
LECTURE 17

Results from SGA3, §XX.2: construction of α∨

The goal of this lecture is to explain the proof of Demazure’s crucial theorem 2.1 in Exp. XX,
and the subsequent construction of a root datum for a split reductive group scheme.

43. Demazure’s construction of α∨

We keep the notation of Lecture 15: Zα is a reductive S-scheme with a split maximal torus
T = DS(M) and, setting g = Lie(G) and t = Lie(T ), there exists α ∈ M such that

Lie(Zα) = t⊕ gα ⊕ g−α

where gα and g−α are line bundles over S, and there exist closed subgroups Uα and U−α, nor-
malised by T , and T -equivariant group isomorphisms expα : gα

∼−→ Uα and exp−α : g−α
∼−→ U−α.

Further, the multiplication map m induces an isomorphism of S-schemes

U−α × T × Uα
∼−→ Ωα

where Ωα is an open subscheme of Zα, called the big cell.1 Consider the following map, where
we take the product Uα × U−α in the “wrong order” w.r.t. to the choice of the big cell Ω:

f = m ◦ (expα, exp−α) : gα × g−α
// Uα × U−α

m // G.

Theorem 43.1. There exists a unique OS-linear pairing ⟨ , ⟩ : gα ⊗ g−α → OS such that
f−1(Ω) is the complement U of the hypersurface ⟨X, Y ⟩ = 1 in gα ⊕ g−α.

Further, there exists a unique morphism of S-groups α∨ : Gm,S → T such that for every
S ′ → S and (X, Y ) ∈ U(S ′), one has the equality:

(43.1) f(X, Y ) = exp−α

( Y

1− ⟨X, Y ⟩

)
α∨(1− ⟨X, Y ⟩

)
expα

( X

1− ⟨X, Y ⟩

)
.

Moreover, ⟨ , ⟩ is an isomorphism and one has α ◦ α∨ = 2.

Proof. By the uniqueness, which will be proved in the course of the proof, it suffices to
prove existence in the case where gα and g−α have global sections Xα and X−α. Then, for every
S ′ → S and u, v ∈ Ga(S

′), write

pα(u) = expα(uXα) and p−α(v) = exp−α(vX−α).

Let U be the open subscheme of G2
a,m which is the inverse image of the big cell Ωα under the

morphism :

f : G2
a,S

pα×p−α // Uα × U−α
m // Zα.

0Lecture of Aug. 20 and 22, 2024. Version of Aug. 23. Thanks to Vikraman Balaji and Sukhendu Mehrotra
for useful questions, which lead to improvements in the exposition.

1Later on, G will be a reductive S-scheme with a split maximal torus T = DS(M); then replacing S by an
open subset we may assume that there exists a subset R of M such that Lie(G) = t ⊕

⊕
β∈R gβ where each gβ

is a line bundle. The point is that one needs to prove results over any given pair of opposite roots ±α. This is
achieved by considering the subgroup Ker(α) ⊂ T and its centraliser Zα = CentG(Ker(α)); it has the properties
stated above, see Lect. 15, §40.2.
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100 17. RESULTS FROM SGA3, §XX.2: CONSTRUCTION OF α∨

Then there exist S-morphisms A,C : U → Ga,S and B : U → T such that for (u, v) ∈ U(S ′) we
can write uniquely:

(43.2) pα(u)p−α(v) = p−α

(
A(u, v)

)
·B(u, v) · pα

(
C(u, v)

)
.

Obviously, denoting by eT the unit element of T (S ′), one has

pα(0)p−α(v) = p−α(v) · eT · pα(0) and pα(u)p−α(0) = p−α(0) · eT · pα(u).

This shows that U contains a neighborhood of the coordinate axes in G2
a,S, hence is schematically

dense relative to S, and that one has the equalities:

(43.3)

{
if u = 0 then A(0, v) = v, B(0, v) = eT , C(0, v) = 0,

if v = 0 then A(u, 0) = 0, B(u, 0) = eT , C(u, 0) = u.

