
LECTURE 4

Faithfully flat descent

8. Faithfully flat descent

We give an overview of descent theory, trying to emphasize the main ideas and to avoid
unnecessary formalism. The two main notions are that of universal effective epimorphisms
and morphisms of effective descent.1 Beware that effective does not have the same meaning
in both expressions: we will see below that a universal effective epimorphism is the same thing
as a morphism of descent, whereas the effectiveness of descent is a further property.

In this section, C denotes a category with fiber products. (In our applications, it will be the
category of schemes.)

Definition 8.1. Consider a morphism p : X → Y in C . One says that:

(1) p is an epimorphism if for every morphism Y → Z, the induced map Hom(Y, Z) →
Hom(X,Z) is injective.2

(2) p is a universal epimorphism if for every morphism T → Y in C the morphism
pT : X ×Y T → T obtained by base change is an epimorphism (in this case each pT is again a
universal epimorphism).

(3) p is an effective epimorphism if, denoting by p1, p2 the two projections from X ×Y X
to X, the following diagram in C :

(8.1) X ×Y X
p2
//

p1 // X
p // Y

is exact, which means that for every object Z of C the following diagram of sets:

(8.2) Hom(Y, Z)
p∗ // Hom(X,Z)

p∗2

//
p∗1 // Hom(X ×Y X,Z)

is exact, which in turn means that the map f 7→ f ◦ p is a bijection from Hom(Y, Z) onto the
set {g ∈ Hom(X,Z) | g ◦ p1 = g ◦ p2}.

(4) p is a universal effective epimorphism if for every morphism T → Y in C the
morphism pT : X ×Y T → T obtained by base change is an effective epimorphism (in this case
each pT is a universal effective epimorphism).

Firstly, let us record here the following easy remark and lemma.

Remark 8.2. It is clear that if p : X → Y and q : Y → Z are epimorphisms (resp. universal
epimorphisms), so is q ◦ p. Further, if p and p′ : X ′ → Y ′ are universal epimorphisms, so is
p × p′ : X ×X ′ → Y × Y ′, since it is the composition of the two morphisms obtained by base

change: X ×X ′
idX×p′

// X × Y ′
p×idY ′

// Y × Y ′ .

Lemma 8.3. If p : X → Y admits a section σ, then p is a universal effective epimorphism.

0version of August 20, 2023
1And the companion notions of equivalence relations and descent data.
2For example, an epimorphism in the category of sets is just a surjective map.
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18 4. FAITHFULLY FLAT DESCENT

Proof. Since having a section is preserved by base change, it suffices to prove that p is an effective epimor-
phism. It is clear that p∗ is injective, since σ∗ ◦ p∗ = id. Let τ be the morphism X → X ×Y X, x 7→ (x, σp(x)).
Let g : X → Z such that g ◦p1 = g ◦p2, then g = g ◦p1 ◦τ = g ◦p2 ◦τ = g ◦σ ◦p, i.e. g = p∗(f) with f = g ◦σ. �

To be concrete, let us enunciate immediately the following fundamental result (see [SGA1],
VIII, Th. 5.2 or [BLR], §6.1, Th. 6).

Theorem 8.4. In the category of schemes, every faithfully flat, quasi-compact morphism is
a universal effective epimorphism.

Now, let us fix a morphism p : S ′ → S in our category C . We want to study the base-change
functor C/S → C/S′ which sends every object X over S to the object X ×S S ′ over S ′. The goal
of descent theory is to give conditions on an arbitrary S ′-object X ′ which would ensure that
X ′ ' X ×S S ′ for some S-object X.

Notation 8.5. Denote by S ′′1 (resp. S ′′2 ) the scheme S ′′ = S ′ ×S S ′ regarded as a S ′-scheme
via the first projection p1 (resp. second projection p2).

Further,3 for i = 1, 2, 3, denote by S ′′′i the scheme S ′′′ = S ′ ×S S ′ ×S S ′ regarded as a S ′-
scheme via the projection to the i-th factor. For i < j in {1, 2, 3}, denote by prji : S ′′′ → S ′′ the
projection to the factors i and j. Further, for every S ′-object X ′, set X ′′i = X ′×S′ S ′′i for i = 1, 2
and X ′′′i = X ′ ×S′ S ′′′i for i = 1, 2, 3.

