
LECTURE 5

Results on MT-groups obtained by descent

10. Representability of D(G) when G is a twisted constant or MT-group

Firstly, we want to complete the proof of Propositions 4.4 and 4.5. In both cases, we have
a contravariant functor F : (Schemes/S) → (Groups) given by T 7→ HomT -Gr(GT , IT ), where
I = Gm,S and G is the given S-group scheme (either twisted constant or of multiplicative type).
More generally, let be given S-schemes X, Y and consider the functor

F = HomS(X, Y ) : (Schemes/S)→ (Sets), T 7→ HomT -Sch(XT , YT ).

We want to give conditions ensuring that F is representable by a S-scheme.

Firstly, this F has the following property. Let T be a S-scheme and (Ui) a covering of T by
open subsets; one has Ui ∩ Uj = Ui ×T Uj, denote it by Uij. To give a morphism of T -schemes
XT → YT is the same thing as giving morphisms fi : XUi

→ YUi
which agree on the intersections

XUi
∩ XUj

= X ×T Uij, i.e. such that pr∗1(fi) = pr∗2(fj) for all i, j, where pr1, pr2 denote the
projections from Ui ×T Uj to the first and second factor respectively. Thus we have an exact
diagram of sets:

(10.1) HomT -Sch(XT , YT ) //
∏

i HomUi-Sch(XUi
, YUi

) //
// ∏

i,j HomUij-Sch(XUij
, YUij

)

F (T ) //
∏

i F (Ui)
pr∗2

//
pr∗1 // ∏

i,j F (Ui ×T Uj).

Definition 10.1. Let C denote the category of S-schemes and Ĉ that of contravariant

functors C → (Sets). One says that a functor F ∈ Ĉ having the previous property is a local
functor, or a sheaf for the Zariski topology.

Remark. Setting T ′ =
∐
i Ui, the second line of (10.1) can be written as F (T ) // F (T ′)

pr∗2

//
pr∗1 // F (T ′ ×T T ′) .

To illustrate, let us give here the following lemma (a more general result will be proved later).

Lemma 10.2. Let F be a local functor (Schemes/S) → (Sets). Suppose there exists an
open covering (Si) of S such that Fi = F ×S Si be representable by a Si-scheme Xi. Then F is
representable by a S-scheme X.

Proof. Both Xi ×S Sj and Xj ×S Si represent the restriction of F to Sij = Si ×S Sj hence,
by Yoneda lemma, there exists a unique isomorphism of Sij-schemes

ϕji : Xi ×S Sj
∼−→ Xj ×S Si.
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26 5. RESULTS ON MT-GROUPS OBTAINED BY DESCENT

Then one has isomorphisms of schemes over Sijk = Si ×S Sj × Sk :

Xi ×S Sj × Sk
ϕji×idSk // Xj ×S Si ×S Sk Xj ×S Sk ×S Si

ϕkj×idSi

��
Xi ×S Sk ×S Sj

ϕki×idSj // Xk ×S Si ×S Sj Xk ×S Sj ×S Si
and as all these objects represent the restriction of F to Sijk, this diagram commutes, i.e. the ϕji
satisfy the cocyle condition ϕkj ◦ ϕji = ϕki. Therefore the Xi glue together to give a S-scheme
X such that X ×S Si = Xi for each i. It remains to prove that X represents F .

For every scheme Y over Si, one has

(∗) F (Y ) = Fi(Y ) = HomSi
(Y,X ×S Si) = HomS(Y,X) = hX(Y ).

Next, for every scheme Y over S, the Yi = Y ×S Si form an open covering of Y ; set Yij =
Yi×Y Yj = Y ×S Sij. As F (resp. hX) is a local functor then, taking (∗) into account, both F (Y )
and hX(Y ) identify with the equalizer of the double-arrow:∏

i F (Yi)
//
//
∏

i,j F (Yij)

∏
i hX(Yi)

//
//
∏

i,j hX(Yij) .

This proves that X represents F . �

Moreover, our functor F = HomS(X, Y ) has the following additional property.

