LECTURE 17

Results from SGA3, §XX.2: construction of α^{\vee}

The goal of this lecture is to explain the proof of Demazure's crucial theorem 2.1 in Exp. XX, and the subsequent construction of a root datum for a split reductive group scheme.

43. Demazure's construction of α^{\vee}

We keep the notation of Lecture 15: Z_{α} is a reductive S-scheme with a split maximal torus $T = D_S(M)$ and, setting $\mathfrak{g} = \text{Lie}(G)$ and $\mathfrak{t} = \text{Lie}(T)$, there exists $\alpha \in M$ such that

$$\operatorname{Lie}(Z_{\alpha}) = \mathfrak{t} \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}$$

where \mathfrak{g}_{α} and $\mathfrak{g}_{-\alpha}$ are line bundles over S, and there exist closed subgroups U_{α} and $U_{-\alpha}$, normalised by T, and T-equivariant group isomorphisms $\exp_{\alpha} : \mathfrak{g}_{\alpha} \xrightarrow{\sim} U_{\alpha}$ and $\exp_{-\alpha} : \mathfrak{g}_{-\alpha} \xrightarrow{\sim} U_{-\alpha}$. Further, the multiplication map m induces an isomorphism of S-schemes

$$U_{-\alpha} \times T \times U_{\alpha} \xrightarrow{\sim} \Omega_{\alpha}$$

where Ω_{α} is an open subscheme of Z_{α} , called the big cell.¹ Consider the following map, where we take the product $U_{\alpha} \times U_{-\alpha}$ in the "wrong order" w.r.t. to the choice of the big cell Ω :

$$f = m \circ (\exp_{\alpha}, \exp_{-\alpha}) : \qquad \mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha} \longrightarrow U_{\alpha} \times U_{-\alpha} \xrightarrow{m} G.$$

THEOREM 43.1. There exists a unique \mathcal{O}_S -linear pairing $\langle , \rangle : \mathfrak{g}_{\alpha} \otimes \mathfrak{g}_{-\alpha} \to \mathcal{O}_S$ such that $f^{-1}(\Omega)$ is the complement \mathcal{U} of the hypersurface $\langle X, Y \rangle = 1$ in $\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}$.

Further, there exists a unique morphism of S-groups $\alpha^{\vee} : \mathbb{G}_{m,S} \to T$ such that for every $S' \to S$ and $(X,Y) \in \mathcal{U}(S')$, one has the equality:

(43.1)
$$f(X,Y) = \exp_{-\alpha}\left(\frac{Y}{1-\langle X,Y\rangle}\right)\alpha^{\vee}\left(1-\langle X,Y\rangle\right)\exp_{\alpha}\left(\frac{X}{1-\langle X,Y\rangle}\right).$$

Moreover, \langle , \rangle is an isomorphism and one has $\alpha \circ \alpha^{\vee} = 2$.

PROOF. By the uniqueness, which will be proved in the course of the proof, it suffices to prove existence in the case where \mathfrak{g}_{α} and $\mathfrak{g}_{-\alpha}$ have global sections X_{α} and $X_{-\alpha}$. Then, for every $S' \to S$ and $u, v \in \mathbb{G}_a(S')$, write

$$p_{\alpha}(u) = \exp_{\alpha}(uX_{\alpha})$$
 and $p_{-\alpha}(v) = \exp_{-\alpha}(vX_{-\alpha}).$

Let \mathcal{U} be the open subscheme of $\mathbb{G}^2_{a,m}$ which is the inverse image of the big cell Ω_{α} under the morphism :

$$f: \mathbb{G}^2_{a,S} \xrightarrow{p_{\alpha} \times p_{-\alpha}} U_{\alpha} \times U_{-\alpha} \xrightarrow{m} Z_{\alpha}.$$

⁰Lecture of Aug. 20 and 22, 2024. Version of Aug. 23. Thanks to Vikraman Balaji and Sukhendu Mehrotra for useful questions, which lead to improvements in the exposition.

¹Later on, G will be a reductive S-scheme with a split maximal torus $T = D_S(M)$; then replacing S by an open subset we may assume that there exists a subset R of M such that $\text{Lie}(G) = \mathfrak{t} \oplus \bigoplus_{\beta \in R} \mathfrak{g}_{\beta}$ where each \mathfrak{g}_{β} is a line bundle. The point is that one needs to prove results over any given pair of opposite roots $\pm \alpha$. This is achieved by considering the subgroup $\text{Ker}(\alpha) \subset T$ and its centraliser $Z_{\alpha} = \underline{\text{Cent}}_{G}(\text{Ker}(\alpha))$; it has the properties stated above, see Lect. 15, §40.2.