We want to prove that there exists a ∈ Gm(S) such that U is the complement of the hypersurface
auv = 1 and that for every S ′ → S and (u, v) ∈ U(S ′), one has:

(43.4) A(u, v) =
v

1− auv
, C(u, v) =

u

1− auv
, B(u, v) = α∨(1− auv),

for some uniquely defined morphism of S-groups α∨ : Gm,S → T . The proof has several steps.

43.1. Reduction to functions of the single variable x = uv. The first step is to prove
the following lemma:

Lemma 43.2. There exist an open subset W of Ga,S, containing the zero section hence
universally schematically dense relative to S, and morphisms E,F : W → Gm,S and H : W → T
with F (0) = 1 = E(0) and H(0) = eT such that, for any S ′ → S, if (u, v) ∈ U(S ′) and
uv ∈ W (S ′) then

(43.5) pα(u)p−α(v) = p−α

( v

F (uv)

)
·H(uv) · pα

( u

E(uv)

)
.

Proof. Firstly, define the open subscheme V of U by

V(S ′) = {(u, v) ∈ U(S ′) | (uv, 1) and (1, uv) belong to U(S ′)}

for every S ′ → S.
Since f is T -equivariant (for the adjoint action of T ), one has for any S ′ → S and t ∈ T (S ′):

f
(
α(t)u, α(t)−1v

)
= tf(u, v)t−1 = p−α

(
α(t)−1A(u, v)

)
·B(u, v) · pα

(
α(t)C(u, v)

)
.

Since α ̸= 0, the morphism α : T → Gm,S is faithfully flat. It follows that for every S ′ → S and
(z, u, v) ∈ Gm(S

′) × U(S ′) one has the equalities below, because the corresponding morphisms
become equal after the faithfully flat base change to T ×S U :

A(u, v) = zA(zu, z−1v), C(u, v) = z−1C(zu, z−1v), B(u, v) = B(zu, z−1v).

If follows that if (u, v) ∈ U(S ′) and u, v ∈ Gm(S
′) then (u, v) ∈ V(S ′) and one has the equalities:

(43.6) A(u, v) = vA(uv, 1), C(u, v) = uC(1, uv), B(u, v) = B(uv, 1) = B(1, uv).

In particular, these equalities are true on V ∩ G2
m,S. Since G2

m,S is schematically dense in G2
a,S,

they hold true on V .
Define temporarily the open subset W̃ of Ga,S by W̃ (S ′) = {x ∈ Ga(S

′) | (x, 1) ∈ V(S ′)},
and define morphisms A1, C1 : W̃ → Ga,S and H : W̃ → T by A1(x) = A(x, 1), C1(x) = C(1, x)
and H(x) = B(x, 1) = B(1, x). Then, for (u, v) ∈ V(S ′) one has

(43.7) A(u, v) = vA1(uv), C(u, v) = uC1(uv), B(u, v) = H(uv).
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By (43.3), one has A1(0) = 1 and C1(0) = 1. Therefore, the open subscheme W of W̃ defined
for every S ′ → S by

(43.8) W (S ′) = {x ∈ WS ′) | A1(x) ∈ Gm(S
′), C1(x) ∈ Gm(S

′)}
is still an open neighborhood of the zero section, hence schematically dense in Ga,S relative to
S. We define morphisms F,E : W → Gm,S by:

(43.9) F (x) = A1(x)
−1 and E(x) = C1(x)

−1.

Now, if (u, v) ∈ U(S ′) and uv ∈ W (S ′) then (u, v) ∈ V(S ′) and taking (43.2), (43.7) and
(43.9) into account one obtains the desired equality (43.5). 2 □

43.2. Functional equations. Now, take u = 1 and multiply (43.5) on the right by p−α(w).
On the one hand, provided that (E(v)−1, w) ∈ U(S ′) and wE(v)−1 ∈ W (S ′), we can apply (43.5)
to the product pα

(
E(v)−1

)
p−α(w) and then the equality H(x)p−α(y) = p−α

(
α(H(x)−1)y

)
H(x)

to find the “coordinates” of the RHS as an element of Ω.

