says that G is reductive (resp. semi-simple) if radu(G) = {e} (resp. rad(G) = {e}). In
this case, if K is a larger algebraically closed field, GK is reductive (resp. semi-simple).

Definition 13.2. Let S be a base scheme. One says that a S-group scheme G is reductive
(resp. semi-simple) if:

(1) G is affine and smooth, with connected fibers.

(2) Its geometric fibers are reductive (resp. semi-simple), that is, for every s ∈ S, denoting
by s the spectrum of an algebraic closure κ(s) of the residue field κ(s), the κ(s)-group
Gs is reductive (resp. semi-simple).

Definition 13.3. Let G be a smooth affine S-group scheme. A maximal torus of G is a
closed subgroup scheme1 T such that:

(1) T is a torus (in the sense of Def. 1.3).
(2) For every geometric point s of S, the subgroup Ts is a maximal torus of Gs

Remark 13.4. (1) In particular, one will obtain that a smooth affine S-group scheme H
such that all its fibers are tori, is itself a torus. This is far from obvious!

(2) Let k be an algebraically closed field of characteristic 6= 2 and let S = A1
k. The constant

S-group {±1}S is smooth and isomorphic with µ2,S. Let H be the open subgroup obtained by
removing the non-neutral point over s = 0. Then H is a smooth affine S-group scheme and
all its fibers are MT-groups, but H is not a MT-group. This shows that the assumption that
the fibers are connected is important. (However, Cor. 4.8 of Exp. X proves that if H is a flat
S-group scheme of finite presentation, such that all fibers Hs are MT-groups and their type
(i.e. the corresponding abelian group) is locally constant function of s, then H is a MT-group
over S.)

A fundamental point in the study of reductive group schemes is to prove that maximal tori
exist locally in the étale topology. The proof consists in showing that certain functors F are
representable and formally smooth, so that for every s ∈ S there exists some étale neighbourhood
S ′ of s such that F (S ′) 6= ∅ (Hensel Lemma).

0corrected version of Nov. 4, 2023
1If H is a MT-group over S, every monomorphism of S-groups H → G is closed immersion, see Cor. 21.2 in
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Definition 13.5. One says that a contravariant functor F : (Sch) → (Sets) is formally
smooth if for every nilpotent ideal I in a ring A, the map F (SpecA) → F (Spec(A/I)) is
surjective.

14. A first glimpse of Lie algebras

In this section and later ones, we consider a square-zero ideal I in a ring Λ and denote by
S ⊃ S0 the spectra of Λ and Λ/I; they have the same underlying topological space. For every
S-scheme X we denote by X0 its pullback over S0.

Definition 14.1. (1) Let S ′ → S be a morphism of schemes and let X ′ be a S ′-scheme.
One denotes by

∏
S′/S X

′ the functor sending each S-scheme T to X ′(T ×S S ′). It is called the

Weil restriction of X ′ from S ′ to S.
When X ′ = X ×S S ′ for some S-scheme X, one has for every S-scheme T :(∏

S′/S
XS′

)
(T ) = HomS′(TS′ , XS′) = HomS(TS′ , X) = X(T ×S S ′).

(2) Now, let G be a smooth affine S-group scheme. We denote by G+ the functor
∏

S0/S
G0;

that is, for any T → S a T -point of G+ is a morphism of S-schemes φ : T0 → G. Clearly, G+

is a group functor and there is a canonical morphism of group functors G → G+, which sends
an arbitrary point T → G to the point T0 → G of G+. Denote by2 L′G its kernel. Note that
since G is smooth and I nilpotent, any morphism of schemes f0 : T0 → G lifts to a morphism of
S-schemes f : T → G, so we have an exact sequence of group functors:

(14.1) 1 // L′G
// G

π // G+ // 1.

If Y is a MT-group over S and u0 : Y0 → G is a morphism of S0-group schemes, an important
result in the sequel is that u0 can be lifted to a morphism of S-group schemes u : Y → G. We
are going to describe the functor L′G in order to prove this result.

Before going into this, let us illustrate some results with the following example.

Example 14.2. Let k be a ring (if one wants, an algebraically closed fied) and consider the
group scheme G = GLn,k over Spec k. Its Lie algebra Lie(G) is the free k-module Mn(k); we
define the functor W (Lie(G)) on the category of k-algebras by W (Lie(G))(R) = Lie(G) ⊗k R.
Denoting the dual k-module Lie(G)∗ by ωG/S, one can also say that W (Lie(G)) is represented
by the spectrum V(ωG/S) of the symmetric algebra over k of ωG/S. .

Now, let ε be a square-zero variable and set TG =
∏

k[ε]/kGk[ε]. The projection k[ε] → k
sending ε to 0 induces a short exact sequence of group functors:

(14.2) 1 // W (Lie(G)) // TG
π // G // 1

that is, for every k-algebra R, one has an exact sequence of groups:

1 // Lie(G)⊗k R // G(R[ε])
π // G(R) // 1.

Here, the inclusion k ↪→ k[ε] is a section of k[ε]→ k hence induces a morphism of group functors
G→ TG which is a section of π. Hence TG (which is the tangent bundle to G) is the semi-direct
product of V(ωG/S) by G, where G acts on ωG/S via the so-called coadjoint action; in particular,
TG is representable.

The point of this example is two-fold:

(1) The additive group law on Lie(G) coming from its structure of k-module coincides with
the group law on the kernel H of the morphism TG→ G.

2We use the notation L′
G as in Exp. III, where LG denotes another functor.
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(2) The action of G on H by conjugation coincides, under the previous identification, with
the adjoint action of G on Lie(G).

Indeed, these assertions are easily verified in this case: a R-point of H is a matrix of the form
In + εA, for some A ∈Mn(R). The product of two such elements is:

(In + εA1)(In + εA2) = In + ε(A1 + A2).

Further, for any B ∈ G(R) = GLn(R), one has B(In + εA)B−1 = In + εBAB−1. These facts
will remain true in the more general case consider below.

Notes for this Lecture

Reductive (or semi-simple) groups over an algebraically closed field and reductive (or semi-simple) group
schemes are defined in Exp. XIX, 1.6.1 and 2.7.

Maximal tori are defined in Exp. XII, Def. 1.3 and studied in Exp. XII–XIV.
Weil restriction of scalars is defined in Exp. II, §1.

The functors G+ and L′
G are defined in Exp. III, under more general hypotheses in Def. 0.1.1 and remarks

0.4–0.5, and then put together, in the simpler case where G is a S-group scheme, in Cor. 0.9


