
LECTURE 2

Constant and twisted constant groups, biduality

3. Constant groups and biduality. Character groups

In this section we fix a base scheme S. For the sake of brevity, we will sometimes write D-group

(resp. MT-group) over S instead of diagonalisable group over S (resp. S-group of multiplicative type).

Definition 3.1. To every non-empty set M one associates the S-scheme MS which is the
direct sum of a family (Sm)m∈M of copies of S indexed by M . It is étale over S, and is finite
over S if and only M is finite. Such a scheme is called a constant scheme over S.

The sections Γ(MS/S) of the projection MS → S are the locally constant functions from the
topological space S to M , denoted by Loc(S,M). For any S-scheme S ′, one has MS×S S

′ 'MS′

hence:

(3.1) HomS-Sch(S ′,MS) = HomS′-Sch(S ′,MS′) = Loc(S ′,M).

Thus, MS represents the functor which associates Loc(S ′,M) to every S-scheme S ′.

On the other hand, to give a morphism from MS to a S-scheme H is the same as giving, for
each m ∈M , a morphism of S-schemes S → H, i.e. an element of H(S); thus one has:

(3.2) HomS-Sch(MS, H) = HomSets(M,H(S)).

If u : M → N is a map of sets, it induces a morphism of S-schemes uS : MS → NS. One
therefore obtains a functor M 7→MS from the category of non-empty sets to that of S-schemes.
It commutes with products, i.e. one has

MS ×S NS ' (M ×N)S.

Thus, if M is a group one obtains that MS is a group scheme, called a constant group scheme
over S. If u : M → N is a morphism of groups, then uS : MS → NS is a morphism of S-group
schemes. Thus, M → MS is a functor from the category of groups to that of S-group schemes.
Further, as in (3.2), for every S-group scheme H one has:

(3.3) HomS-Gr(MS, H) = Homgrps(M,H(S)).

Definition 3.2. Let G,H be S-group schemes. The functor HomS-Gr(G,H) is defined as

follows: its value on a S-scheme T is the set HomT -Gr(GT , HT ) of morphisms of T -group schemes
from GT to HT . This is a contravariant functor from the category of S-group schemes to the
category of sets. This functor is clearly “compatible with base change”, that is, for any S-scheme
T one has:

(3.4) HomS-Gr(G,H)×S T = HomT -Gr(GT , HT )

as both sides send any T -scheme U to HomU -Gr(GU , HU).

Further, if the group law of H is commutative, it induces on HomS-Gr(G,H) the structure of
a commutative group functor. In particular, the group functor HomS-Gr(G,Gm,S) is denoted
by D(G). For future use, let us record (3.4) in this case as:

(3.5) D(G)T = D(GT )
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6 2. CONSTANT AND TWISTED CONSTANT GROUPS, BIDUALITY

In the rest of this section, M denotes a finitely generated abelian group.

Remark 3.3. Suppose that G = MS. Then, for every S-scheme T one has, by the previous
definition and (1.2):

D(MS)(T ) = HomT -Gr(MT ,Gm,T ) = Homgrps(M,OT (T )×) = D(M)S(T ).

Thus the functor D(MS) is represented by the diagonalisable S-group scheme D(M)S.

Next, let G = D(M)S. For every S-scheme T , both GT = D(M)T and Gm,T are affine
over T and correspond to the quasi-coherent OT -Hopf algebras OT [M ] and OT [X,X−1] (the
comultiplication of the latter being ∆(X) = X ⊗X). Hence, one has:

D(D(M)S)(T ) = HomT -Gr(D(M)T ,Gm,T ) = HomOT -Hopf(OT [X,X−1],OT [M ]).

Note that any locally constant function φ : T → M defines a partition of S into the open and
closed subschemes Sm on which φ takes the value m, and on Sm this defines the Hopf algebra
morphism given by X 7→ m. This defines a monomorphism MS → D(D(M)S). Further, one
has the following biduality theorem:

Theorem 3.4. The natural morphism MS → D(D(M)S) is an isomorphism.

