LECTURE 17

Results from SGA3, §XX.2: construction of a"

The goal of this lecture is to explain the proof of Demazure’s crucial theorem 2.1 in Exp. XX,
and the subsequent construction of a root datum for a split reductive group scheme.

43. Demazure’s construction of oV

We keep the notation of Lecture 15: Z, is a reductive S-scheme with a split maximal torus
T = Dg(M) and, setting g = Lie(G) and t = Lie(T), there exists aw € M such that
Lie(Zy) =t® go D 9o
where g, and g_, are line bundles over S, and there exist closed subgroups U, and U_,, nor-
malised by T, and T-equivariant group isomorphisms exp,, : go — Uy and exp_,, : g_a — U_q.
Further, the multiplication map m induces an isomorphism of S-schemes
U_,xT x U, = Q,

where ), is an open subscheme of Z,, called the big cell.! Consider the following map, where
we take the product U, x U_, in the “wrong order” w.r.t. to the choice of the big cell :

f=mo (exp,,exp_,) : Oa X 9o — Uy x U_q = G.
THEOREM 43.1. There exists a unique Og-linear pairing { , ) : go ® §_o — Og such that

F7HR) is the complement U of the hypersurface (X,Y) =1 in g, ® g_q.

Further, there exists a unique morphism of S-groups ¥ : Gy, s — T such that for every
S"— S and (X,Y) € U(S'), one has the equality:

Y
43.1 X,Y) = _(———ﬂv1—xy (———ﬂ.
Moreover, { , ) is an isomorphism and one has oo o = 2.

PROOF. By the uniqueness, which will be proved in the course of the proof, it suffices to
prove existence in the case where g, and g_,, have global sections X, and X_,. Then, for every
S" — S and u,v € G,(5"), write

Pa(u) = exp, (uX,) and p_al(v) =exp_, (vX_,).

Let U be the open subscheme of G2, which is the inverse image of the big cell €, under the
morphism :
PaXP—a

f:Gig Uy X U_gq —2> Z,.

OLecture of Aug. 20 and 22, 2024. Version of Aug. 23. Thanks to Vikraman Balaji and Sukhendu Mehrotra
for useful questions, which lead to improvements in the exposition.

Water on, G will be a reductive S-scheme with a split maximal torus 7' = Dg(M); then replacing S by an
open subset we may assume that there exists a subset R of M such that Lie(G) =t & s, 95 where each gg
is a line bundle. The point is that one needs to prove results over any given pair of opposite roots £«. This is
achieved by considering the subgroup Ker(a) C T and its centraliser Z, = Cent(Ker(«)); it has the properties
stated above, see Lect. 15, §40.2.

99



100 17. RESULTS FROM SGA3, §XX.2: CONSTRUCTION OF o

Then there exist S-morphisms A,C' : U — G, ¢ and B : U — T such that for (u,v) € U(S") we
can write uniquely:

(43.2) Pa(Wp—a(v) = p_a(A(u,v)) - B(u,v) - pa(C(u,v)).
Obviously, denoting by er the unit element of T'(S”), one has

pa(O)p,a(’l}) = p*tl(“) Cer 'pa<0) and pa(u)p,a(()) = p,a(O) T Eer 'pa(u)'

This shows that ¢ contains a neighborhood of the coordinate axes in G g, hence is schematically
dense relative to S, and that one has the equalities:

(433) {lf U= O then A(()’ U) =, B(07 U) = ér, C(O, U) = O7

if v=0then A(u,0)=0, B(u,0)=epr, C(u,0)=u.
We want to prove that there exists a € G,,(.S) such that U is the complement of the hypersurface

auv = 1 and that for every S” — S and (u,v) € U(S’), one has:
v u

C(u,v) =

(43.4) A(u,v) = B(u,v) = a"(1 — aw),

1 —auwv’ 1 —auv’

for some uniquely defined morphism of S-groups a : G,, s — T'. The proof has several steps.