Then there exist S-morphisms $A, C : \mathcal{U} \to \mathbb{G}_{a,S}$ and $B : \mathcal{U} \to T$ such that for $(u, v) \in \mathcal{U}(S')$ we can write uniquely:

(43.2)
$$p_{\alpha}(u)p_{-\alpha}(v) = p_{-\alpha}(A(u,v)) \cdot B(u,v) \cdot p_{\alpha}(C(u,v)).$$

Obviously, denoting by e_T the unit element of T(S'), one has

$$p_{\alpha}(0)p_{-\alpha}(v) = p_{-\alpha}(v) \cdot e_T \cdot p_{\alpha}(0) \quad \text{and} \quad p_{\alpha}(u)p_{-\alpha}(0) = p_{-\alpha}(0) \cdot e_T \cdot p_{\alpha}(u).$$

This shows that \mathcal{U} contains a neighborhood of the coordinate axes in $\mathbb{G}^2_{a,S}$, hence is schematically dense relative to S, and that one has the equalities:

(43.3)
$$\begin{cases} \text{if } u = 0 \text{ then } A(0, v) = v, \quad B(0, v) = e_T, \quad C(0, v) = 0, \\ \text{if } v = 0 \text{ then } A(u, 0) = 0, \quad B(u, 0) = e_T, \quad C(u, 0) = u. \end{cases}$$

We want to prove that there exists $a \in \mathbb{G}_m(S)$ such that \mathcal{U} is the complement of the hypersurface auv = 1 and that for every $S' \to S$ and $(u, v) \in \mathcal{U}(S')$, one has:

(43.4)
$$A(u,v) = \frac{v}{1-auv}, \quad C(u,v) = \frac{u}{1-auv}, \quad B(u,v) = \alpha^{\vee}(1-auv),$$

for some uniquely defined morphism of S-groups $\alpha^{\vee} : \mathbb{G}_{m,S} \to T$. The proof has several steps.

43.1. Reduction to functions of the single variable x = uv. The first step is to prove the following lemma:

LEMMA 43.2. There exist an open subset W of $\mathbb{G}_{a,S}$, containing the zero section hence universally schematically dense relative to S, and morphisms $E, F : W \to \mathbb{G}_{m,S}$ and $H : W \to T$ with F(0) = 1 = E(0) and $H(0) = e_T$ such that, for any $S' \to S$, if $(u, v) \in \mathcal{U}(S')$ and $uv \in W(S')$ then

(43.5)
$$p_{\alpha}(u)p_{-\alpha}(v) = p_{-\alpha}\left(\frac{v}{F(uv)}\right) \cdot H(uv) \cdot p_{\alpha}\left(\frac{u}{E(uv)}\right).$$

PROOF. Firstly, define the open subscheme \mathcal{V} of \mathcal{U} by

 $\mathcal{V}(S') = \{(u, v) \in \mathcal{U}(S') \mid (uv, 1) \text{ and } (1, uv) \text{ belong to } \mathcal{U}(S')\}$

for every $S' \to S$.

Since f is T-equivariant (for the adjoint action of T), one has for any $S' \to S$ and $t \in T(S')$:

$$f(\alpha(t)u,\alpha(t)^{-1}v) = tf(u,v)t^{-1} = p_{-\alpha}(\alpha(t)^{-1}A(u,v)) \cdot B(u,v) \cdot p_{\alpha}(\alpha(t)C(u,v)).$$

Since $\alpha \neq 0$, the morphism $\alpha : T \to \mathbb{G}_{m,S}$ is faithfully flat. It follows that for every $S' \to S$ and $(z, u, v) \in \mathbb{G}_m(S') \times \mathcal{U}(S')$ one has the equalities below, because the corresponding morphisms become equal after the faithfully flat base change to $T \times_S \mathcal{U}$:

$$A(u,v) = zA(zu, z^{-1}v),$$
 $C(u,v) = z^{-1}C(zu, z^{-1}v),$ $B(u,v) = B(zu, z^{-1}v).$

If follows that if $(u, v) \in \mathcal{U}(S')$ and $u, v \in \mathbb{G}_m(S')$ then $(u, v) \in \mathcal{V}(S')$ and one has the equalities:

(43.6)
$$A(u,v) = vA(uv,1), \quad C(u,v) = uC(1,uv), \quad B(u,v) = B(uv,1) = B(1,uv).$$

In particular, these equalities are true on $\mathcal{V} \cap \mathbb{G}^2_{m,S}$. Since $\mathbb{G}^2_{m,S}$ is schematically dense in $\mathbb{G}^2_{a,S}$, they hold true on \mathcal{V} .