Proof. We must prove that every morphim of OT -Hopf algebras ψ : OT [X,X−1]→ OT [M ]
is obtained as above. But OT has a natural structure of OT [X,X−1]-comodule, given by
µGm(f) = f ⊗X for any local section of OT (this corresponds to the natural action of OT ′(T ′)×

on OT ′(T ′) for any T -scheme T ′).
Therefore, ψ makes F = OT into an OT [M ]-comodule, with coaction µG given by

(∗) µG(f) = f ⊗ ψ(X).

for any local section of OT . Hence, by Proposition 2.3, for each t ∈ T , the local ring OT,t is the
direct sum of the stalks Fm,t, for m ∈ M , which are therefore projective OT,t-modules of rank
0 or 1. It follows that for each t ∈ T there exists a unique m ∈ M such that Fm 6= 0 on some
open neighbourhood of t, and one has Fm = OT on this neighbourhood.

This gives a partition of T into open and closed subschemes Tm, hence a locally constant
function φ : T → M . Further, over each Tm one has OT = Fm hence for any local section f of
OTm one has µG(f) = f ⊗m.

Comparing with (∗) above, we see that on Tm the Hopf algebra morphism ψ is given by
X 7→ m, hence ψ is the Hopf algebra morphism corresponding to the locally constant function
φ. This proves the theorem. �

Definition 3.5. The constant group scheme MS is called the character group of the diago-
nalisable group D(M)S.

4. Twisted constant groups. Anti-equivalence with groups of multiplicative type

Definition 4.1. A group scheme E over S is said to be a twisted constant group of
type M if for each s ∈ S there exists an affine open neighbourhood U of s and a surjective flat
morphism U ′ → U , with U ′ affine, such that E ×S U

′ 'MU ′ . Further, one says that E is :

• quasi-isotrivial if one may choose the maps U ′ → U to be étale;
• isotrivial if there exists a surjective finite étale map S ′ → S such that E×S S

′ 'MS′ .
• locally isotrivial (resp. locally trivial) if each s ∈ S admits an affine open neighbourhood
U such that E ×S U is isotrivial (resp. constant).

Example 4.2. Let S ′ → S be a finite étale Galois covering with Galois group Γ and let
Γ → Aut(M) be a morphism of groups. Then recall (see e.g. [SGA1], Exp. V) the following
facts:
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(1) One has S ′ ×S S
′ ' S ′ × Γ (a disjoint sum of copies of S ′).

(2) For each subgroup G of Γ, there exists a scheme Y , étale over S, which is the quotient
S ′/G, that is, for every S-scheme Z one has

HomS(S ′/G,Z) = HomS(S ′, Z)G

where the right-hand side denotes the G-equivariant S-morphims f : S ′ → Z, that is,
f ◦ γ = f for all γ ∈ Γ (note that the action of G on Z is trivial).1

(3) For any S-scheme T , one has (S ′/G)×S T ' (S ′ ×S T )/G.

(4) In particular, one has (S ′/G)×S S
′ ' (S ′ × Γ)/G ' S ′ × (Γ/G).

Now Γ acts on MS′ =
∐

m∈M S ′m by sending the m-th copy of S ′ to the γ(m)-th copy via the
automorphism γ of S ′. Denote by M/Γ the set of Γ-orbits in M , choose a representative m in
each orbit and denote by Γm its stabilizer. Consider the étale S-scheme

E =
∐

m∈M/Γ

S ′/Γm

and denote it by MS′/Γ. As we will see in a later lecture, this is indeed the quotient of MS′ by Γ, in the
sense that for any S-scheme Z, we have natural identifications

HomS(E,Z) =
∏

m∈M/Γ

HomS(S′/Γm, Z) =
∏

m∈M/Γ

HomS(S′, Z)Γm =
∏

m∈M

HomS(MS′ , Z)Γ.

Further, applying Fact (4) above to each S ′/Γm, one obtains that E ×S S
′ 'MS′ .