43.1. Reduction to functions of the single variable x = uv. The first step is to prove
the following lemma:

LEMMA 43.2. There exist an open subset W of G,g, containing the zero section hence

universally schematically dense relative to S, and morphisms E, F : W — G, s and H: W — T
with F(0) = 1 = E(0) and H(0) = er such that, for any S" — S, if (u,v) € U(S") and
uv € W(S") then

v u
43. _ =pal—=——) H . :
(43.5) polp-a(®) = p-a ey ) - H ) e 505)
PRrROOF. Firstly, define the open subscheme V of U by
V(S") = {(u,v) e U(S") | (uv,1) and (1, uv) belong to U(S")}

for every " — S.
Since f is T-equivariant (for the adjoint action of T'), one has for any S” — S and ¢t € T'(S"):

fla@)u,a(t) ™ v) =tf(u,v)t™ =p_o(a() " Alu,v)) - B(u,v) - pa(a(t)C(u,v)).

Since a # 0, the morphism « : T' — G, ¢ is faithfully flat. It follows that for every S’ — S and
(z,u,v) € G, (S") x U(S") one has the equalities below, because the corresponding morphisms
become equal after the faithfully flat base change to T' x s U:

A(u,v) = zA(zu, 2 1), C(u,v) = 27 'C(zu, 2 1v), B(u,v) = B(zu, 2 'v).
If follows that if (u,v) € U(S") and u,v € G,,(S”) then (u,v) € V(S’) and one has the equalities:
(43.6)  A(u,v) = vA(uv, 1), C(u,v) =uC(1,uv), B(u,v) = B(uv,1) = B(1,uv).

In particular, these equalities are true on VN G, 5. Since G}, ¢ is schematically dense in G g,
they hold true on V.

Define temporarily the open subset W of Ga,s by W(S’) ={z € G,(9) | (z,1) € V(5')},
and define morphisms A;,Cy : W — G, s and H : W — T by A;(x) = A(z, 1), Ci(z) = C(1, )
and H(z) = B(z,1) = B(1,z). Then, for (u,v) € V(5’) one has

(43.7) A(u,v) = vA; (uv), C(u,v) = uCy(uv), B(u,v) = H(uw).
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By (43.3), one has A;(0) = 1 and C;(0) = 1. Therefore, the open subscheme W of W defined
for every " — S by
(43.8) W(S") ={zx e WS') | Ai(z) € G,,(5"), Ci(z) € G, (5")}

is still an open neighborhood of the zero section, hence schematically dense in G, g relative to
S. We define morphisms F, £ : W — G,, ¢ by:

(43.9) F(z)=Ai(x)™" and FE(x)=C(x)".
Now, if (u,v) € U(S") and uwv € W(S') then (u,v) € V(5) and taking (43.2), (43.7) and
(43.9) into account one obtains the desired equality (43.5). 2 O

43.2. Functional equations. Now, take u = 1 and multiply (43.5) on the right by p_,(w).
On the one hand, provided that (E(v)™, w) € U(S’) and wE(v)~! € W(S'), we can apply (43.5)
to the product p,(E(v)™')p_o(w) and then the equality H(z)p_a(y) = p_a(a(H(z)™")y) H(z)
to find the “coordinates” of the RHS as an element of ().

On the other hand, since p_,(v)p_o(w) = p_o(v+w), we obtain another expression, provided
that (1,v +w) € U(S") and v + w € W(S’). Therefore, making the change of variables z = v

and y = wE(v)™!, we obtain that there exists an open neighborhood W of the zero section of
G} ¢ such that if (z,y) € W(S') then x,y and z + yE(x) belong to W(S’) and one has:

(43.10) E(z +yE(z)) = E(z)E(y)
(43.11) H(zx+yFE(x)) = H(z)H(y)
(43.12) vryB@) T () VB

Flz+yE(r))  F(x) F(y)

Similarly, take v = 1 and multiply (43.5) on the left by p,(¢). Making another change of
variables and replacing the previous W by a smaller neighborhood of the zero section of Gi S5
still denoted by W, one obtains that if (z,y) € W(S’) then z,y and = + yF'(x) belong to W (5’)
and one has:

(43.13) F(z+yF(z)) = F(z)F(y)
(43.14) H(x+yF(x)) = H(x)H(y)
(43.15) PP 2 e Y

Set Wi (S") = {x € W(Y') | (z,0) € W(S')} and define Wy similarly. Then, one has the
following lemma ([SGA3;], XX, Lemma 2.3).
LEMMA 43.3. Consider the functional equation (43.13). Then:
(i) If S = Spec(k), with k a field, one has F(x) = 1+ ax, where a is the derivative F'(0).
(ii) For S arbitrary, consider the section a = F'(0) of Os. Ifa € G,,(5) then F(z) = 1+ax.