Proposition 10.3. Let p : T ′ → T be faithfully flat and quasi-compact. Denoting by pr1, pr2

the two projections from T ′′ = T ′ ×T T ′ to T ′, the following diagram is exact:

(10.2) HomT -Sch(XT , YT ) // HomT ′-Sch(XT ′ , YT ′) //
// HomT ′′-Sch(XT ′′ , YT ′′)

F (T ) // F (T ′)
pr∗2

//
pr∗1 //

F (T ′ ×T T ′).

Proof. As we saw in the proof of Prop. 8.7, the first line of (10.2) identifies with the diagram:

HomS(XT , Y )
p∗ // HomS(XT ′ , Y )

pr∗2

//
pr∗1 // HomS(XT ′′ , Y )

which is exact since p is a universal effective epimorphism. �

Definition 10.4. A functor F ∈ Ĉ is called a sheaf for the fpqc topology if it is local
and satisfies the conclusion of Proposition 10.3. For the sake of brevity; we will simply say
fpqc-sheaf.

Remark 10.5. If X, Y are S-group schemes, one obtains similarly that HomS-Gr(X, Y ) is a
sheaf for the fpqc topology.

Remarks 10.6. (1) For each X ∈ C one has the functor hX ∈ Ĉ defined by hX(Y ) = HomC (Y,X). By

Yoneda lemma, for each F ∈ Ĉ and X ∈ C there is a natural isomorphism HomĈ (hX , F ) = F (X). In particular,
for X,Y ∈ C one has HomĈ (hX , hY ) = hY (X) = HomC (X,Y ). This shows that C identifies with a full

subcategory of Ĉ .

(2) Noting that HomS(S,X) = hX one obtains that each X ∈ C (identified with hX) is a sheaf for the
fpqc topology.
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(3) The larger categories of sheaves for the fppf, étale, finite étale topologies consist of all local functors which
satisfy the condition of Def. 10.4 only for faithfully flat morphisms f which are of finite presentation, resp. étale,
resp. finite étale. Note that the finer the topology is (i.e. the less restrictions on f there are), the closer the
resulting sheaves get to actual schemes.

Then, one has the following important result, which is “well-known to the experts” but not
easy to find in the literature in this explicit form (see however [SGA31], IV, Prop. 3.5.2). We
have included it as Lemma 1.7.2 in Exp. VIII of the new edition of [SGA32].

Proposition 10.7. Let F : (Sch/S) → (Sets) be a fpqc sheaf. Assume there exists S ′ → S
faithfully flat and quasi-compact such that F ′ = F ×S S ′ is representable by a S ′-scheme X ′.

(1) Then X ′ is endowed with a descent datum with respect to S ′ → S.

(2) If this descent datum is effective, that is, if X ′ comes by base change from a S-scheme
X, then X represents F .

(3) The descent datum is always effective is X ′ is quasi-affine over S ′; more generally if X ′

is covered by saturated open subsets which are quasi-affine over S ′.

Proof. (1) We use the notation S ′′i and S ′′′i introduced in 8.5. The hypotheses imply that
F ′′i = F ′ ×S′ S ′′i is represented by X ′′i = X ′ ×S′ S ′′i . But F ′′1 = F ×S S ′′ = F ′′2 . Hence, by
uniqueness of the representing scheme (Yoneda lemma), there exists a unique S ′′-isomorphism

ϕ : X ′′1
∼−→ X ′′2 .

For i < j in {1, 2, 3}, denote by prji : S ′′′ → S ′′ the projection to the factors i and j. Then,

set X ′′′i = X ′ ×S′ S ′′′i and denote by pr∗ji(ϕ) : X ′′′i
∼−→ X ′′′j the isomorphism of S ′′′-schemes

obtained from ϕ by base change. Then, one obtains a diagram of isomorphisms of S ′′′-schemes:

X ′′′1

pr∗21(ϕ)
//

pr∗31(ϕ) ##

X ′′′2

pr∗32(ϕ)

��
X ′′′3

and as these schemes represent the restriction of F to S ′′′ they are uniquely isomorphic, hence
one has the cocyle relation pr∗31(ϕ) = pr∗32(ϕ) ◦ pr∗21(ϕ), that is, ϕ is a descent datum on X ′

relative to S ′ → S.