On the other hand, for any S-scheme T , one has natural identifications

HomS(T,E) = HomS(T ×S S
′, E)Γ = HomS′(T ×S S

′, ES′)Γ

= HomS′(T ×S S
′,MS′)Γ = Loc(T ×S S

′,M)Γ.

Therefore, E represents the group functor T → Loc(T ×S S
′,M)Γ. Since ES′ ' MS′ , it an

isotrivial twisted constant group of type M , which splits over S ′.

Example 4.3. Let S = SpecR and S ′ = SpecC, with Galois group Γ = {id, τ} acting
on M = Z by τ(n) = −n. Then τ acts on ZS′ =

∐
n∈Z(SpecC)n by swapping (SpecC)n and

Spec(C−n), the comorphism being τ : C → C. The quotient scheme E = ZS′/Γ is the sum of
Spec(R)0 and a sum of copies of SpecC indexed by (Z − {0})/Γ. This is an isotrivial twisted
constant group of type Z over SpecR, which splits over SpecC.

Now, we have the following three results. The complete proofs rely on the powerful technique
of faithfully flat descent, to be discussed in another lecture.

Proposition 4.4. Let E be a twisted constant S-group scheme of type M . Then:

(1) D(E) is representable by a S-group scheme H of multiplicative type of type M .
(2) One has E ' D(H). Thus E is reflexive.
(3) E is constant if and only if H is diagonalisable, and E is quasi-isotrivial (resp. isotrivial,

resp. locally isotrivial, resp. locally trivial) if and only if H is so.

Proposition 4.5. Let H be a S-group scheme of multiplicative type, quasi-isotrivial of type
M . Then:

(1) D(H) is representable by a quasi-isotrival twisted constant group E of type M .
(2) One has H ' D(E). Thus H is reflexive.
(3) H is diagonalisable if and only if E is constant, and is isotrivial (resp. locally isotrivial,

resp. locally trivial) if and only if E is so.

Theorem 4.6. Fix a base scheme S.

1If S = SpecR and S′ = SpecR′, then S′/G = SpecR′G.
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(1) The functors E 7→ D(E) and H 7→ D(H) are type-preserving anti-equivalences, quasi-
inverse one to another, between the category of twisted constant finitely generated abelian
groups E, quasi-isotrivial over S, and the category of finitely presented groups of mul-
tiplicative type, quasi-isotrivial over S.

(2) These functors induce anti-equivalences, quasi-inverse one to another, between the sub-
categories of groups which are isotrivial, resp. locally isotrivial, resp. locally trivial.

We will begin the proof of these results in the next section, and complete it in the next
lecture. Before that, let us describe everything explicitly in the Galoisian case: for the rest of
this section, S ′ → S is a Galois covering with group Γ, and Γ acts by group automorphisms on
M .

Example 4.7. Let E = MS′/Γ be as in example 4.2. For every S-scheme T one has

E ×S T = (MS′ ×S T )/Γ = MS′×ST/Γ,

by Fact (3) of 4.2, and hence one has natural identifications

D(E)(T ) = HomT -Gr(ET ,Gm,T ) = HomT -Gr(MS′×ST ,Gm,T )Γ = Homgrp

(
M,Gm(S ′ ×S T )

)Γ
.

Combined with the discussion in Example 1.5, this shows that D(E) is represented by the S-
group of multiplicative type H = SpecR′[M ]Γ, assuming for simplicity that S = SpecR and
S ′ = SpecR′.

Example 4.8. Conversely, if H = SpecR′[M ]Γ, it follows from the reflexivity part of
Prop. 4.4 that D(H) = MS′/Γ. This can also be seen directly, as follows. Let T be a S-scheme.
Firstly, one has

HT ×S S
′ = H ×S T ×S S

′ = HS′ ×S T = D(M)S′ ×S T = D(M)S′×ST

and hence

HomT -Gr(HT ×S S
′,Gm,T ) = HomT -Gr(D(M)S′×ST ,Gm,T )

= HomT ×S S′-Gr(D(M)S′×ST ,Gm,T×SS′) = Loc(T ×S S
′,M).