SKETCH OF PROOF. By derivating (43.13) with respect to x at = = 0, and with respect to
y at y = 0, and recalling that F'(0) = 1, ones obtains:

{F’<y><1 1 yF/(0) = F(0)F(y) for y € Wa(S)

F'(x)F(z) = F(z)F'(0) for x € Wy (5").
As F take its values in G,,, the second equality gives
(43.16) F'(z) = F'(0) for x € Wy (S")

2In fact, the proof will show that U(S’) = {(u,v) € G,(S")? | wv € W(S')}. In particular, one has V = U.
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and hence the first gives:
F(0)(1+yF'(0)) = F(0)F(y) fory € (W1nWa)(S").

If a = F'(0) is invertible, this gives (ii) as well as (i) in the case where a # 0.

So, suppose that S = Spec(k), with k a field, and that F'(0) = 0. Then, by (43.16), F’
vanishes on the schematically dense open subset Wi, hence F' = 0. If char(k) = 0 this gives
immediately that F' is constant, hence equal to F'(0) = 1. So assume that char(k) = p > 0 and
that F' € k(X) is not constant. Then there exists F; € k(X) such that F] # 0 and n € N* such
that

F(X) = Fi(XP") = Fy(X)P".
Note then that F;(0) = F/(0) = 1. Plugging this into the functional equation (43.13) one obtains:
Fi(z +yFR(2)") = Fi(z)Fi(y).

Derivating this with respect to z at x = 0, and with respect to y at y = 0, and using that
F1(0) = 1, ones obtains:

{F{(y) = F(0)Fi(y) for y € Wy(5")
Fl(2)Fi ()" = Fy(z)F(0) for o € Wi(S").

Together, these equalities give F}(x)Fy(z)?" = F|(x) for x € (WyNW5)(S"), hence by (schematic)
density, we have

Fl(X)F(X)" = F{(X).
in the field k(X). By assumption, F] is a non-zero element of k(X), hence we obtain that
Fy(X)P" =1, whence F; = 1, contradicting the initial hypothesis. This shows that F is constant,
and equal to F'(0) = 1. This completes the proof of the lemma. O

43.3. Determination of £ and F. Suppose first that S = Spec(k), with & a field, and
that F’(0) = 0. Then we have seen that F' = 1 and hence (43.14) gives H(x +y) = H(z)H(y)
for all z,y € W(S’) such that « +y € W(S’). By Prop.42.12, it follows that H extends to a
homomorphism of k-groups G, — 7', which is necessarily constant with value e, the neutral
element of 7.

On the other hand, by the previous lemma, we also have F(z) = 1 + bx for some b € k. But
then (43.10) gives:®
r+y B x n Y
L+bx+y) 1+br 1+0by
which gives 0 = zyb(2 + (z + y)b), whence b(2+ (z + y)b) = 0 and finally b = 0. Thus, F, H, E
are constant with values 1,e,1 on a neighborhood of 0, hence on G, 4, and therefore

Pa(W)p-a(v) = p-a(v)pa(u)
for all u, v, which is a contradiction since U, and U_, do not commute on any fiber.

Coming back to arbitrary S, this shows that the section F'(0) of Og vanishes nowhere, hence
is invertible. By the previous lemma, again, there exist a,b € G,,(S) such that

F(z) =1+ axz, E(x)=1+0bz
for all z € W(S’). Plugging this into (43.12), one obtains:*

ya(H(z)) (1+ay) = y(l +ax + ay(1 + bx)) (1+ ax).

3Note a typo in [SGA33], XX, first displayed formula on p.40: on the RHS E(z) should be E(z)~'.
4Note a typo in [SGA3;], XX, p.40, §E: on the right of 3 formulas, (1 + bz) should be replaced by (1 + ax).