(2) Assume further that this descent datum is effective, i.e. that there exists a S-scheme X
such that X ′ ' X ×S S ′. We prove that X represents F , as in Lemma 10.2: for every Y → S ′,
one has

(∗∗) F (Y ) = F ′(Y ) = HomS′(Y,X ×S S ′) = HomS(Y,X) = hX(Y ).

Next, for every Y → S set Y ′ = Y ×S S ′ and Y ′′ = Y ′ ×Y Y ′ ' Y ×S S ′′. Then Y ′ → Y is
faithfully flat and quasi-compact, since S ′ → S is so. As F and hX are sheaves for the fpqc
topology, one deduces from (∗∗) that F (Y ) and hX(Y ) both identify to the equalizer of the
double arrow:

F (Y ′) //
// F (Y ′′)

hX(Y ′) //
// hX(Y ′′) .

This proves that X represents F .

(3) This follows from Th. 8.18 and Lemma 8.21. �

We can now complete the proof of propositions 4.4 and 4.5. Recall the hypotheses: M is a
finitely generated abelian group and E, resp. H is a twisted constant group, resp. MT-group,
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of type M over S. Further, one assumes that H is quasi-isotrivial. We have to prove that the
functors D(E) and D(H) are representable, respectively, by a MT-group and a twisted constant
group of type M .

Proof. By Lemma 10.2 and the previous proposition, we only have to prove that if S is
affine and if p : S ′ → S is a flat surjective morphism, with S ′ affine, such that the functor D(E)S′
(resp. D(H)S′) is represented by X ′ = D(M)S′ (resp. X ′ = MS′), then the descent datum on
X ′ is effective. In the first case, this follows immediately from the previous proposition, since
D(M)S′ is affine.

In the second case, using the hypothesis that H is quasi-isotrivial, we may assume that the
above morphism p : S ′ → S is étale, hence locally of finite presentation. Further, in this case,
X ′ = MS′ is étale over S ′ hence separated, locally of finite presentation and locally quasi-finite
over S ′. So we conclude by Prop. 8.23 that the descent datum on X ′ is effective. �

Example 10.8. Illustrate this when S is the nodal cubic curve of Remark 4.10 by construct-
ing H and E over S which become trivial over the principal Z-bundle P → S, but are not
isotrivial over S. (To be done during the lecture).

11. Isotriviality over a locally noetherian normal base

We fix a base scheme S and an abelian group M . For the sake of completeness, let us record
here the following theorem ([SGA32], X, Cor. 4.5).1

Theorem 11.1. Let H be a MT-group over S of type M . If M is finitely generated, then H
is quasi-isotrivial.

From now on, we assume that M is finitely generated and that S is locally noetherian.

Lemma 11.2. Let P be a quasi-isotrivial twisted constant scheme over S. Let Z be an open
and closed subset of P .

(1) Let U be the set of those s ∈ S such that the fiber Zs is finite. Then U is open and
closed in S and the map ZU → U is finite.

(2) In particular, if S is connected and U non-empty, then Z → S is finite.

Proof. By assumption, there exists a surjective étale map f : S ′ → S such that PS′ = IS′
for some set I. We have a cartesian diagram:

Z ′ //
� _

��

Z� _

��
IS′ //

��

P

��
S ′

f // S

and, since f is étale, the inverse image f−1(U) equals the set U ′ of s′ ∈ S ′ such that the fiber Z ′s′
is finite.2 Further, since f is étale, S ′ is still locally noetherian, hence its connected components
are open and closed. If C is such a component, the Ci are the connected components of IC ,
hence Z ′C equals JC for some subset J = J(C) of I, and one sees that the points of C belong to
U ′ if and only if J(C) is finite, in which case the map Z ′C → C is finite.