Therefore, one has

D(H)(T ) = HomT -Gr(HT ,Gm,T ) = HomT -Gr(HT ×S S
′,Gm,T )Γ = Loc(T ×S S

′,M)Γ

and it follows that D(H) is represented by MS′/Γ.

Example 4.9. Now, consider the case where H corresponds to the permutation representa-
tion M = Z[Γ]. Then, by the discussion in Example 1.5, one has for every S-scheme T :

H(T ) = Homgrp

(
Z[Γ],Gm(T ×S S

′)
)Γ

= Homgrp

(
Z,Gm(T ×S S

′)
)

= Gm(T ×S S
′).

Thus, H is the Weil restriction ResS
′

S Gm,S′ . (This generalizes Example 1.7.)

Remark 4.10. To answer a question of Prof. Balaji during the lecture, let us give immediately an example
of a MT-group over S which is quasi-isotrivial but not locally isotrivial. Let k be a field, algebraically closed
if one wants, and let S be the affine curve obtained by identifying the points 0 and 1 of A1

k, that is, its ring of
functions is R = O(S) = {P ∈ k[t] | P (0) = P (1)}. As k-algebra, R is generated by the elements x = t(t − 1)
and y = t2(t− 1), which satisfy the equation x3 = y(y − x) and one finds that S is the nodal cubic given by this
equation.

Consider the auxiliary curve S obtained by glueing two copies of A1
k by identifying 0 of each copy with 1 of

the other copy. Then Γ = Z/22Z acts freely on Q and the quotient is S; thus Q→ S is an étale covering.2 Then
the open subscheme U of Q obtained by removing one of the singular points is still étale over S. Let us say that
it is copy 0 of A1

k with its point 1 glued to point 0 of the copy number 1 of A1
k. Then we can glue the point 0

of that copy to the point 0 of a copy number 2 of A1
k, and then the point 1 of that copy to the point 0 of copy

number 3, and so on. We can do the same in the negative direction, that is, glue the point 0 of copy 0 to the

2For another proof, see [Tsi14], Lect. 7, §5.3.
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point 1 of copy −1, and so on. In this way, we obtain a curve P (not quasi-compact!) which is étale over S, is
endowed with an obvious action of the constant group ZZ, and is in fact a principal Z-bundle over S in the étale
topology; that is, P ×S P ' P × Z.

Using the group morphism Z→ GL(Z2) given by n 7→
(

1 n
0 1

)
, ones obtains an action of Γ = Z on the split

2-dimensional torus D(Z2)P , extending the action of P . Using that D(Z2)P is affine over P , one can construct
the quotient by Γ (more on this in a later lecture) and one obtains a S-group scheme H such that HP ' D(Z2)P ,
hence H is isotrivial. From the principal Z-bundle P we can construct a (Z/nZ)-bundle P over S, for each integer
n > 1. (Note that P2 is the previous auxiliary curve Q.) Clearly, the pull-back of H to Pn is not trivial because
the given action of Z on Z2 does not factor trough any quotient Z/nZ.

Finally, one can prove that P is a universal cover of S, in the sense that any finite Galois covering S′ → S
is dominated by some Pn. (This is implicit in [SGA1], Exp. I, §11 a) together with [SGA32], Exp. X, 1.6, and
a proof can be found, e.g. in [Tsi14], Lect. 7, §5.3.) It follows that H is not isotrivial on any neighbourhood of
the singular point s. (However one sees that is is trivial on S − {s}.)

5. Notes for this Lecture

The biduality theorem (Th. 3.5) is proved in Exp. VIII, Th. 1.2 in a greater generality.
Groups of multiplicative type over S are defined in Exp. IX, Def. 1.1. Their duals, the twisted constant

groups, are introduced in Exp. X, Def. 5.1.

The example of the previous remark is discussed in Exp. X, 1.6.