Define temporarily the open subset \widetilde{W} of $\mathbb{G}_{a,S}$ by $\widetilde{W}(S') = \{x \in \mathbb{G}_a(S') \mid (x,1) \in \mathcal{V}(S')\}$, and define morphisms $A_1, C_1 : \widetilde{W} \to \mathbb{G}_{a,S}$ and $H : \widetilde{W} \to T$ by $A_1(x) = A(x,1), C_1(x) = C(1,x)$ and H(x) = B(x,1) = B(1,x). Then, for $(u,v) \in \mathcal{V}(S')$ one has

(43.7)
$$A(u,v) = vA_1(uv), \quad C(u,v) = uC_1(uv), \quad B(u,v) = H(uv).$$

By (43.3), one has $A_1(0) = 1$ and $C_1(0) = 1$. Therefore, the open subscheme W of \widetilde{W} defined for every $S' \to S$ by

(43.8)
$$W(S') = \{ x \in WS' \mid A_1(x) \in \mathbb{G}_m(S'), \quad C_1(x) \in \mathbb{G}_m(S') \}$$

is still an open neighborhood of the zero section, hence schematically dense in $\mathbb{G}_{a,S}$ relative to S. We define morphisms $F, E: W \to \mathbb{G}_{m,S}$ by:

(43.9)
$$F(x) = A_1(x)^{-1}$$
 and $E(x) = C_1(x)^{-1}$

Now, if $(u, v) \in \mathcal{U}(S')$ and $uv \in W(S')$ then $(u, v) \in \mathcal{V}(S')$ and taking (43.2), (43.7) and (43.9) into account one obtains the desired equality (43.5).²

43.2. Functional equations. Now, take u = 1 and multiply (43.5) on the right by $p_{-\alpha}(w)$. On the one hand, provided that $(E(v)^{-1}, w) \in \mathcal{U}(S')$ and $wE(v)^{-1} \in W(S')$, we can apply (43.5) to the product $p_{\alpha}(E(v)^{-1})p_{-\alpha}(w)$ and then the equality $H(x)p_{-\alpha}(y) = p_{-\alpha}(\alpha(H(x)^{-1})y)H(x)$ to find the "coordinates" of the RHS as an element of Ω .

On the other hand, since $p_{-\alpha}(v)p_{-\alpha}(w) = p_{-\alpha}(v+w)$, we obtain another expression, provided that $(1, v + w) \in \mathcal{U}(S')$ and $v + w \in W(S')$. Therefore, making the change of variables x = vand $y = wE(v)^{-1}$, we obtain that there exists an open neighborhood \mathcal{W} of the zero section of $\mathbb{G}^2_{a,S}$ such that if $(x, y) \in \mathcal{W}(S')$ then x, y and x + yE(x) belong to W(S') and one has:

(43.10)
$$E(x+yE(x)) = E(x)E(y)$$

(43.11)
$$H(x + yE(x)) = H(x)H(y)$$

(43.12)
$$\frac{x + yE(x)}{F(x + yE(x))} = \frac{x}{F(x)} + \alpha(H(x))^{-1} \frac{yE(x)}{F(y)}$$

Similarly, take v = 1 and multiply (43.5) on the left by $p_{\alpha}(t)$. Making another change of variables and replacing the previous \mathcal{W} by a *smaller* neighborhood of the zero section of $\mathbb{G}^2_{a,S}$, still denoted by \mathcal{W} , one obtains that if $(x, y) \in \mathcal{W}(S')$ then x, y and x + yF(x) belong to W(S') and one has:

(43.13)
$$F(x+yF(x)) = F(x)F(y)$$

(43.14)
$$H(x + yF(x)) = H(x)H(y)$$

(43.15)
$$\frac{x + yF(x)}{E(x + yF(x))} = \frac{x}{E(x)} + \alpha(H(x))^{-1} \frac{yF(x)}{E(y)}$$

Set $W_1(S') = \{x \in W(S') \mid (x,0) \in \mathcal{W}(S')\}$ and define W_2 similarly. Then, one has the following lemma ([**SGA3**₃], XX, Lemma 2.3).

LEMMA 43.3. Consider the functional equation (43.13). Then:

- (i) If S = Spec(k), with k a field, one has F(x) = 1 + ax, where a is the derivative F'(0).
- (ii) For S arbitrary, consider the section a = F'(0) of \mathcal{O}_S . If $a \in \mathbb{G}_m(S)$ then F(x) = 1 + ax.

SKETCH OF PROOF. By derivating (43.13) with respect to x at x = 0, and with respect to y at y = 0, and recalling that F(0) = 1, ones obtains:

$$\begin{cases} F'(y)(1+yF'(0)) = F'(0)F(y) & \text{for } y \in W_2(S') \\ F'(x)F(x) = F(x)F'(0) & \text{for } x \in W_1(S'). \end{cases}$$

As F take its values in \mathbb{G}_m , the second equality gives

(43.16)
$$F'(x) = F'(0)$$
 for $x \in W_1(S')$

²In fact, the proof will show that $\mathcal{U}(S') = \{(u, v) \in \mathbb{G}_a(S')^2 \mid uv \in W(S')\}$. In particular, one has $\mathcal{V} = \mathcal{U}$.

and hence the first gives:

$$F'(0)(1+yF'(0)) = F'(0)F(y)$$
 for $y \in (W_1 \cap W_2)(S')$.