Thus, U ′ is the union of those connected components C of S ′ such that J(C) is finite, hence
is open and closed in S ′, and the map Z ′U ′ → U ′ is finite. Since the topology of S is the quotient
of that of S ′, one obtains that U is open and closed in S. Further, the map Z ′U ′ → U ′ is the

1This theorem is one of the reasons why we restricted to finitely generated abelian groups M .
2Setting s = f(s′), one has Z ′s′ ' Zs ⊗κ(s) κ(s′), where κ(s) denotes the residue field of s.
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pull-back via f of ZU → U and, since the former is finite, so is the later (use e.g. Lemma 8.22 and
[EGA], IV2, Prop. 2.7.1). This proves assertion (1), and assertion (2) follows immediately. �

Definition 11.3. Recall that S is supposed locally noetherian. Then one says that S
is geometrically unibranch (see [EGA] IV2, 6.15.1 and paragraph before 6.15.14) if the

normalization map S̃ → Sred is radicial (hence a universal homeomorphism).3

The important fact is that, in this case, the connected components of S are irreducible.4

Further, if a morphism P → S is étale, then P is also locally noetherian and geometrically
unibranch (see [EGA], IV4, Prop. 17.7.5).

Proposition 11.4. Suppose that S is locally noetherian and geometrically unibranch. Let
p : P → S be a quasi-isotrivial twisted constant scheme over S. Then the connected components
of P are finite over S.5

Proof. Since S and P are locally noetherian and geometrically unibranch, their connected
components are open and closed, and are irreducible. In particular, replacing S by one of its
connected components, we may assume S irreducible; let η be its generic point. Let C be a
connected component of P ; it is irreducible, denote by ξ its generic point. As p is flat, one has
p(ξ) = η. As C is the closure of ξ in P , it follows that C ∩ p−1(η) is the closure of ξ in p−1(η).
But since p is étale, hence locally quasi-finite, the fiber p−1(η) is discrete. Thus, for the open
and closed subset C of P one has Cη = {ξ}, which is finite. Hence, by the previous lemma, C
is finite over S. �

Theorem 11.5. Suppose that S is locally noetherian and geometrically unibranch. Let H be
a MT-group of type M , which is quasi-isotrivial.6 Then H is in fact isotrivial.

Proof. Set G = D(M)S and denote the functors HomS-Gr(G,H) and IsomS-Gr(G,H) by E
and I respectively.

Let S ′ → S be an étale map such that HS′ ' D(M)S′ . Since M is finitely generated we
obtain, by Prop. 7.5, that

ES′ = HomS′-Gr(D(M)S′ , D(M)S′) = HomS′-Gr(MS′ ,MS′)

is represented by the constant scheme End(M)S′ , and then that IS′ is represented by the constant
scheme Aut(M)S′ . By the effectiveness result of Prop. 8.23, I is represented by a twisted constant
scheme P over S.

Let C be a connected component of P . It is étale over S and, by the previous proposition,
finite. Hence p(C) is open and closed in S, hence p(C) = S since S is connected. Thus p : C → S
is étale, surjective and finite. Further, the diagonal map C → C ×S C produces a section over
C of PC = IsomC-Gr(GC , HC), hence HC is isomorphic with D(M)C . This proves that H is
isotrivial. �

12. Classification of isotrivial groups of multiplicative type

In this section, we assume that the base scheme S is connected.

Definition 12.1. (1) An étale covering of S is a morphism π : S ′ → S which is étale,
surjective and finite (in particular, affine). Then π∗OS′ is a locally free OS-algebra of rank n,
and n is called the degree of the covering.

(2) The group Γ of S-automorphisms of S ′ is finite, of cardinality ≤ n. If S ′ is connected
and |Γ| = n, one says that S ′ → S is a Galois covering with group Γ.

3For example, this is the case if S is normal or if S is a cuspidal curve.
4Beware that without the locally noetherian hypothesis, there exists connected normal schemes which are

not irreducible, see [StaPr], Tag 033O or Exercise 2.4.12 in [Co14].
5Contrast this with the connected principal Z-bundle over a nodal curve of Remark 4.10.
6As we suppose that M is finitely generated, H is automatically quasi-isotrivial, by Th. 11.1.
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Remark 12.2. Let π : E → S be an étale covering. One knows that: 7

(1) E has finitely many connected components C1, . . . , Cr, each open and closed.