43. DEMAZURE’S CONSTRUCTION OF «" 103

Since G, g is schematically dense in G, g, one obtains:
(43.17) a(H(z)) (1 +ay) = <1 +ax + ay(l + bx)) (1+ ax).
Then, taking y = 0 gives:
(43.18) a(H(x)) = (1 + ax)?, Ve e W(S")
and plugging this into (43.17) and using that the open subset {1 + az # 0} is schematically
dense, one obtains
1+ax+ay + vy = (1 + ax)(1 +ay) = 1 + ax + ay + abry

whence Finally, since a € G,,(S) the pairing g, ®oy g§—a — Os, uX, @ vX_, — —auv

is an isomorphism.

43.4. The morphism o : G,, s — T. Since a € G,,(5), the image by = + 1+ ax of
the neighborhood W of 0 in G, ¢ is a neighborhood W’ of 1 in G,, s. Consider the morphism
P: W' — T defined by P(1 + ax) = H(z).

Using (43.11) one obtains that for (z,y) in some schematically dense open subset, one has

1
LE 209 by g,
1+ ax

Using Prop. 42.12, it follows that P extends to a S-group morphism a" : G,, s — 7. By (43.18)
one has aoa¥(z) = 2% for z € W’(S"). Since W’ is schematically dense, it follows that coa" = 2.

P(1+ ax + ay) :P(

43.5. Description of U = f71(Q,). So, replacing the previous a by —a we have proved
that there exist a € G,,(S) and a¥ € Homg (G5, T) with a0 a¥ = 2, such that, whenever
(u,v) € U(S") and uv € W(S'), one has that 1 — auw is invertible and the equality:

(43.19) Pa(t)p_a(v) = p,a(l_vm)av(l — auv)pq (ﬁ)

Consider now the open subset U’ of G ¢ defined by 1 — auv invertible, i.e. U’ = (G )4, where
g(u,v) = 1 — auv. The two sides of the above equality define morphisms from U’ to G, which
coincide on U'NU. Since U is schematically dense, it follows that they coincide on U’, and hence
we have U’ C U.

To prove that U’ = U, it suffices to check equality on each fiber. But, over a field k, the

v
domain of definition of rational map A : G2, — G, (u,v) T is the open subset
’ uw

defined by 1 —auwv invertible, i.e. ; A cannot be extended as a morphism on a strictly larger open
subset. This proves that & = U’. It follows that the open subset ¥V C U considered in the proof
is actually equal to U, and that for (u,v) € U(S") one has uv € W(S5").

43.6. Uniqueness of a and o, existence of the perfect pairing ( , ). Suppose that a’
and ¥ have the same properties as a and . Then, for every u € W(S’) one hase (u, 1) € U(S’)

and . .
= Au, 1) =

1—au 1—du
hence 1 — au = 1 — d'u for v € W(S’), which gives @' = a. This proves the uniqueness of
a € G,,(U) corresponding to an arbitrary choice of trivializing sections X,, X _, of the line
bundles g, and g_, over an open subset U of S.°

SNote that the a itself has not significance, but the uniqueness result show that the perfect pairing go Xg_o —
Og defined over U by (uX,,vX_,) — auv extends uniquely to a perfect pairing over S, which makes g, and
g_q dual line bundles. One this is known, over any subset U where £ = g, is trivial, we can choose arbitrarily a
trivializing section X = X,; then if we chose for X_, the dual section X ~!, i.e. the unique section of £L=! = g_,
over U such that )X ~1 X) =1, we have that yuX,,vX_,) = uv, i.e. the constant a has become 1.
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Then one has also:

0’(1 = au) = po (= )Palwp-a(Dpa (== ) = 8(1 — au)

and it follows that 8 = «". This completes the proof of Theorem 43.1.

-1
1—au

—Uu

1 —au

REMARK 43.4. Applying g — ¢! to both sides of (43.1) and replacing — X, —Y by XY,
one obtains:

exp_,(Y)exp,(X) = exp, (%)av(l — (X, Y})_l exp_, (%)

This shows that (Y, X) = (X,Y) and that, in additive notation, (—a)¥ = —a".