If a = F'(0) is invertible, this gives (ii) as well as (i) in the case where $a \neq 0$.

So, suppose that S = Spec(k), with k a field, and that F'(0) = 0. Then, by (43.16), F' vanishes on the schematically dense open subset W_1 , hence F' = 0. If char(k) = 0 this gives immediately that F is constant, hence equal to F(0) = 1. So assume that char(k) = p > 0 and that $F \in k(X)$ is not constant. Then there exists $F_1 \in k(X)$ such that $F'_1 \neq 0$ and $n \in \mathbb{N}^*$ such that

$$F(X) = F_1(X^{p^n}) = F_1(X)^{p^n}.$$

Note then that $F_1(0) = F(0) = 1$. Plugging this into the functional equation (43.13) one obtains:

$$F_1(x + yF_1(x)^{p^n}) = F_1(x)F_1(y)$$

Derivating this with respect to x at x = 0, and with respect to y at y = 0, and using that $F_1(0) = 1$, ones obtains:

$$\begin{cases} F_1'(y) = F_1'(0)F_1(y) & \text{for } y \in W_2(S') \\ F_1'(x)F_1(x)^{p^n} = F_1(x)F_1'(0) & \text{for } x \in W_1(S'). \end{cases}$$

Together, these equalities give $F'_1(x)F_1(x)^{p^n} = F'_1(x)$ for $x \in (W_1 \cap W_2)(S')$, hence by (schematic) density, we have

$$F_1'(X)F_1(X)^{p^n} = F_1'(X)$$

in the field k(X). By assumption, F'_1 is a non-zero element of k(X), hence we obtain that $F_1(X)^{p^n} = 1$, whence $F_1 = 1$, contradicting the initial hypothesis. This shows that F is constant, and equal to F(0) = 1. This completes the proof of the lemma.

43.3. Determination of E and F. Suppose first that S = Spec(k), with k a field, and that F'(0) = 0. Then we have seen that F = 1 and hence (43.14) gives H(x + y) = H(x)H(y) for all $x, y \in W(S')$ such that $x + y \in W(S')$. By Prop. 42.12, it follows that H extends to a homomorphism of k-groups $\mathbb{G}_{a,k} \to T$, which is necessarily constant with value e, the neutral element of T.

On the other hand, by the previous lemma, we also have E(x) = 1 + bx for some $b \in k$. But then (43.10) gives:³

$$\frac{x+y}{1+b(x+y)} = \frac{x}{1+bx} + \frac{y}{1+by}$$

which gives 0 = xyb(2 + (x + y)b), whence b(2 + (x + y)b) = 0 and finally b = 0. Thus, F, H, E are constant with values 1, e, 1 on a neighborhood of 0, hence on $\mathbb{G}_{a,k}$, and therefore

$$p_{\alpha}(u)p_{-\alpha}(v) = p_{-\alpha}(v)p_{\alpha}(u)$$

for all u, v, which is a contradiction since U_{α} and $U_{-\alpha}$ do not commute on any fiber.

Coming back to arbitrary S, this shows that the section F'(0) of \mathcal{O}_S vanishes nowhere, hence is invertible. By the previous lemma, again, there exist $a, b \in \mathbb{G}_m(S)$ such that

$$F(x) = 1 + ax, \qquad E(x) = 1 + bx$$

for all $x \in W(S')$. Plugging this into (43.12), one obtains:⁴

$$y \alpha(H(x)) (1 + ay) = y \Big(1 + ax + ay(1 + bx) \Big) (1 + ax).$$

³Note a typo in [SGA3₃], XX, first displayed formula on p.40: on the RHS E(x) should be $E(x)^{-1}$.

⁴Note a typo in [SGA3₃], XX, p.40, §E: on the right of 3 formulas, (1 + bx) should be replaced by (1 + ax).

Since $\mathbb{G}_{m,S}$ is schematically dense in $\mathbb{G}_{a,S}$, one obtains:

(43.17)
$$\alpha(H(x))(1+ay) = \left(1+ax+ay(1+bx)\right)(1+ax).$$

Then, taking y = 0 gives:

(43.18)
$$\alpha(H(x)) = (1+ax)^2, \quad \forall x \in W(S')$$

and plugging this into (43.17) and using that the open subset $\{1 + ax \neq 0\}$ is schematically dense, one obtains

$$1 + ax + ay + a^{2}xy = (1 + ax)(1 + ay) = 1 + ax + ay + abxy$$

whence [a = b] Finally, since $a \in \mathbb{G}_m(S)$ the pairing $\mathfrak{g}_{\alpha} \otimes_{\mathcal{O}_S} \mathfrak{g}_{-\alpha} \to \mathcal{O}_S$, $uX_{\alpha} \otimes vX_{-\alpha} \mapsto -auv$ is an isomorphism.