Definition 8.6. One says that p is a morphism of descent if the following property is
satisfied: for all objects X, Y over S, if we set X ′ = X ×S S ′ and X ′′ = X ×S S ′′ and define
Y ′, Y ′′ similarly, then the following diagram of sets is exact:

(8.3) HomS(X, Y )
p∗ // HomS′(X

′, Y ′)
p∗2

//
p∗1 // HomS′′(X

′′, Y ′′).

Proposition 8.7. p : S ′ → S is a morphism of descent if and only if it is a universal
effective epimorphism.4

Proof. Let X, Y be arbitrary S-objects. The diagram (8.3) identifies with the diagram:

(8.4) HomS(X, Y )
p∗ // HomS(X ′, Y )

p∗2

//
p∗1 // HomS(X ′′, Y ).

Since X ′′ = X ×S S ′′ identifies with the fiber product X ′ ×X X ′ where pX : X ′ → X is obtained
from p by the base change X → S, we see that the exactness of the second diagram, for all Y
and each given X, means that pX is an effective epimorphism. Thus we see that p is a morphism
of descent if and only if p is a universal effective epimorphism. �

Before we introduce the notion of descent datum, we need to introduce that of equivalence
relation.

Definition 8.8. An equivalence relation5 on an object X is a subfunctor of X × X,
which is represented by an object R (equivalently, one is given a monomorphism R ↪→ X ×X)
such that, for every object T of C , the set R(T ) is the graph of an equivalence relation on
X(T )×X(T ).
In this case, one denotes by p1, p2 the restrictions to R of the two projections from X ×X to X.

Here are two important examples.

3This is not used in the definition of morphism of descent, but this will be used later.
4One may wonder why introducing a new name for an already existing notion. The reason will appear later.
5By hypothesis, C has a final object e and the unadorned fiber product × is taken over e. When C = (Sch/S)

we will write explicitly ×S and we say that R is an equivalence relation on X “over S”.
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Example 8.9. To every morphism f : X → Y in C is associated the equivalence relation
Rf = X ×Y X on X. In this case, Rf → X ×X is an immersion.6 For every object T , one has
Rf (T ) = {(x, x′) ∈ X(T )×X(T ) | f(T )(x) = f(T )(x′)}.

Definition 8.10 (Free actions). Let X be an object of C and H a group-object in C
acting on X, say on the right. One says that H acts freely if for every object T , the group H(T )
acts freely on X(T ). In this case, the morphism X ×H → X ×X defined on arbitrary T -points
by (x, h) 7→ (x, xh) is a monomorphism and is an equivalence relation RH on X.7

Now, let us study more closely the base change functor C/S → C/S′ . Observe that for each
S-object X the S ′-object X ′ = X ×S S ′ has the following three properties:

(1) There is a canonical isomorphism of S ′′-schemes ϕ : X ′′1 ' X ×S S ′′ ' X ′′2 .

(2) The pull-back of ϕ via the diagonal map δ : S ′ → S ′′ is idX′ .

(3) The pull-backs pr∗ji(ϕ) all identify with the canonical isomorphisms X ′′′i ' X×SS ′′ ' X ′′′j ;
in particular they satisfy the cocyle condition:

(8.5) pr∗31(ϕ) = pr∗32(ϕ) ◦ pr∗21(ϕ).

Thus, we see that these conditions are necessary for X ′ to come from a S-object. This motivates
the following definition.

Definition 8.11. (1) A descent datum on a S ′-object X ′ relative to S ′ → S is an S ′′-

isomorphism ϕ : X ′′1
∼−→ X ′′2 which satisfies the cocycle condition (8.5). (This implies that

δ∗(ϕ) = idX′ , see below.)