44. Consequences. Root data and split reductive group schemes

Now, as in Lect. 15, Lemma 40.7, assume that G is a reductive S-group scheme with a split
maximal torus T' = Dg(M) and that there exists a set R of constant sections of Mg, i.e. of
elements of M, such that g = b © D 95-

44.1. The elements m, € Ng(T). The normaliser Ng(7T') is represented by a closed sub-
group scheme of G. We want to define local sections m,, of Ng(T'), for every pair of opposite
roots +a.

DEFINITION 44.1. We say that two local sections X, and X_, of g, and g_, over an open
subset U of S are paired® if (X,, X_,) = 1, i.e.if exp,(Xa)exp_,(X_,) is “universally out of
the big cell Q,”; in this case, we write X_, = X! and we set:

Mo = expa(Xa) epra(thl) eXpa(XOé)'

Note also that in this case formula (43.19) becomes:

(44.1) Pa(Wp-a(0) = poa ({7 ) (L= w)pa (o).

PROPOSITION 44.2. (i) m,, depends only on the pair +a (and the choice of X,), i.e. setting
X o= X1 we have

(44.2) Mo = expy(Xa) exp_, (X 1) exp, (Xa) = exp_, (X o) exp (X 1) exp_, (X o).

2
«

(iii) mg, belongs to Ng(T'). More precisely, for any S" — S and t € T'(S’), one has

2

= 1s a section of T.

(il) m2 = «Y(—1); in particular, m
motmyt =t-a(a(t)™") =m " tm,.
(iv) The induced action of my on X(T) and XV(T') are given respectively by:
(44.3) ma(A) =X — (A, ") and ma(n) =1 — (o, n)a.

PRrROOF. For (i) we refer to the proof of Exp. XX, Th. 3.1 (vi). (We did this computation for
SL, in Lect. 15.7)

6In French: appariées.

"With the choice X, = E12 one has X_, = —F5; and m, = (

_01 (1)> More symmetrically, in the adjoint

0 0 1
representation sly with basis (X, Ha, X_o), where H, = [X_,, X,], the matrix of m,, is (0 -1 O) .
1 0 O
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Let us prove (ii). One has m? = po(1)p_o(1)pa(2)p_o(1)pa(1). Applying (44.1) to the
product p,(2)p_a(1), one obtains:

my = pa(1)p-a(1)p-a (%)@v(l - 2)%(%)%(1)

= pa(1)a” (= Dpa(=1) = @ (=1)pa ((=1) V) pa(~1) = a¥(~1).
Let us prove (iii). Using the T-equivariance of p, and p_,, one has
Moty = pa(1)p-a(1)pa(1) t Pa(—=1)p-a(=1)pa(~1)
= pa(1)p-a(Dpa(1 — a(t))p-a( — a(t) ™) pa(—alt))t
Next, (44.1) gives:®
pal1 = a0 = o)) = o (o= o (o) e ()
=p-a(=1)a" (a(t) ) pa(alt) — a(t)?)

and plugging this into the previous equality gives
matmy' = pa (1)’ (a(t) " )pa( — at)?) t
= a"(a(t)")pa (a o av(a(t))>pa( —a(t)?)t = a¥ (a(t) )t

where in the last equality we used that oo ¥ = 2. This proves the first equality of (iii). The
second one follows since m_' = m,aV(—1) by (ii).

Let us prove (iv). Let A € X(T) and n € XV(T). Firstly, my(A) is defined by m,(\)(t) =
A(m ttm,), for any 8" — S and t € T(S’). Since, by (ii), the adjoint action of m, and m_' on
T are the same, one obtains:

ma(A)(t) = Amatmg!) = A (a¥ (a(t)71) = Mt)a(t) =™

and, in additive notation, the RHS is ( — (N, a¥)a)(t). Similarly, for z € G,,,(S”) one has:
1_

ma(n(2)) =n(z) - (@’ oaon)(z)™ = n(z) - a’(z)~ 7
and in additive notation the RHS is (n — («, n)a")(z). This proves (iv). 0

44.2. Split reductive group schemes. We follow Exp. XXII, Def. 1.13, with a grain of
salt added by Conrad ([Col14], Example 5.1.2).