On the other hand, since p−α(v)p−α(w) = p−α(v+w), we obtain another expression, provided
that (1, v + w) ∈ U(S ′) and v + w ∈ W (S ′). Therefore, making the change of variables x = v
and y = wE(v)−1, we obtain that there exists an open neighborhood W of the zero section of
G2

a,S such that if (x, y) ∈ W(S ′) then x, y and x+ yE(x) belong to W (S ′) and one has:

E(x+ yE(x)) = E(x)E(y)(43.10)

H(x+ yE(x)) = H(x)H(y)(43.11)

x+ yE(x)

F (x+ yE(x))
=

x

F (x)
+ α(H(x))−1 yE(x)

F (y)
(43.12)

Similarly, take v = 1 and multiply (43.5) on the left by pα(t). Making another change of
variables and replacing the previous W by a smaller neighborhood of the zero section of G2

a,S,
still denoted by W , one obtains that if (x, y) ∈ W(S ′) then x, y and x+ yF (x) belong to W (S ′)
and one has:

F (x+ yF (x)) = F (x)F (y)(43.13)

H(x+ yF (x)) = H(x)H(y)(43.14)

x+ yF (x)

E(x+ yF (x))
=

x

E(x)
+ α(H(x))−1 yF (x)

E(y)
(43.15)

Set W1(S
′) = {x ∈ W (S ′) | (x, 0) ∈ W(S ′)} and define W2 similarly. Then, one has the

following lemma ([SGA33], XX, Lemma 2.3).

Lemma 43.3. Consider the functional equation (43.13). Then:

(i) If S = Spec(k), with k a field, one has F (x) = 1 + ax, where a is the derivative F ′(0).

(ii) For S arbitrary, consider the section a = F ′(0) of OS. If a ∈ Gm(S) then F (x) = 1+ax.

Sketch of proof. By derivating (43.13) with respect to x at x = 0, and with respect to
y at y = 0, and recalling that F (0) = 1, ones obtains:{

F ′(y)(1 + yF ′(0)) = F ′(0)F (y) for y ∈ W2(S
′)

F ′(x)F (x) = F (x)F ′(0) for x ∈ W1(S
′).

As F take its values in Gm, the second equality gives

(43.16) F ′(x) = F ′(0) for x ∈ W1(S
′)

2In fact, the proof will show that U(S′) = {(u, v) ∈ Ga(S
′)2 | uv ∈ W (S′)}. In particular, one has V = U .
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and hence the first gives:

F ′(0)(1 + yF ′(0)) = F ′(0)F (y) for y ∈ (W1 ∩W2)(S
′).

If a = F ′(0) is invertible, this gives (ii) as well as (i) in the case where a ̸= 0.

So, suppose that S = Spec(k), with k a field, and that F ′(0) = 0. Then, by (43.16), F ′

vanishes on the schematically dense open subset W1, hence F ′ = 0. If char(k) = 0 this gives
immediately that F is constant, hence equal to F (0) = 1. So assume that char(k) = p > 0 and
that F ∈ k(X) is not constant. Then there exists F1 ∈ k(X) such that F ′

1 ̸= 0 and n ∈ N∗ such
that

F (X) = F1(X
pn) = F1(X)p

n

.

Note then that F1(0) = F (0) = 1. Plugging this into the functional equation (43.13) one obtains:

F1(x+ yF1(x)
pn) = F1(x)F1(y).

Derivating this with respect to x at x = 0, and with respect to y at y = 0, and using that
F1(0) = 1, ones obtains:{

F ′
1(y) = F ′

1(0)F1(y) for y ∈ W2(S
′)

F ′
1(x)F1(x)

pn = F1(x)F
′
1(0) for x ∈ W1(S

′).