A more intuitive way to formulate this is as follows (see [TDTE1], §A.1 (c), p. 190-05 or
[BLR], §6.1, p. 133). For any S-object T and any S-morphism (t1, t2) : T → S ′′, we have a
T -isomorphism

(8.6) ϕt2,t1 : X ′t1
∼−→ X ′t2

where X ′ti = X ′ ×S′,ti T (i.e. T is over S ′ via ti), and these isomorphisms are subject to the
transitivity condition below, when t1, t2, t3 are S-morphisms T → S ′:

(8.7) ϕt3,t1 = ϕt3,t2 ◦ ϕt2,t1 .
In particular, for t1 = t2 = t3 = t one obtains ϕt,t = ϕt,t◦ϕt,t hence (since ϕt,t is an isomorphism)
ϕt,t = idXt . This implies that ϕt1,t2 = ϕ−1t2,t1 . Further, applying this to the identity morphism
S ′ → S ′, one obtains that δ∗(ϕ) = idX′ .

(2) Moreover, let q1 be the first projection from X ′′1 = X ′×S′S ′′1 to X ′ and q2 the composition
of ϕ and the first projection of X ′′2 . Then the morphism

X ′′1
(q1,q2) // X ′ ×S X ′

is a monomorphism, since its composition with X ′ → S ′ is the isomorphism X ′′1 ' X ′×S S ′, and
the above interpretation of the cocycle condition shows that (q1, q2) is an equivalence relation
on X ′ over S.8 Namely, for any S-scheme T and pair of points (x1, x2) ∈ HomS(T,X ′ ×S X ′)
mapping to the pair (t1, t2) ∈ HomS(T, S ′ ×S S ′), one has x1 ∼ x2 if and only if x2 = ϕt2,t1(x1).
This is reflexive since ϕt,t = id, symmetric since ϕt1,t2 = ϕ−1t2,t1 , and transitive since ϕt3,t1 =
ϕt3,t2 ◦ ϕt2,t1 .

6That is, a closed immersion followed by an open immersion, see [EGA], I 5.3.10 and the correction III2,
Err10 to I 5.3.9.

7If there exists a quotient p : X → Y = G/H then RH = Rp = X ×Y X, as we shall see later.
8See [StaPr], Tag 024E (Lemma 30.1 in Chapter Simplicial Spaces) for a proof using only the cocycle

condition and cartesian diagrams.
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(3) There is an obvious notion of morphism of S ′-objects with descent data relative to
S ′ → S. So we may introduce the category Desc(S ′/S) of S ′-objects with descent data.

Then, comparing with Def. 8.6 we obtain the following:

Corollary 8.12. The morphism p : S ′ → S is a morphism of descent if and only if the
base change functor p∗ : C/S → Desc(S ′/S) is fully faithful, i.e. induces bijections between the
Hom-sets.

To illustrate the concept of descent data, consider the following example in the category of
schemes.

Example 8.13. Let S ′ → S be a Galois covering, with group Γ. This means, assuming for
convenience that Γ acts on the right, that the morphism µ : S ′ × Γ → S ′′ = S ′ ×S S ′ given
by µ(s′, γ) = (s′, s′γ), for every T → S and s′ ∈ S ′(T ), is an isomorphism. Then we have
isomorphisms:

S ′ × Γ× Γ
∼−→ S ′ ×S S ′ × Γ

∼−→ S ′ ×S S ′ ×S S ′

(s′, γ1, γ2) 7→ (s′, s′γ1, γ2) 7→ (s′, s′γ1, s
′γ1γ2).

Thus, any T -point of S ′′′ can be written uniquely as (s′, s′γ1, s
′γ1γ2).

Now, let f : X ′ → S ′ and assume given a right action of Γ on X ′ compatible with its action on
S ′: this means that the obvious diagram is commutative, and at the level of arbitrary T -points
this is expressed by f(x′γ) = f(x′)γ. Then we have the S ′′-isomorphism:

ϕ : X ×S′ S ′′1
∼−→ X ′ ×S′ S ′′2 , (x′, s′, s′γ) 7→ (x′γ, s′, s′γ)

and its pull-back pr∗21(ϕ) : X ′ ×S′ S ′′′1
∼−→ X ′ ×S′ S ′′′1 , as well as the two other pull-backs, are

given in terms of arbitrary T -points by the diagram below:

(x′, s′, s′γ1, s
′γ1γ2)

� pr∗21(ϕ) //
�

pr∗31(ϕ) **

(x′γ1, s
′, s′γ1, s

′γ1γ2)_

pr∗32(ϕ)

��
(x′γ1γ2, s

′, s′γ1, s
′γ1γ2).

