
LECTURE 3

Duality between twisted constant and MT-groups. Exactness of the
functor D

6. More on the duality functor D: reflexive groups

In this section we fix a base scheme S. As in SGA3 VIII §1, we denote by I the commutative
group scheme Gm,S. Let G be a group scheme over S, and assume that the functor D(G) =
HomS-Gr(G, I) is representable.1 For every S-scheme T , one has:

HomS-Sch(T,D(G)) = D(G)(T ) = HomT -Gr(GT , IT ) = HomS-Gr(G×S T, I).

This is the subset of morphisms of S-schemes G ×S T → I which are “multiplicative with
respect to the first argument”. If T = G′ is another S-group scheme, we may consider the
subset HomS-Gr(G

′, D(G)); it is the subset of morphims of S-schemes G ×S G′ → I which are
bimultiplicative, that is, multiplicative with respect to both arguments. As here G and G′ play
symmetric roles, we obtain the first assertion of the following proposition:

Proposition 6.1. Let G,G′ be S-group schemes, and assume that D(G) is representable.
Then one has the first equality below, and also the second if D(G′) is representable:

(6.1) HomS-Gr(G
′, D(G)) = D(G′)(G) = HomS-Gr(G,D(G′)).

This is compatible with any base change T → S, i.e. if f : G′ → D(G) is a morphism of S-group
schemes corresponding to g : G → D(G′), then the morphism fT : G′T → D(G)T = D(GT )
corresponds to gT : GT → D(G′)T = D(G′T ).

The second assertion follows since f and g correspond to a given bimultiplicative morphism φ : G×SG
′ → I;

by base change it defines a bimultiplicative map φT : (G ×S G
′)T = GT ×T G

′
T → IT which gives rise to fT on

the one hand and to gT on the other hand.

Definition 6.2. Let G be an S-group scheme. We say that G is reflexive if D(G) is
representable and the canonical morphism G → D(D(G)) is an isomorphism.2 Note that this
implies that G is commutative.

In this case, for any S-group scheme G′ such that D(G′) is representable, (6.1) gives:

(6.2) HomS-Gr(G
′, G) = HomS-Gr(D(G), D(G′)).

Corollary 6.3. The functor D induces an anti-equivalence of categories from the category
of reflexive S-group schemes to itself.

In view of this corollary, we see that Theorem 4.6 follows from Propositions 4.4 and4.5.

We will prove in the next lecture assertion (1) of both propositions. We take this for granted
for the moment and we prove assertions (2) and (3), firstly in the case of 4.4.

0version of August 16, 2023, after the 2nd lecture.
1This is not really needed, see SGA3 VIII §1.
2This is more restrictive than Exp. VIII, Def. 1.0.1, which does not require that D(G) be representable, but

this suffices for our purposes.
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Proof. Let us prove assertion (2). Since H = D(E), Proposition 6.1 gives us a S-morphism
u : E → D(H). The assertion that u is an S-isomorphism is local on the base so we may assume
that S is affine and that there exists a surjective flat morphism S ′ → S, with S ′ affine, such that
ES′ 'MS′ . Then HS′ = D(E)S′ = D(ES′) ' D(MS′).

Further, the morphism uS′ : ES′ → D(H)S′ = D(HS′) obtained by base-change corresponds
to the bimultiplicative map

ES′ ×S′ HS′ 'MS′ ×S′ D(MS′)→ Gm,S′ ,

hence uS′ is an isomorphism since MS′ is reflexive. Then one can invoke again [EGA] IV2,
Prop. 2.7.1, which says that u is an isomorphim.3 This proves assertion (2).

Now, over any S ′ → S, if ES′ is constant then D(E)S′ = D(ES′) is diagonalisable, and the
converse is true by the biduality theorem 3.4. This proves assertion (3). The proof is completely
similar in the case of 4.5. �

7. Exactness of the functor D

In this section, we fix a base scheme S. Before we can speak of kernels and quotients
in Proposition 7.4, we need to introduce some definitions. Consider a morphism of S-group
schemes φ : G→ Y .

Definition 7.1. Its kernel K = Kerφ is the S-group scheme defined as the fiber product:

K //

��

G

φ

��
S

e // Y

where e : S → Y denotes the unit section. For any S-scheme T , one has K(T ) = Kerφ(T ),
which is a normal subgroup of G(T ); thus K is a normal subgroup scheme of G.4 If e is a closed
immersion5, so is K → G.

Definition 7.2. Note that the morphism G×Y G→ G×S G is an immersion6, see [EGA],
I 5.3.10 together with the correction III2, Err10 to I 5.3.9. The multiplication of G induces a
morphism of S-schemes G×SK → G×SG, given on arbitrary T -points by (g, k) 7→ (g, gk), and
this morphism induces an isomorphism of S-schemes:

(7.1) G×S K → G×Y G.
Set Rφ = G×Y G and denote by p1, p2 the two projections from Rφ to G.

Given a S-scheme Z, we say that a morphism of S-schemes u : G → Z is K-invariant if
p∗1(u) = p∗2(u); this is equivalent to saying that for an arbitrary S-scheme T and any x ∈ G(T )
and h ∈ K(T ), one has u(T )(xh) = u(T )(x).