Together, these equalities give F ′
1(x)F1(x)

pn = F ′
1(x) for x ∈ (W1∩W2)(S

′), hence by (schematic)
density, we have

F ′
1(X)F1(X)p

n

= F ′
1(X).

in the field k(X). By assumption, F ′
1 is a non-zero element of k(X), hence we obtain that

F1(X)p
n
= 1, whence F1 = 1, contradicting the initial hypothesis. This shows that F is constant,

and equal to F (0) = 1. This completes the proof of the lemma. □

43.3. Determination of E and F . Suppose first that S = Spec(k), with k a field, and
that F ′(0) = 0. Then we have seen that F = 1 and hence (43.14) gives H(x + y) = H(x)H(y)
for all x, y ∈ W (S ′) such that x + y ∈ W (S ′). By Prop. 42.12, it follows that H extends to a
homomorphism of k-groups Ga,k → T , which is necessarily constant with value e, the neutral
element of T .

On the other hand, by the previous lemma, we also have E(x) = 1 + bx for some b ∈ k. But
then (43.10) gives:3

x+ y

1 + b(x+ y)
=

x

1 + bx
+

y

1 + by

which gives 0 = xyb(2 + (x+ y)b), whence b(2 + (x+ y)b) = 0 and finally b = 0. Thus, F,H,E
are constant with values 1, e, 1 on a neighborhood of 0, hence on Ga,k, and therefore

pα(u)p−α(v) = p−α(v)pα(u)

for all u, v, which is a contradiction since Uα and U−α do not commute on any fiber.

Coming back to arbitrary S, this shows that the section F ′(0) of OS vanishes nowhere, hence
is invertible. By the previous lemma, again, there exist a, b ∈ Gm(S) such that

F (x) = 1 + ax, E(x) = 1 + bx

for all x ∈ W (S ′). Plugging this into (43.12), one obtains:4

y α(H(x)) (1 + ay) = y
(
1 + ax+ ay(1 + bx)

)
(1 + ax).

3Note a typo in [SGA33], XX, first displayed formula on p.40: on the RHS E(x) should be E(x)−1.
4Note a typo in [SGA33], XX, p.40, §E: on the right of 3 formulas, (1 + bx) should be replaced by (1 + ax).
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Since Gm,S is schematically dense in Ga,S, one obtains:

(43.17) α(H(x)) (1 + ay) =
(
1 + ax+ ay(1 + bx)

)
(1 + ax).

Then, taking y = 0 gives:

(43.18) α(H(x)) = (1 + ax)2, ∀x ∈ W (S ′)

and plugging this into (43.17) and using that the open subset {1 + ax ̸= 0} is schematically
dense, one obtains

1 + ax+ ay + a2xy = (1 + ax)(1 + ay) = 1 + ax+ ay + abxy

whence a = b. Finally, since a ∈ Gm(S) the pairing gα ⊗OS
g−α → OS, uXα ⊗ vX−α 7→ −auv

is an isomorphism.

43.4. The morphism α∨ : Gm,S → T . Since a ∈ Gm(S), the image by x 7→ 1 + ax of
the neighborhood W of 0 in Ga,S is a neighborhood W ′ of 1 in Gm,S. Consider the morphism
P : W ′ → T defined by P (1 + ax) = H(x).

Using (43.11) one obtains that for (x, y) in some schematically dense open subset, one has

P (1 + ax+ ay) = P
(1 + ax+ ay

1 + ax

)
P (1 + ax).

Using Prop. 42.12, it follows that P extends to a S-group morphism α∨ : Gm,S → T . By (43.18)
one has α◦α∨(z) = z2 for z ∈ W ′(S ′). Since W ′ is schematically dense, it follows that α◦α∨ = 2.

43.5. Description of U = f−1(Ωα). So, replacing the previous a by −a we have proved
that there exist a ∈ Gm(S) and α∨ ∈ HomS-Gr(Gm,S, T ) with α ◦ α∨ = 2, such that, whenever
(u, v) ∈ U(S ′) and uv ∈ W (S ′), one has that 1− auv is invertible and the equality:

(43.19) pα(u)p−α(v) = p−α

( v

1− auv

)
α∨(1− auv)pα

( u

1− auv

)
.