So we see that the cocycle condition follows from (and is in fact equivalent to) the associativity
condition (s′γ1)γ2 = s′(γ1γ2).

Definition 8.14. Let p : S ′ → S be a morphism of descent.

(1) On a S ′-object X ′, a descent datum relative to p is said to be effective if X ′ (together
with its descent datum) comes from a S-object X. (Necessarily unique, since the functor p∗ is
fully faithful.)

(2) One says that p is a morphism of effective descent if every descent datum relative to
p on a S ′-object X ′ is effective.

(3) Given a full subcategory of D of Desc(S ′/S), for example the subcategory QAff(S ′/S) of
Desc(S ′/S) consisting of schemes quasi-affine over S ′, one says that:

p is an morphism of effective descent for the category D
if every descent datum relative to p on an object X ′ of D is effective. For example, we will see
later that “A faithfully flat quasi-compact morphism S ′ → S is a morphism of effective descent
for QAff(S ′/S)”.

One has the following important lemma.

Lemma 8.15. Consider morphisms U
v // T

u // S .

(1) If u ◦ v is a universal effective epimorphism, so is u.
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(2) If u ◦ v is a morphism of effective descent, so is u.

(3) If u : U → T and v : T → S are universal effective epimorphisms, resp. morphisms of
effective descent, so is v ◦ u.

Proof. (1) Suppose that u ◦ v is a universal effective epimorphism and consider the diagram

S T
uoo T ×S Too

oo

U

u◦v

OO

U ×S Too

OO

U ×S T ×S Too
oo

OO

U ×S U

OO OO

U ×S U ×S T

OO OO

oo U ×S U ×S T ×S Too
oo

OO OO

.

Columns 1,2,3 are exact since u ◦ v is an universal effective epimorphism. Row 2 is exact, since U ×S T → U is
an effective epimorphism (as it has a section over U , see Lemma 8.3) and so is row 3. Then a diagram-chasing
shows that row 1 is exact, hence u is an effective epimorphism. As the hypotheses are stable under any base
change S′ → S, it follows that u is a universal effective epimorphism.

(2) Now, suppose that u◦v is a morphism of effective descent. Since a morphism of descent is the same thing
as a universal effective epimorphism (by Prop. 8.7), (1) gives already that u is a morphism of descent. Hence,
given a T -object Y , we only have to show that any descent datum on Y relative to u : T → S is effective.

Since f = u ◦ v is a morphism of effective descent, there exists a S-object X such that v∗(Y ) ' (u ◦ v)∗(X)
as objects of Desc(U/S). It remains to show that Y ' u∗(X) as objects of Desc(T/S). Since f is a universal
effective epimorphism, so is the morphism fT : U ×S T → T obtained by base change. Further, f∗T (Y ) ' f∗T (XT )
as objects of Desc(UT /T ) (since f∗T factors through v∗) and it follows that there exists a unique T -isomorphism
Y ' u∗(X), which respects the descent data. This proves (2).

(3) Suppose that u and v are universal effective epimorphisms and consider the diagram

S T
uoo T ×S Too

oo

U

v

OO

U ×S Uoo
oo

v×S v

OO

U ×T U

OO OO 99

.

By hypothesis, the first line and column are exact, and v×S v is an epimorphism by Remark 8.2. The conclusion
follows by diagram-chasing: for every object X of C , if an element xU of X(U) has the same images in X(U ×S U),
it has also the same images in X(U ×T U), hence it comes from an element xT of X(T ) since the first column is
exact. We want to prove that xT comes from an element of X(S). As the first row is exact, it suffices to see that
xT has the same images in X(T ×S T ) and as v×S v is an epimorphism, it suffices to see that xT has the same
images in X(U ×S U), which is true because these are the images of xU . This proves the first assertion of (3).
Then one sees easily that if u, v are morphisms of effective descent, so is u ◦ v. �

From now on, we take C = (Sch). Let us then give another example of morphism of effective
descent.