43.4. The morphism $\alpha^{\vee} : \mathbb{G}_{m,S} \to T$. Since $a \in \mathbb{G}_m(S)$, the image by $x \mapsto 1 + ax$ of the neighborhood W of 0 in $\mathbb{G}_{a,S}$ is a neighborhood W' of 1 in $\mathbb{G}_{m,S}$. Consider the morphism $P: W' \to T$ defined by P(1 + ax) = H(x).

Using (43.11) one obtains that for (x, y) in some schematically dense open subset, one has

$$P(1 + ax + ay) = P\left(\frac{1 + ax + ay}{1 + ax}\right)P(1 + ax).$$

Using Prop. 42.12, it follows that P extends to a S-group morphism $\alpha^{\vee} : \mathbb{G}_{m,S} \to T$. By (43.18) one has $\alpha \circ \alpha^{\vee}(z) = z^2$ for $z \in W'(S')$. Since W' is schematically dense, it follows that $\alpha \circ \alpha^{\vee} = 2$.

43.5. Description of $\mathcal{U} = f^{-1}(\Omega_{\alpha})$. So, replacing the previous a by -a we have proved that there exist $a \in \mathbb{G}_m(S)$ and $\alpha^{\vee} \in \operatorname{Hom}_{S-\operatorname{Gr}}(\mathbb{G}_{m,S},T)$ with $\alpha \circ \alpha^{\vee} = 2$, such that, whenever $(u, v) \in \mathcal{U}(S')$ and $uv \in W(S')$, one has that 1 - auv is invertible and the equality:

(43.19)
$$p_{\alpha}(u)p_{-\alpha}(v) = p_{-\alpha}\left(\frac{v}{1-auv}\right)\alpha^{\vee}(1-auv)p_{\alpha}\left(\frac{u}{1-auv}\right).$$

Consider now the open subset \mathcal{U}' of $\mathbb{G}^2_{a,S}$ defined by 1 - auv invertible, i.e. $\mathcal{U}' = (\mathbb{G}^2_{a,S})_g$, where g(u, v) = 1 - auv. The two sides of the above equality define morphisms from \mathcal{U}' to G, which coincide on $\mathcal{U}' \cap \mathcal{U}$. Since \mathcal{U} is schematically dense, it follows that they coincide on \mathcal{U}' , and hence we have $\mathcal{U}' \subset \mathcal{U}$.

To prove that $\mathcal{U}' = \mathcal{U}$, it suffices to check equality on each fiber. But, over a field k, the domain of definition of rational map $A : \mathbb{G}_{a,k}^2 \to \mathbb{G}_{a,k}, (u,v) \mapsto \frac{v}{1-auv}$ is the open subset defined by 1-auv invertible, i.e., A cannot be extended as a morphism on a strictly larger open subset. This proves that $\mathcal{U} = \mathcal{U}'$. It follows that the open subset $\mathcal{V} \subset \mathcal{U}$ considered in the proof is actually equal to \mathcal{U} , and that for $(u,v) \in \mathcal{U}(S')$ one has $uv \in W(S')$.

43.6. Uniqueness of a and α^{\vee} , existence of the perfect pairing \langle , \rangle . Suppose that a' and β^{\vee} have the same properties as a and α^{\vee} . Then, for every $u \in W(S')$ one hase $(u, 1) \in \mathcal{U}(S')$ and

$$\frac{1}{1-au} = A(u,1) = \frac{1}{1-a'u}$$

hence 1 - au = 1 - a'u for $u \in W(S')$, which gives a' = a. This proves the uniqueness of $a \in \mathbb{G}_m(U)$ corresponding to an arbitrary choice of trivializing sections $X_{\alpha}, X_{-\alpha}$ of the line bundles \mathfrak{g}_{α} and $\mathfrak{g}_{-\alpha}$ over an open subset U of S.⁵

⁵Note that the *a* itself has not significance, but the uniqueness result show that the perfect pairing $\mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha} \to \mathcal{O}_S$ defined over *U* by $(uX_{\alpha}, vX_{-\alpha}) \mapsto auv$ extends uniquely to a perfect pairing over *S*, which makes \mathfrak{g}_{α} and $\mathfrak{g}_{-\alpha}$ dual line bundles. One this is known, over any subset *U* where $\mathcal{L} = \mathfrak{g}_{\alpha}$ is trivial, we can choose arbitrarily a trivializing section $X = X_{\alpha}$; then if we chose for $X_{-\alpha}$ the dual section X^{-1} , i.e. the unique section of $\mathcal{L}^{-1} = \mathfrak{g}_{-\alpha}$ over *U* such that $\langle X^{-1}, X \rangle = 1$, we have that $\langle uX_{\alpha}, vX_{-\alpha} \rangle = uv$, i.e. the constant *a* has become 1.