DEFINITION 44.3. Let G be a reductive S-group scheme and g = Lie(G). We say that G is
split if there exists a maximal torus T equipped with an isomorphism 7" ~ Dg(M) for a finite
free abelian group M such that, setting MY = Homg(M,Z), one has:

(1) there exist a system of roots R of (G,T') given by constant sections of Mg, i.e. elements
of M,
(2) each root space g, is a trivial line bundle, i.e. isomorphic to Og,

3) for each o € R, the coroot oV € Homg (G, 5,T) ~ MY constructed in §43 is given
S-Gr : S &
by a constant section of M, i.e. an element of M".

We had shown in earlier lectures that for any s € S, there exists an open neighborhood V' of
S and a surjective étale map U — V such that G possesses a maximal torus 7" which is split,
i.e. T'~ Dg(M) for some M. Then we showed in Lect. 15, Lemma 40.7, that conditions (i) and
(ii) are satisfied Zariski-locally, and for each o« € R we just proved in §43 the existence of the
coroot a¥ € Homy, o, (G, T) ~ My, which is therefore a locally constant section of M"Y over

8In [SGA33], Exp. XX, proof of Th. 3.1 (iii), formula (43.5) for —a is applied to p_o(1)pa (1 — a(t)).
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U. Then, for any s’ € U there exists a clopen subset U’ containing s’ such that all " are given
by constant sections over U’ hence Gy is split.

Thus, we have obtained the following proposition ([SGA3;], Exp. XXII, Prop. 2.1 or [Co14],
Lemma 5.1.3):

PROPOSITION 44.4. Let G be a reductive S-group scheme.
(1) Etale—locally on S, G possesses a split maximal torus T'.
(2) If G possesses a split mazimal torus T over S, then G is split Zariski-locally on S.

REMARK 44.5. Note that if G possesses a split maximal torus 7" and if S is connected and
Pic(S) = {0}, for example if S = Spec(A) where A is a PID or a local ring, then G is split.

REMARK 44.6. Let us record here the following example by Conrad ([Col4], Example 5.1.2). Let S =
S1]1 S2, with each S; a copy of Spec(C), and let G be the S-group scheme which is PGLy x G, over S; and GLg
over S3. We can choose as maximal torus T = an’ g, where the isomorphism from 7' to the diagonal matrices
in G is given over Sy by (z,2') = (1(2), 2), using the notation of Lect. 15, 41.3, and by (z, 2') — diag(zz’, 2’)
over Sz. Set M = Homg. (T, Gy 5) ~ Z* and let MY = Homy(M,Z). Then g = t D go & g_o where « is the

constant element of M given by (z,2’) — z. Further, g, and g_, are free modules over O(S) = C x C. However,

the coroot o is given over S; by aV(z) = (£1(2%),1) and over Sy by aV(z) = (22,271); it is not a constant

section of M. This shows that over a non-connected base S, condition (iii) does not follow from conditions (i)
and (ii) of Def. 44.3, so that replacing S by some clopen subset on which oV is constant may be needed to obtain
condition (iii).

We also have the following proposition (see [SGA3;], Exp. XXII, Prop.1.14 or [Col4],
Prop. 5.1.6)

PROPOSITION 44.7. Let (G, T) be a split reductive S-group scheme, with T = Dg(M), and
let R € M and RY C MV be the sets of roots and coroots respectively. Then the quadruple
R=(M,R,M"Y,RY) is a root datum. It is called the type of G.

Proor. This follows from the results in Th. 43.1 and Prop. 44.2, just as in the case where S
is the spectrum of an algebraically closed field. O

REMARK 44.8. So far, we have achieved part of Grothendieck’s 1960 program mentioned in
Section 39: taking the “weaker” definition of reductive group schemes, we have proved that they
are étale-locally isomorphic to a group G(R) possessing a root datum R. We will see in the
next lecture that G(R) is unique up to isomorphism and comes from a “split Chevalley group”
defined over Z.