Lemma 8.16. Let (Ui) be an open cover of a scheme S and let T =
∐

i Ui. Then π : T → S
is a morphism of effective descent.9

Proof. Note that T ×S T =
∐

i,j Ui ×S Uj '
∐

i,j Ui ∩ Uj, and the first (resp. second)

projection T ×S T correspond to the inclusion of each Ui ∩ Uj into Ui (resp. Uj).
Let Y be a T -scheme endowed with a descent datum relative to T → U . Then the Yi =

Y ×T Ui are open subschemes of Y , and the descent datum consists of isomorphisms on the
intersections, which satisfy the cocyle condition. Hence the Yi glue together to give a scheme X
over S, whose pullback to T is Y . �

9It is even a universal morphism of effective descent, since for any S′ → S, the U ′i = Ui ×S S
′ form an open

cover of S′.
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Remark 8.17. π is not quasi-compact if there exists a point of S contained in infinitely many Ui’s. For
example, if k is an algebraically closed field, S = A1

k and we take the covering by the S − {λ}, for λ running
through the set of closed points of S.

Now, to illustrate the previous basic results, let us sketch the proof of the following theorem,
which complements theorem 8.4 (and is in fact used in the proof of the latter).

Theorem 8.18. Let p : S ′ → S be a faithfully flat, quasi-compact morphism. Let X ′ → S ′

be quasi-affine. Then every descent datum on X ′ relative to S ′ → S is effective.

Proof. Firstly, assume the theorem proved when S is affine. For arbitrary S, let (Ui) be a
covering of S by affine open subschemes. Consider the following cartesian diagram:

T ′ =
∐

i U
′
i

π′ //

pT
��

S ′

p

��
T =

∐
i Ui

π // S.

We have seen (Lemma 8.16) that π is a morphism of effective descent, and by assumption pT is
a morphism of descent, the descent being effective in QAff(S ′/S). Hence, using point (3) and
then points (1,2) of Lemma 8.15, we obtain that the same is true for π ◦ pT and then for p.

So, it suffices to prove the theorem when S is affine. Then, since p is quasi-compact, S ′

is covered by a finite number of affine open subsets, their sum is an affine scheme S1 and the
induced morphism S1 → S is flat and surjective, hence faithfully flat. As S1 → S factors through
p, it follows from points (1,2) of Lemma 8.15 that it suffices to prove the theorem when both S
and S ′ are affine.

So, consider a faithfully flat map of rings A → A′ and set A′′ = A′ ⊗A A′. For any A′-
module M ′, denote by p∗1(M

′) the A′′-module A′′⊗A′M ′, where A′′ is regarded as A′-algebra via
a′ 7→ a′ ⊗ 1, and define p∗2(M

′) similarly. Then, when X ′ = SpecR′ for some A′-algebra R′, the
theorem follows from the following proposition, applied to M ′ = R′.

Proposition 8.19. In the category of A′-modules, every descent datum relative to A → A′

is effective. That is, if M ′ is a A′-module endowed with an isomorphism of A′′-modules ϕ :
p∗1(M

′)
∼−→ p∗2(M

′) satisfying the cocycle condition, then M = {x ∈M ′ | ϕ(1⊗ x) = 1⊗ x} is a
A-submodule of M ′ such that A′ ⊗AM = M ′.

For the proof, we refer to [SGA1], VIII, 1.4–1.6. For the extension to the case where X ′ is
only quasi-affine over S ′, we refer to [SGA1], VIII, Cor. 7.9 or [BLR], §6, Th. 6.1. �

Let us give more criteria for effective descent, that will be used in the sequel. We start with
the following:

Definition 8.20. Let R
q2
//

q1 // X be an equivalence relation on X over S. It induces an

equivalence relation on the topological space X: two points x1, x2 of X are equivalent if there
exists a point z of R such that q1(z) = q2(z). One says that a subset V of X is saturated if it
is stable by this equivalence relation. This amounts to saying that q−11 (V ) = q−12 (V ).

For any subset U of X, one sees that V = q2(q
−1
1 (U)) is the smallest saturated set containing

U (hence V = q1(q
−1
2 (U)) also); one calls it the saturation of U .

Lemma 8.21. Let p : S ′ → S be faithfully flat and quasi-compact. Let X ′ be an object of
Desc(S ′/S). Assume that X ′ is covered by saturated open subsets (V ′i ) such that the descent
datum on each V ′i is effective. Then so is the descent datum on X ′.
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Proof. Recall first that if g : Y ′ → Y is a faithfully flat quasi-compact morphism, the
topology of Y is the quotient of the one of Y ′, that is, g(V ) is open in Y for every saturated
open subset V of Y ′.