Then one has also:

$$\alpha^{\vee}(1-au) = p_{-\alpha}\left(\frac{-1}{1-au}\right)p_{\alpha}(u)p_{-\alpha}(1)p_{\alpha}\left(\frac{-u}{1-au}\right) = \beta^{\vee}(1-au)$$

and it follows that $\beta^{\vee} = \alpha^{\vee}$. This completes the proof of Theorem 43.1.

REMARK 43.4. Applying $g \mapsto g^{-1}$ to both sides of (43.1) and replacing -X, -Y by X, Y, one obtains:

$$\exp_{-\alpha}(Y)\exp_{\alpha}(X) = \exp_{\alpha}\left(\frac{X}{1-\langle X,Y\rangle}\right)\alpha^{\vee}\left(1-\langle X,Y\rangle\right)^{-1}\exp_{-\alpha}\left(\frac{Y}{1-\langle X,Y\rangle}\right)$$

This shows that $\langle Y, X \rangle = \langle X, Y \rangle$ and that, in additive notation, $(-\alpha)^{\vee} = -\alpha^{\vee}$.

44. Consequences. Root data and split reductive group schemes

Now, as in Lect. 15, Lemma 40.7, assume that G is a reductive S-group scheme with a *split* maximal torus $T = D_S(M)$ and that there exists a set R of constant sections of M_S , i.e. of elements of M, such that $\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\beta \in R} \mathfrak{g}_{\beta}$.

44.1. The elements $m_{\alpha} \in N_G(T)$. The normaliser $N_G(T)$ is represented by a closed subgroup scheme of G. We want to define local sections m_{α} of $N_G(T)$, for every pair of opposite roots $\pm \alpha$.

DEFINITION 44.1. We say that two local sections X_{α} and $X_{-\alpha}$ of \mathfrak{g}_{α} and $\mathfrak{g}_{-\alpha}$ over an open subset U of S are *paired*⁶ if $\langle X_{\alpha}, X_{-\alpha} \rangle = 1$, i.e. if $\exp_{\alpha}(X_{\alpha}) \exp_{-\alpha}(X_{-\alpha})$ is "universally out of the big cell Ω_{α} "; in this case, we write $X_{-\alpha} = X_{\alpha}^{-1}$ and we set:

$$m_{\alpha} = \exp_{\alpha}(X_{\alpha}) \exp_{-\alpha}(X_{\alpha}^{-1}) \exp_{\alpha}(X_{\alpha}).$$

Note also that in this case formula (43.19) becomes:

(44.1)
$$p_{\alpha}(u)p_{-\alpha}(v) = p_{-\alpha}\left(\frac{v}{1-uv}\right)\alpha^{\vee}(1-uv)p_{\alpha}\left(\frac{u}{1-uv}\right)$$

PROPOSITION 44.2. (i) m_{α} depends only on the pair $\pm \alpha$ (and the choice of X_{α}), i.e. setting $X_{-\alpha} = X_{\alpha}^{-1}$ we have

(44.2)
$$m_{\alpha} = \exp_{\alpha}(X_{\alpha}) \exp_{-\alpha}(X_{\alpha}^{-1}) \exp_{\alpha}(X_{\alpha}) = \exp_{-\alpha}(X_{-\alpha}) \exp_{\alpha}(X_{-\alpha}^{-1}) \exp_{-\alpha}(X_{-\alpha}).$$

- (ii) $m_{\alpha}^2 = \alpha^{\vee}(-1)$; in particular, m_{α}^2 is a section of T.
- (iii) m_{α} belongs to $N_G(T)$. More precisely, for any $S' \to S$ and $t \in T(S')$, one has

$$m_{\alpha} t m_{\alpha}^{-1} = t \cdot \alpha^{\vee} \left(\alpha(t)^{-1} \right) = m_{\alpha}^{-1} t m_{\alpha}.$$

(iv) The induced action of m_{α} on X(T) and $X^{\vee}(T)$ are given respectively by:

(44.3)
$$m_{\alpha}(\lambda) = \lambda - \langle \lambda, \alpha^{\vee} \rangle \alpha$$
 and $m_{\alpha}(\eta) = \eta - \langle \alpha, \eta \rangle \alpha^{\vee}.$

PROOF. For (i) we refer to the proof of Exp. XX, Th. 3.1 (vi). (We did this computation for SL_2 in Lect. 15.⁷)

⁶In French: appariées.