Then each morphism πi : Ci → S is still finite and étale; further, since S is connected and π is
open and closed (being étale and finite), each πi is surjective. So each πi : Ci → S is a connected
étale covering.

(2) Every connected étale covering p : C → S is dominated by a Galois covering, that is,
there exists a Galois covering π : S ′ → S, with Galois group Γ, and a S-morphism
q : S ′ → C such that π = p ◦ q.

Now, if H is an isotrivial S-group scheme of multiplicative type, there exists an étale covering
E → S such that HE ' D(M)E for some (finitely generated) abelian group M . By the previous
remark, we may replace E by a Galois covering S ′ → S with Galois group Γ. For the sake of
simplicity, let us further assume that S = SpecR is affine. Then S ′ = SpecR′ for some Galois
covering R→ R′ with group Γ.

Consider now the category MT(S ′/S) of all S-groups H of multiplicative type which become
diagonalisable over S ′. It is anti-equivalent to the category of R-Hopf algebras A such that
A ⊗R R′ is isomorphic with R′[M ], for some finitely generated abelian group M . In this case,
we have an action of Γ on B = R′[M ] by semi-linear automorphisms of R-Hopf algebra. This
induces an action of Γ on M by group automorphisms because, by the proof of the biduality
theorem 3.4 and the fact that S ′ is connected, we have: 8

D(MS′)(S
′) = HomR′-Hopf(R

′[X,X−1], R′[M ]) = Loc(S ′,M) = M.

Thus, base change from S to S ′ is a contravariant functor from MT(S ′/S) to the category of
finitely generated Γ-modules. Now, the gist of Galois descent theory is contained in Example
1.5 above, namely that a quasi-inverse is given by the functor taking such a Γ-module M to
H = SpecR′[M ]Γ.

So far, we have assumed S = SpecR for simplicity, so that HS′ = SpecB, where B = R′[M ],
in which case we know that the quotient of HS′ by Γ exists and is SpecBΓ. But it is known
in general (see [SGA1], V, Cor. 1.8) that if π : X → S is affine and Γ is a finite group of
S-automorphisms of X, then the quotient Y = X/Γ exists, and over any open affine subset
U = SpecR of S one has YU = SpecBΓ, if one denotes by SpecB the affine scheme π−1(U). So
we have obtained the:

Theorem 12.3. Let S be a connected base scheme and S ′ → S a Galois covering with group
Γ. The category MT(S ′/S) of S-groups of multiplicative type which split over S ′ is anti-equivalent
to the category of finitely generated Γ-modules.

Remarks 12.4. Let H ∈ MT(S ′/S) correspond to a Γ-module M . Denote by MΓ and MΓ

the sets of invariants and coinvariants, that is, the largest submodule (resp. quotient module)
on which the action of Γ is trivial; one has MΓ = M/N , where N is the submodule generated
by the elements m− γ(m), for m ∈M and γ ∈ Γ. Then:

(1) H is diagonalisable if and only if the action of Γ on M is trivial.
(2) Regarding by Z as a Γ-module with trivial Γ-action, one has:

HomS-Gr(H,Gm,S) = HomΓ(Z,M) = MΓ,(12.1)

HomS-Gr(Gm,S, H) = HomΓ(M,Z) = Hom(MΓ,Z).(12.2)

7In many places, this is buried in the package about Galois categories. It would be nice to give a precise
reference or, better, a self-contained proof.

8A purely algebraic formulation is that the set of group-like elements in R′[M ] is exactly M .
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(3) The natural pairing MΓ×HomΓ(M,Z)→ Z is not necessarily perfect, even if M is a free Z-module: if

M is the permutation representation Z[Γ] one has MΓ = Zv, where v =
∑
γ∈Γ eγ , whilst M →MΓ = Z

is given by
∑
γ∈Γ nγeγ 7→

∑
γ∈Γ nγ . Thus the image of the pairing is dZ, where d = |G|.