Now, by hypothesis, there exist S-schemes (Vi) such that V ′i ' Vi ×S S ′ in Desc(S ′/S). For
all i, the projection V ′i → Vi is faithfully flat and quasi-compact (being a pull-back of S ′ → S)
hence has the property recalled above. For all i, j, V ′i ∩ V ′j is a saturated open subset of V ′i and
V ′j , hence its images Vij(i) in Vi and Vij(j) in Vj are open.

Since p∗ is full and faithful, the glueing data on the V ′i descend and allow us to glue the Vi by
identifying the open subsets Vij(i) and Vij(j). This gives a S-scheme X such that X ×S S ′ ' X ′

in Desc(S ′/S) (because the descent data relative to S ′ → S coincide on each V ′i ). �

Lemma 8.22. Let f : S ′ → S be faithfully flat and locally of finite presentation, with S affine.
Then f induces a faithfully flat morphism of finite presentation S ′′ → S, with S ′′ affine.

Proof. Let (S ′i)i∈I be a covering of S ′ by affine open subsets; each is of finite presentation
over S. The hypothesis imply that f is open, hence the f(S ′i) form an open covering of S. As S
is affine, hence quasi-compact, there exists a finite subset J of I such that S is covered by the
f(S ′j), for j ∈ J . Then S ′′ =

∐
j∈J S

′
j is affine, of finite presentation over S, and the morphism

S ′′ → S is flat and surjective, hence faithfully flat. �

Proposition 8.23. Let S ′ → S be faithfully flat and locally of finite presentation and let X ′

be a S ′-scheme such that the morphism X ′ → S ′ is separated, locally of finite presentation and
locally quasi-finite. Then every descent datum on X ′ relative to S ′ → S is effective.

Proof. As in the proof of Th. 8.18 we may reduce to the case where S is affine. Then, by
the previous lemma we may assume that S ′ is affine, too.

Assume first that X ′ is quasi-compact. Then the morphism X ′ → S ′ is separated, of finite
presentation and quasi-finite hence, by [EGA], IV3, Th. 8.11.2 (or [SGA1], VIII, Th. 6.2 when
S ′ is notherian), X ′ → S ′ is quasi-affine, and hence the descent datum is effective by Th. 8.18.

Now, in general, let U ′ be an affine open subset of X ′ and let V ′ = q1(q
−1
2 (U)) be its

saturation. Recall that q1 : X ′×S′ S ′′1 → X ′ is obtained by base change from the first projection
p1 : S ′′ → S ′. As p is faithfully flat of finite presentation and affine, so is q1; in particular q1
is open and affine, and the same is true for q2. Therefore, the open subscheme q−12 (U ′) of X ′′

is affine, hence quasi-compact, and therefore V ′ is open and quasi-compact. By the previous
argument, it is quasi-affine over S ′ hence the descent datum on V ′ is effective. Finally, as X ′

is covered by the various saturated open subsets V ′, the descent datum on X ′ is effective by
Lemma 8.21. �

9. Notes for this Lecture

Lemma 8.3 is proved in Exp. IV, Prop. 1.12. Then Proposition 8.7 is Exp. IV, Prop. 2.3, while Corollary
8.12 is taken in Exp. IV, Def. 2.2 as the definition of “morphism of descent”, while it is observed there that
this depends only on the isomorphism ϕ in the descent datum, and not on the cocycle condition. (This same
definition is given in many places.)

Assertion (1) and the first part of assertion (3) of Lemma 8.15 are proved in Exp. IV, Prop. 1.8 and Lemma
1.7 respectively. Part (2) is mentioned in [SGA1], Exp. VIII, proof of Th. 1.1 (top of p. 155), refering to [Gir64],
but the lecturer has been unable to locate this statement in loc. cit.

Lemma 8.16 occurs, for example, in [SGA1], VIII, first paragraph of the proof of Th. 1.1, while Lemma 8.21
is [SGA1], VIII, Prop. 7.2. Then Lemma 8.22 is contained in [SGA31], IV, Prop. 6.3.1 (iv), and Prop. 8.23 is
[SGA32], X, Lemme 5.4.