⁷With the choice $X_{\alpha} = E_{12}$ one has $X_{-\alpha} = -E_{21}$ and $m_{\alpha} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. More symmetrically, in the adjoint representation \mathfrak{sl}_2 with basis $(X_{\alpha}, H_{\alpha}, X_{-\alpha})$, where $H_{\alpha} = [X_{-\alpha}, X_{\alpha}]$, the matrix of m_{α} is $\begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

Let us prove (ii). One has $m_{\alpha}^2 = p_{\alpha}(1)p_{-\alpha}(1)p_{\alpha}(2)p_{-\alpha}(1)p_{\alpha}(1)$. Applying (44.1) to the product $p_{\alpha}(2)p_{-\alpha}(1)$, one obtains:

$$m_{\alpha}^{2} = p_{\alpha}(1)p_{-\alpha}(1)p_{-\alpha}\left(\frac{1}{1-2}\right)\alpha^{\vee}(1-2)p_{\alpha}\left(\frac{2}{1-2}\right)p_{\alpha}(1)$$

= $p_{\alpha}(1)\alpha^{\vee}(-1)p_{\alpha}(-1) = \alpha^{\vee}(-1)p_{\alpha}\left((-1)^{\langle\alpha,\alpha^{\vee}\rangle}\right)p_{\alpha}(-1) = \alpha^{\vee}(-1).$

Let us prove (iii). Using the *T*-equivariance of p_{α} and $p_{-\alpha}$, one has

$$m_{\alpha} t m_{\alpha}^{-1} = p_{\alpha}(1)p_{-\alpha}(1)p_{\alpha}(1) t p_{\alpha}(-1)p_{-\alpha}(-1)p_{\alpha}(-1)$$

= $p_{\alpha}(1)p_{-\alpha}(1)p_{\alpha}(1-\alpha(t))p_{-\alpha}(-\alpha(t)^{-1})p_{\alpha}(-\alpha(t))t$

Next, (44.1) gives:⁸

$$p_{\alpha}(1-\alpha(t))p_{-\alpha}(-\alpha(t)^{-1}) = p_{-\alpha}\left(\frac{-\alpha(t)^{-1}}{1+\alpha(t)^{-1}-1}\right)\alpha^{\vee}(\alpha(t)^{-1})p_{\alpha}\left(\frac{1-\alpha(t)}{\alpha(t)^{-1}}\right)$$
$$= p_{-\alpha}(-1)\alpha^{\vee}(\alpha(t)^{-1})p_{\alpha}(\alpha(t)-\alpha(t)^{2})$$

and plugging this into the previous equality gives

$$m_{\alpha} t m_{\alpha}^{-1} = p_{\alpha}(1) \alpha^{\vee} (\alpha(t)^{-1}) p_{\alpha} (-\alpha(t)^{2}) t$$
$$= \alpha^{\vee} (\alpha(t)^{-1}) p_{\alpha} (\alpha \circ \alpha^{\vee}(\alpha(t))) p_{\alpha} (-\alpha(t)^{2}) t = \alpha^{\vee} (\alpha(t)^{-1}) t$$

where in the last equality we used that $\alpha \circ \alpha^{\vee} = 2$. This proves the first equality of (iii). The second one follows since $m_{\alpha}^{-1} = m_{\alpha} \alpha^{\vee}(-1)$ by (ii).

Let us prove (iv). Let $\lambda \in X(T)$ and $\eta \in X^{\vee}(T)$. Firstly, $m_{\alpha}(\lambda)$ is defined by $m_{\alpha}(\lambda)(t) = \lambda(m_{\alpha}^{-1} t m_{\alpha})$, for any $S' \to S$ and $t \in T(S')$. Since, by (ii), the adjoint action of m_{α} and m_{α}^{-1} on T are the same, one obtains:

$$m_{\alpha}(\lambda)(t) = \lambda(m_{\alpha} t m_{\alpha}^{-1}) = \lambda(t)\lambda(\alpha^{\vee}(\alpha(t))^{-1}) = \lambda(t)\alpha(t)^{-\langle\lambda,\alpha^{\vee}\rangle}$$

and, in additive notation, the RHS is $(\lambda - \langle \lambda, \alpha^{\vee} \rangle \alpha)(t)$. Similarly, for $z \in \mathbb{G}_m(S')$ one has:

$$m_{\alpha}(\eta(z)) = \eta(z) \cdot (\alpha^{\vee} \circ \alpha \circ \eta)(z)^{-1} = \eta(z) \cdot \alpha^{\vee}(z)^{-\langle \alpha, \eta \rangle}$$

and in additive notation the RHS is $(\eta - \langle \alpha, \eta \rangle \alpha^{\vee})(z)$. This proves (iv).

44.2. Split reductive group schemes. We follow Exp. XXII, Def. 1.13, with a grain of salt added by Conrad ([Co14], Example 5.1.2).