Consider now the open subset U ′ of G2
a,S defined by 1− auv invertible, i.e. U ′ = (G2

a,S)g, where
g(u, v) = 1 − auv. The two sides of the above equality define morphisms from U ′ to G, which
coincide on U ′∩U . Since U is schematically dense, it follows that they coincide on U ′, and hence
we have U ′ ⊂ U .

To prove that U ′ = U , it suffices to check equality on each fiber. But, over a field k, the

domain of definition of rational map A : G2
a,k → Ga,k, (u, v) 7→ v

1− auv
is the open subset

defined by 1−auv invertible, i.e. , A cannot be extended as a morphism on a strictly larger open
subset. This proves that U = U ′. It follows that the open subset V ⊂ U considered in the proof
is actually equal to U , and that for (u, v) ∈ U(S ′) one has uv ∈ W (S ′).

43.6. Uniqueness of a and α∨, existence of the perfect pairing ⟨ , ⟩. Suppose that a′

and β∨ have the same properties as a and α∨. Then, for every u ∈ W (S ′) one hase (u, 1) ∈ U(S ′)
and

1

1− au
= A(u, 1) =

1

1− a′u
hence 1 − au = 1 − a′u for u ∈ W (S ′), which gives a′ = a. This proves the uniqueness of
a ∈ Gm(U) corresponding to an arbitrary choice of trivializing sections Xα, X−α of the line
bundles gα and g−α over an open subset U of S.5

5Note that the a itself has not significance, but the uniqueness result show that the perfect pairing gα×g−α →
OS defined over U by (uXα, vX−α) 7→ auv extends uniquely to a perfect pairing over S, which makes gα and
g−α dual line bundles. One this is known, over any subset U where L = gα is trivial, we can choose arbitrarily a
trivializing section X = Xα; then if we chose for X−α the dual section X−1, i.e. the unique section of L−1 = g−α

over U such that ⟩X−1, X⟩ = 1, we have that ⟩uXα, vX−α⟩ = uv, i.e. the constant a has become 1.



104 17. RESULTS FROM SGA3, §XX.2: CONSTRUCTION OF α∨

Then one has also:

α∨(1− au) = p−α

( −1

1− au

)
pα(u)p−α(1)pα

( −u

1− au

)
= β∨(1− au)

and it follows that β∨ = α∨. This completes the proof of Theorem 43.1.

Remark 43.4. Applying g 7→ g−1 to both sides of (43.1) and replacing −X,−Y by X, Y ,
one obtains:

exp−α(Y ) expα(X) = expα

( X

1− ⟨X, Y ⟩

)
α∨(1− ⟨X, Y ⟩

)−1
exp−α

( Y

1− ⟨X, Y ⟩

)
.

This shows that ⟨Y,X⟩ = ⟨X, Y ⟩ and that, in additive notation, (−α)∨ = −α∨.

44. Consequences. Root data and split reductive group schemes

Now, as in Lect. 15, Lemma 40.7, assume that G is a reductive S-group scheme with a split
maximal torus T = DS(M) and that there exists a set R of constant sections of MS, i.e. of
elements of M , such that g = h⊕

⊕
β∈R gβ.

44.1. The elements mα ∈ NG(T ). The normaliser NG(T ) is represented by a closed sub-
group scheme of G. We want to define local sections mα of NG(T ), for every pair of opposite
roots ±α.

Definition 44.1. We say that two local sections Xα and X−α of gα and g−α over an open
subset U of S are paired6 if ⟨Xα, X−α⟩ = 1, i.e. if expα(Xα) exp−α(X−α) is “universally out of
the big cell Ωα”; in this case, we write X−α = X−1

α and we set:

mα = expα(Xα) exp−α(X
−1
α ) expα(Xα).

Note also that in this case formula (43.19) becomes:

(44.1) pα(u)p−α(v) = p−α

( v

1− uv

)
α∨(1− uv)pα

( u

1− uv

)
.