Next, we say that the morphism φ : G→ Y “is the quotient scheme G/K” if the map φ∗

induces, for every S-scheme Z, a bijection:

(7.2) HomS-Sch(Y, Z)
φ∗

∼
// {K-invariant S-morphisms X → Z}.

3In loc. cit. this is buried as one among 17 cases of fpqc descent of properties of morphisms, but in fact
this follows from first principles of descent theory for fpqc morphisms ([SGA1], VIII, Cor. 5.3 combined with
[SGA31], IV, Prop. 2.4 a)), as we shall explain in another lecture.

4This can be expressed in terms of morphisms by saying that the morphism G×SK → G “given on arbitrary
T -points by (g, k) 7→ gkg−1” factors through K.

5This is the case if Y is separated (in particular, affine) over S, because e is the pull-back of the diagonal
map G→ G×S G by the map idG × e.

6That is, a closed immersion followed by an open immersion.
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Using the language of the next lecture, (7.2) means that φ : G → Y is an effective epimor-
phism.

Remark 7.3. In the classical theory, if k is an algebraically closed field and H ⊂ G are algebraic groups over
k (that is, reduced k-group schemes of finite type), one shows that the set G(k)/H(k) is the set of k-points of
some algebraic variety W , namely the orbit G(k) · [v] in P(V ), where V is a representation of G and [v] is a line
for which the isotropy group is H(k) and the isotropy Lie algebra inside Lie(G) is Lie(H) (which ensures that
H is actually the schematic stabiliser of [v]), and one defines G/H as W . Then it is proved, somehow as a side
result, that W satisfies the universal property (7.2) above, with K replaced by H.

Over a general base scheme S, the situation is completely different: quotients G/H do not always exist ! For
this reason, one has to characterize the quotients G/H (if they exist) by the universal property (7.2) above (with
K replaced by H), and then look for some S-scheme Y satisfying this property. By Yoneda lemma, such a Y is
unique up to unique isomorphism; due to this strong uniqueness property, Y may be constructed locally, that is,
if we find an open cover (Ui) of S and a scheme Yi over Ui, then the Yi glue to a scheme Y over S which is the
sought-for quotient G/H. More on this in the next lecture.

In the rest of this section, given an abelian group M we write DS(M) instead of D(M)S.

Proposition 7.4. Let 0 // P
u // M

v // N // 0 be an exact sequence of abelian
groups. Set G = DS(M) and Y = DS(P ). Then:

(1) DS(v) is an isomorphism from K = DS(N) to KerDS(u) and is a closed immersion.

(2) DS(u) : G→ Y is affine and faithfully flat.

(3) Y is the quotient G/K.

(4) The formation of this quotient commutes with base change, i.e. for any S-scheme T ,
YT is the quotient GT/KT .

Proof. (1) Let us prove that the morphism DS(v) : DS(N) → K is an isomorphism. It
suffices to prove that, for any S-scheme T , the map DS(N)(T )→ K(T ) is bijective. But K(T )
is the set of group morphisms f : M → OT (T )× such that f ◦u is the trivial morphism, which is
the same as Homgrp(M/P,OT (T )×) = DS(N)(T ). This proves the first assertion. Further, the
map OS[M ]→ OS[N ] is surjective, hence DS(v) is a closed immersion.7

(2) Let (Ui) be a covering of S by affine open subschemes Ui = SpecAi. Then Y = DS(P )
is covered by the affine open subschemes YUi

= SpecAi[P ] and GUi
= SpecAi[M ] is affine over

YUi
. Further, denoting by τ : N →M a set-theoretic section of the projection M → N , one sees

that Ai[M ] is free over Ai[P ] with basis (τ(n))n∈N . It follows that G is affine and faithfully flat.

Assertion (3) follows since any faithfully flat quasi-compact morphism is an effective epi-
morphism (see Def. 7.2), as we shall see in the next lecture.

As for (4), we could invoke the general fact that a faithfully flat quasi-compact morphism
remains so after base change. But here (4) follows directly since GT = DT (M) and KT = DT (N),
hence by (3) applied to T instead of S one has GT/KT = DT (P ) = DS(P )×S T = YT . �

Proposition 7.5. Let M,N be abelian groups. Set E = Homgrp(M,N).

(1) There is a natural monomorphism ES → HomS-Gr(MS, NS).

(2) If M is finitely generated, this monomorphism is an isomorphism.

Proof. Set F = HomS-Gr(MS, NS). Let T be a S-scheme. Then ES(T ) = Loc(T,E)
identifies with the set of maps f : M × T → N which are additive in the first variable and
“uniformly locally constant” in the second variable, i.e. each t ∈ T admits a neighbourhood U
such that f(m, t) = f(m,u) for all u ∈ U and m ∈ M , whereas F (T ) is the larger set of all
maps g : M ×T → N which are additive in the first variable and such that for each m ∈M and
t ∈ T , there exists a neighbourhood Um of t such that the function gm : u 7→ f(m,u) is constant
on Um.