DEFINITION 44.3. Let G be a reductive S-group scheme and $\mathfrak{g} = \operatorname{Lie}(G)$. We say that G is **split** if there exists a maximal torus T equipped with an isomorphism $T \simeq D_S(M)$ for a finite free abelian group M such that, setting $M^{\vee} = \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Z})$, one has:

- (1) there exist a system of roots R of (G, T) given by constant sections of M_S , i.e. elements of M,
- (2) each root space \mathfrak{g}_{α} is a *trivial* line bundle, i.e. isomorphic to \mathcal{O}_S ,
- (3) for each $\alpha \in R$, the coroot $\alpha^{\vee} \in \underline{\mathrm{Hom}}_{S-\mathrm{Gr}}(\mathbb{G}_{m,S},T) \simeq M_S^{\vee}$ constructed in §43 is given by a *constant* section of M_S^{\vee} , i.e. an element of M^{\vee} .

We had shown in earlier lectures that for any $s \in S$, there exists an open neighborhood V of S and a surjective étale map $U \to V$ such that G_U possesses a maximal torus T which is split, i.e. $T \simeq D_S(M)$ for some M. Then we showed in Lect. 15, Lemma 40.7, that conditions (i) and (ii) are satisfied Zariski-locally, and for each $\alpha \in R$ we just proved in §43 the existence of the coroot $\alpha^{\vee} \in \underline{\text{Hom}}_{U-\text{Gr}}(\mathbb{G}_{m,U},T) \simeq M_U^{\vee}$, which is therefore a locally constant section of M^{\vee} over

⁸In [SGA3₃], Exp. XX, proof of Th. 3.1 (iii), formula (43.5) for $-\alpha$ is applied to $p_{-\alpha}(1)p_{\alpha}(1-\alpha(t))$.

U. Then, for any $s' \in U$ there exists a clopen subset U' containing s' such that all α^{\vee} are given by constant sections over U', hence $G_{U'}$ is split.

Thus, we have obtained the following proposition ([SGA3₃], Exp. XXII, Prop. 2.1 or [Co14], Lemma 5.1.3):

PROPOSITION 44.4. Let G be a reductive S-group scheme.

(1) Étale-locally on S, G possesses a split maximal torus T.

(2) If G possesses a split maximal torus T over S, then G is split Zariski-locally on S.

REMARK 44.5. Note that if G possesses a split maximal torus T and if S is connected and $Pic(S) = \{0\}$, for example if S = Spec(A) where A is a PID or a local ring, then G is split.

REMARK 44.6. Let us record here the following example by Conrad ([Co14], Example 5.1.2). Let $S = S_1 \coprod S_2$, with each S_i a copy of Spec(\mathbb{C}), and let G be the S-group scheme which is PGL₂ × \mathbb{G}_m over S_1 and GL₂ over S_2 . We can choose as maximal torus $T = \mathbb{G}^2_{m,S}$, where the isomorphism from T to the diagonal matrices in G is given over S_1 by $(z, z') = (\overline{\varepsilon}_1(z), z')$, using the notation of Lect. 15, 41.3, and by $(z, z') \mapsto \text{diag}(zz', z')$ over S_2 . Set $M = \text{Hom}_{S-\text{Gr}}(T, \mathbb{G}_{m,S}) \simeq \mathbb{Z}^2$ and let $M^{\vee} = \text{Hom}_{\mathbb{Z}}(M, \mathbb{Z})$. Then $\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}$ where α is the constant element of M given by $(z, z') \mapsto z$. Further, \mathfrak{g}_{α} and $\mathfrak{g}_{-\alpha}$ are free modules over $\mathcal{O}(S) = \mathbb{C} \times \mathbb{C}$. However, the coroot α^{\vee} is given over S_1 by $\alpha^{\vee}(z) = (\overline{\varepsilon}_1(z^2), 1)$ and over S_2 by $\alpha^{\vee}(z) = (z^2, z^{-1})$; it is not a constant section of M_S^{\vee} . This shows that over a non-connected base S, condition (iii) does not follow from conditions (i) and (ii) of Def. 44.3, so that replacing S by some clopen subset on which α^{\vee} is constant may be needed to obtain condition (iii).

We also have the following proposition (see [SGA3₃], Exp. XXII, Prop. 1.14 or [Co14], Prop. 5.1.6)

PROPOSITION 44.7. Let (G, T) be a split reductive S-group scheme, with $T = D_S(M)$, and let $R \subset M$ and $R^{\vee} \subset M^{\vee}$ be the sets of roots and coroots respectively. Then the quadruple $\mathcal{R} = (M, R, M^{\vee}, R^{\vee})$ is a root datum. It is called the type of G.

PROOF. This follows from the results in Th. 43.1 and Prop. 44.2, just as in the case where S is the spectrum of an algebraically closed field.

REMARK 44.8. So far, we have achieved part of Grothendieck's 1960 program mentioned in Section 39: taking the "weaker" definition of reductive group schemes, we have proved that they are étale-locally isomorphic to a group $\mathcal{G}(\mathcal{R})$ possessing a root datum \mathcal{R} . We will see in the next lecture that $\mathcal{G}(\mathcal{R})$ is unique up to isomorphism and comes from a "split Chevalley group" defined over \mathbb{Z} .