Proposition 44.2. (i) mα depends only on the pair ±α (and the choice of Xα), i.e. setting
X−α = X−1

α we have

(44.2) mα = expα(Xα) exp−α(X
−1
α ) expα(Xα) = exp−α(X−α) expα(X

−1
−α) exp−α(X−α).

(ii) m2
α = α∨(−1); in particular, m2

α is a section of T .

(iii) mα belongs to NG(T ). More precisely, for any S ′ → S and t ∈ T (S ′), one has

mα tm
−1
α = t · α∨(α(t)−1

)
= m−1

α tmα.

(iv) The induced action of mα on X(T ) and X∨(T ) are given respectively by:

(44.3) mα(λ) = λ− ⟨λ, α∨⟩α and mα(η) = η − ⟨α, η⟩α∨.

Proof. For (i) we refer to the proof of Exp. XX, Th. 3.1 (vi). (We did this computation for
SL2 in Lect. 15.7)

6In French: appariées.

7With the choice Xα = E12 one has X−α = −E21 and mα =

(
0 1
−1 0

)
. More symmetrically, in the adjoint

representation sl2 with basis (Xα, Hα, X−α), where Hα = [X−α, Xα], the matrix of mα is

0 0 1
0 −1 0
1 0 0

.
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Let us prove (ii). One has m2
α = pα(1)p−α(1)pα(2)p−α(1)pα(1). Applying (44.1) to the

product pα(2)p−α(1), one obtains:

m2
α = pα(1)p−α(1)p−α

( 1

1− 2

)
α∨(1− 2)pα

( 2

1− 2

)
pα(1)

= pα(1)α
∨(−1)pα(−1) = α∨(−1)pα

(
(−1)⟨α,α

∨⟩
)
pα(−1) = α∨(−1).

Let us prove (iii). Using the T -equivariance of pα and p−α, one has

mα tm
−1
α = pα(1)p−α(1)pα(1) t pα(−1)p−α(−1)pα(−1)

= pα(1)p−α(1)pα
(
1− α(t)

)
p−α

(
− α(t)−1

)
pα(−α(t)) t

Next, (44.1) gives:8

pα
(
1− α(t)

)
p−α

(
− α(t)−1

)
= p−α

( −α(t)−1

1 + α(t)−1 − 1

)
α∨(α(t)−1

)
pα

(1− α(t)

α(t)−1

)
= p−α(−1)α∨(α(t)−1

)
pα
(
α(t)− α(t)2

)
and plugging this into the previous equality gives

mα tm
−1
α = pα(1)α

∨(α(t)−1
)
pα
(
− α(t)2

)
t

= α∨(α(t)−1
)
pα

(
α ◦ α∨(α(t))

)
pα
(
− α(t)2

)
t = α∨(α(t)−1

)
t

where in the last equality we used that α ◦ α∨ = 2. This proves the first equality of (iii). The
second one follows since m−1

α = mαα
∨(−1) by (ii).

Let us prove (iv). Let λ ∈ X(T ) and η ∈ X∨(T ). Firstly, mα(λ) is defined by mα(λ)(t) =
λ(m−1

α tmα), for any S ′ → S and t ∈ T (S ′). Since, by (ii), the adjoint action of mα and m−1
α on

T are the same, one obtains:

mα(λ)(t) = λ(mα tm
−1
α ) = λ(t)λ

(
α∨(α(t))−1

)
= λ(t)α(t)−⟨λ,α∨⟩

and, in additive notation, the RHS is (λ− ⟨λ, α∨⟩α)(t). Similarly, for z ∈ Gm(S
′) one has:

mα(η(z)) = η(z) · (α∨ ◦ α ◦ η)(z)−1 = η(z) · α∨(z)−⟨α,η⟩

and in additive notation the RHS is (η − ⟨α, η⟩α∨)(z). This proves (iv). □

44.2. Split reductive group schemes. We follow Exp. XXII, Def. 1.13, with a grain of
salt added by Conrad ([Co14], Example 5.1.2).