7One could also say that DS(M)→ S is affine, hence separated, and apply a general result.
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Note that, by additivity, gm′ is constant on Um for all m′ in the subgroup generated by
m. Therefore, if M is generated by elements m1, . . . ,mr, then all gm are constant on the open
neighbourhood

⋂r
i=1 Umi

of t. This proves that g belongs to the subset Loc(T,E).8 �

From now on, we assume again that all abelian groups (resp. S-group schemes of multiplica-
tive type) under consideration are finitely generated. Recall that a S-group scheme G is called
locally diagonalisable if each s ∈ S admits an open neighbourhood U such that GU ' D(M)U
for some abelian group M (uniquely defined by s since M = Loc(SpecOS,s,MU)). Thus, one
obtains a partition of S into open and closed subsets over which G is diagonalisable.

Proposition 7.6. Let u : G→ G′ be a morphism of locally diagonalisable S-group schemes
and let K = Keru. Then:

(1) K is locally diagonalisable and K → G is a closed immersion.
(2) The quotient Y = G/K exists and is a locally diagonalizable S-group.
(3) One has u = i ◦ p, where p : G → Y is affine and faithfully flat, and i is a closed

immersion.
(4) Setting H = i(Y ), the quotient G′/H exists, is locally diagonalisable, and is a cokernel

of u.

Therefore, the category of locally diagonalisable S-groups is abelian.

Proof. Since all assertions are local on S, we may assume that G = DS(M) and G′ =
DS(M ′), for some finitely generated abelian groups M,M ′. Then, by the biduality theorem 3.4
and Cor. 6.3, combined with Prop. 7.5, we have

HomS-Gr(G,G
′) = HomS-Gr(M

′
S,MS) = Loc(S,Homgrp(M ′,M)).

Then, again, S is partitioned into open and closed subsets over which u comes from a morphism
of groups f : M ′ → M .9 Setting P ′ = Ker f and N ′ = P = f(M ′) and N = Coker f , we have
exact sequences

0 // P ′ // M ′ // N ′ // 0,

0 // P // M // N // 0.

Then the result follows from Prop. 7.4, with K = DS(N), Y = DS(P ) = DS(N ′) = H and
G′/H = DS(P ′). �

Remark 7.7. The enlargement, when S is not connected, of the category of diagonalisable S-groups to that
of locally diagonalisable S-groups was necessary in order to obtain an abelian category. For example, if k1, k2
are fields, Si = Spec ki and S is the sum of S1 and S2, one may consider the morphism f : Gm,S → Gm,S which
is the identity on S1 and the trivial morphism on S2, then Ker f is the locally diagonalisable group which is the
trivial group over S1 and Gm over S2. It is not diagonalisable.

Using the same technique of faithfully flat descent as the one needed for the proof of assertion
(1) of propositions 4.4 and 4.5 (see the next lecture), one can extend the previous proposition to
the case of S-groups of multiplicative type. For this, we need to adopt the definition of [SGA32],
X, Def. 1.1:

Definition 7.8. A group scheme H over S is said to be of multiplicative type if for each
s ∈ S there exists an affine open neighbourhood U of s, a surjective flat morphism U ′ → U , with
U ′ affine, and a (finitely generated) abelian group M such that H ×S U ′ ' D(M)U ′ . Further,
one says that H is :

• quasi-isotrivial if one may choose the maps U ′ → U to be étale;

8This explanation, nicer than the one in N.D.E. (3) of [SGA32], Exp. VIII, was given orally by Joseph
Oesterlé in his lectures [Oes14].

9This reduction was omitted in [SGA32], VIII, Cor. 3.4.
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• isotrivial if there exists a surjective finite étale map S ′ → S such that H ×S S ′ '
D(M)S′ .
• locally isotrivial (resp. locally trivial) if each s ∈ S admits an affine open neighbourhood
U such that HU = H ×S U is isotrivial (resp. diagonalisable).

Remark 7.9. Then there is a partition of S into open and closed subschemes over which the type of H is
constant. So, in most results we can restrict ourselves to groups of multiplicative type of a given type M , and
the more general definition only brings complications in the statements or hypotheses. However when the base
S is not connected this generality is needed to ensure that the category groups of multiplicative type has kernels
(and is in fact abelian).

Proposition 7.10. Let u : G→ G′ be a morphism of S-group schemes of multiplicative type
and let K = Keru. Then:

(1) K is of multiplicative type and K → G is a closed immersion.
(2) The quotient Y = G/K exists and is of multiplicative type.
(3) One has u = i ◦ p, where p : G → Y is affine and faithfully flat, and i is a closed

immersion.
(4) Setting H = i(Y ), the quotient G′/H exists, is of multiplicative type, and is a cokernel

of u.

Therefore, the category of S-groups of multiplicative type is abelian.

Notes for this Lecture

The exactness of the functor D and the fact that the category is abelian are proved in Exp. VIII, Th. 3.1 and

Prop. 3.4 in the (locally) diagonalisable case, and in Exp. IX, Prop. 2.7 in the general case; see also [Oes14], 5.3

and 6.5.