Remark 12.5. To illustrate Remark (3) above, consider the Deligne torus H = ResCR Gm,C, which corresponds
to the permutation module M = Ze0 ⊕ Ze1, where τ swaps e0 and e1. One has MΓ = Z(e0 + e1), whereas the

kernel of M → MΓ is Z(e0 − e1). The exact sequence 0 // MΓ // M // M/MΓ // 0 corresponds

to the exact sequence

(12.3) 1 // S1 // H
N // Gm,R // 1

where N is the norm homorphism. It has no section; indeed D(MΓ) is the largest split subtorus of H and the
cokernel of MΓ →MΓ is Z/2Z. However, the group of R-points H(R) splits as S1(R)× R×+.

Proposition 12.6. Let k be a field and M a finitely generated abelian group. Then any k-
group H of multiplicative type of type M is isotrivial, i.e. there exists a finite separable extension
k′ of k such that Hk′ ' D(M)k′.

Proof. Set H = Spec Λ. By hypothesis, there exists a k-algebra A and an isomorphism of
Hopf algebras φ : A[M ]

∼−→ A⊗k Λ. We reduce first to the case where A is a finitely generated
k-algebra.

Let m1, . . . ,ms be a set of generators of M , write firstly φ(mi) =
∑

j aij ⊗ rij and then

φ−1(rij) =
∑

m∈M αijmm (all sums being finite), and let Λ1 (resp. B) be the k-subalgebra of Λ
(resp. of A) generated by the rij’s (resp. the aij and αijm’s). Using that k is a field, one obtains
firstly that Λ1 = Λ (because A ⊗k (Λ/Λ1) = 0) and secondly that B ⊗k Λ is a subalgebra of
A ⊗k Λ. Clearly, φ maps B[M ] into B ⊗k Λ and φ−1 maps B ⊗k Λ = B ⊗k Λ1 into B[M ]. It

follows that φ induces an isomorphism B[M ]
∼−→ B ⊗k Λ.

Next, let m be a maximal ideal of B and K = B/m. On the one hand, K[M ]
∼−→ K ⊗k Λ.

On the other hand, by the Nullstellensatz, K is a finite extension of k. Let k′ be the separable
closure of k in K and set S = Spec k and S ′ = Spec k′. Set also R = SpecK.

Now, consider the twisted constant group E = D(H)S, it is étale over S. Denote by E ′ and
ER its pull-backs over S ′ and R. To emphasize the idea, we can now invoke the general result
that since R→ S ′ is radicial, the base change from étale S ′-schemes to étale R-schemes is fully
faithful (and even an equivalence of categories), see e.g. [SGA1], IX, Cor. 3.4 (and Th. 4.10).
Since ER 'MR, one has E ′ 'MS′ and hence, by Proposition 4.4, HS′ ' DS′(E

′) = D(M)S′ .

In our simple case we can give a direct proof of the key step. Let C be a connected component of E′. Then

C = SpecL for a field L finite and separable over k′, hence CR = Spec(L⊗kK) is a sum of finitely many Spec(Ki),

where each Ki is a field separable over K. Further, each Ki equals K, since each connected components of ER is

equal to R = SpecK. On the other hand, as K/k′ is purely inseparable, CR is irreducible (see e.g. [EGA] IV2,

Prop. 4.3.2). It follows that L⊗k K = K and hence L = k. This proves that E′ is trivial over S′. �

Notes for this Lecture

The representability of D(R) (resp. D(H)) is proved in Exp. X, Prop. 5.3 (resp. Cor. 5.7).

Theorem 11.5 is proved in Exp. X, Th. 5.16.

The classification of isotrivial groups of multiplicative type is given in Exp. X, Prop. 1.1.
The fact that a group of multiplicative type over a field is isotrivial is proved in Exp. X, Prop. 1.4, but the

proof there uses radicial descent for groups of multiplicative type, proved using cohomology in a much more
general setting in Exp. IX, Cor. 5.4. That proof has been much simplified by Oesterlé ([Oes14], §§12–13).

Theorem 11.1, that we gave without proof, is proved in Exp. X, Cor. 4.5 as a corollary of the spreading
theorem Th. 4.4. It also uses in an essential manner the algebrisation theorem IX, Th. 7.1.