Definition 44.3. Let G be a reductive S-group scheme and g = Lie(G). We say that G is
split if there exists a maximal torus T equipped with an isomorphism T ≃ DS(M) for a finite
free abelian group M such that, setting M∨ = HomZ(M,Z), one has:

(1) there exist a system of roots R of (G, T ) given by constant sections of MS, i.e. elements
of M ,

(2) each root space gα is a trivial line bundle, i.e. isomorphic to OS,

(3) for each α ∈ R, the coroot α∨ ∈ HomS-Gr(Gm,S, T ) ≃ M∨
S constructed in §43 is given

by a constant section of M∨
S , i.e. an element of M∨.

We had shown in earlier lectures that for any s ∈ S, there exists an open neighborhood V of
S and a surjective étale map U → V such that GU possesses a maximal torus T which is split,
i.e. T ≃ DS(M) for some M . Then we showed in Lect. 15, Lemma 40.7, that conditions (i) and
(ii) are satisfied Zariski-locally, and for each α ∈ R we just proved in §43 the existence of the
coroot α∨ ∈ HomU -Gr(Gm,U , T ) ≃ M∨

U , which is therefore a locally constant section of M∨ over

8In [SGA33], Exp. XX, proof of Th. 3.1 (iii), formula (43.5) for −α is applied to p−α(1)pα(1− α(t)).
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U . Then, for any s′ ∈ U there exists a clopen subset U ′ containing s′ such that all α∨ are given
by constant sections over U ′, hence GU ′ is split.

Thus, we have obtained the following proposition ([SGA33], Exp. XXII, Prop. 2.1 or [Co14],
Lemma 5.1.3):

Proposition 44.4. Let G be a reductive S-group scheme.

(1) Étale-locally on S, G possesses a split maximal torus T .

(2) If G possesses a split maximal torus T over S, then G is split Zariski-locally on S.

Remark 44.5. Note that if G possesses a split maximal torus T and if S is connected and
Pic(S) = {0}, for example if S = Spec(A) where A is a PID or a local ring, then G is split.

Remark 44.6. Let us record here the following example by Conrad ([Co14], Example 5.1.2). Let S =
S1

∐
S2, with each Si a copy of Spec(C), and let G be the S-group scheme which is PGL2×Gm over S1 and GL2

over S2. We can choose as maximal torus T = G2
m,S , where the isomorphism from T to the diagonal matrices

in G is given over S1 by (z, z′) = (ε1(z), z
′), using the notation of Lect. 15, 41.3, and by (z, z′) 7→ diag(zz′, z′)

over S2. Set M = HomS-Gr(T,Gm,S) ≃ Z2 and let M∨ = HomZ(M,Z). Then g = t ⊕ gα ⊕ g−α where α is the
constant element of M given by (z, z′) 7→ z. Further, gα and g−α are free modules over O(S) = C×C. However,
the coroot α∨ is given over S1 by α∨(z) = (ε1(z

2), 1) and over S2 by α∨(z) = (z2, z−1); it is not a constant
section of M∨

S . This shows that over a non-connected base S, condition (iii) does not follow from conditions (i)
and (ii) of Def. 44.3, so that replacing S by some clopen subset on which α∨ is constant may be needed to obtain
condition (iii).

We also have the following proposition (see [SGA33], Exp. XXII, Prop. 1.14 or [Co14],
Prop. 5.1.6)

Proposition 44.7. Let (G, T ) be a split reductive S-group scheme, with T = DS(M), and
let R ⊂ M and R∨ ⊂ M∨ be the sets of roots and coroots respectively. Then the quadruple
R = (M,R,M∨, R∨) is a root datum. It is called the type of G.

Proof. This follows from the results in Th. 43.1 and Prop. 44.2, just as in the case where S
is the spectrum of an algebraically closed field. □

Remark 44.8. So far, we have achieved part of Grothendieck’s 1960 program mentioned in
Section 39: taking the “weaker” definition of reductive group schemes, we have proved that they
are étale-locally isomorphic to a group G(R) possessing a root datum R. We will see in the
next lecture that G(R) is unique up to isomorphism and comes from a “split Chevalley group”
defined over Z.


