
LECTURE 15

Reductive groups schemes: an overview

39. Historical context at the beginning of the 1960 decade

Our source is a text given by Grothendieck to Demazure, certainly in the Fall of 1960.
Grothendieck starts by saying that the language of schemes is arriving to a level of maturity
where it can be used to formulate easily numerous questions of the theory of algebraic groups in
the context of schemes and probably to tackle their solving. He asks, among others, the following
question: what is the good definition of a semi-simple group scheme G over an arbitrary base
scheme S? He says that to avoid pathologies one should require that the fibers of G (over points
of S) be connected. He considers as basic models the semi-simple group schemes G(R) over
Z constructed by Chevalley. (Here, R denotes a semi-simple root datum, which is a slightly
enhanced version of a root system, see paragraph below). Then he says that the safest definition
would be to require that for each s ∈ S there exists an open neighborhood U of s and a faithfully
flat morphism S ′ → U such that the pull-back G×S S ′ would come from some Chevalley group
scheme G(R) (here R is the root datum of the geometric fiber Gs, see below).

To be precise, let K be an algebraically closed field, G a semi-simple algebraic K-group, T ≃ Gd
m a maximal

torus of G and X(T ) its character group, which is isomorphic to Zd. Let g and t be the Lie algebras of G and T .

One has g = t⊕
⊕

α∈R gα, where R is a root system in the real vector space V = X(T )⊗Z R and dim gα = 1 for

each α. For each α, the coroot α∨ is an element of the free Z-module X∨(T ) = HomK-Gr(T,Gm), which is dual

to X(T ) via the pairing ⟨λ, η⟩ = n, with n being the unique integer such that the morphism λ ◦ η : Gm → Gm is

given by z 7→ zn. The α∨’s form a root system R∨ in X∨(T )⊗Z R ≃ V ∗, called the dual root system. The root

lattice Q(R) is the sublattice of X(T ) generated by R and the coroot lattice Q(R∨) is the sublattice of X∨(T )

generated by R∨. Then the weight lattice P (R) is the dual of Q(R∨), i.e. the set of λ ∈ V such that ⟨λ, α∨⟩ ∈ Z
for all α∨ ∈ R∨. Clearly, one has Q(R) ⊂ X(T ) ⊂ P (R) and the pair R = (R,X(T )) is called the root datum

(or type) of (G,T ); it determines G up to isomorphism. Conversely, every pair (R,X) where X is a sublattice of

P (R) containing Q(R) is obtained in this manner.1 For each R, Chevalley has constructed ([Che61]) an affine,

flat group scheme G(R) over Z such that G(R) ⊗Z K is a semi-simple algebraic K-group of type R, for every

algebraically closed field K.

Then Grothendieck expresses the hope that it would suffice to require that G is affine and
flat over S and that for each s ∈ S the geometric fiber Gs is a connected semi-simple group over
the algebraic closure κ(s) of the residue field κ(s). Moreover, he conjectures that if G,G′ are
two such groups with isomorphic geometric fibers Gs, G

′
s, there exists an open neighborhood U

of s and a surjective étale morphism S ′ → U such that GS′ ≃ G′
S′ . In particular, denoting by

R the type of Gs and taking G′ = G(R)S, this conjecture implies that the type of the geometric
fibers should be a locally constant function of s.

Further, he indicates a strategy to prove that the weaker definition implies the stronger one:
given s ∈ S, let R be the type of Gs, set G

′ = G(R)S and consider the functor F sending every

S-scheme S ′ to the set of isomorphisms of S ′-groups G′
S′

∼−→ GS′ ; then one should prove that F
is representable by a S-scheme X and then that there exists an open neighborhood U of s and
a surjective étale morphism S ′ → U such that there exists a section of XS′ → S ′.

0version of Aug. 11, 2024.
1For reductive groups one has a more general notion of root datum, that we will see later.
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90 15. REDUCTIVE GROUPS SCHEMES: AN OVERVIEW

Of course, further ideas and a lot of work were needed to achieve this project, and this was
done by Demazure in his thesis, which is vol. 3 of SGA3 ([SGA33]).

For the sake of simplicity, we restricted ourselves to semi-simple group schemes in this section
but, from now on, we return to the slightly more general setting of reductive group schemes.

40. Recollections from previous lectures

40.1. Existence of split maximal tori and system of roots. Let S denote an arbitrary
base scheme. First, recall from Lect. 12, §28 the following definitions.

Definition 40.1. One says that a S-group scheme G is reductive (resp. semi-simple) if:

(1) G is affine and smooth, with connected fibers.2

(2) Its geometric fibers are reductive (resp. semi-simple)

Definition 40.2. Let G be a smooth affine S-group scheme. A maximal torus of G is a
closed subgroup scheme T such that:

(1) T is a torus (in the sense of Def. 1.3).
(2) For every geometric point s of S, the subgroup Ts is a maximal torus of Gs

From now on, we assume that G is a reductive S-group scheme. We proved in Lect. 13,
Th. 35.1 that for each s ∈ S there exists an étale neighbourhood U of s (that is, a surjective
étale morphism U → V , where V is a Zariski neighbourhood of s) such that GU possesses a
maximal torus, which is split, i.e. isomorphic to a diagonalisable group DU(M) for some finite
free abelian group M . From now on, we take S = U . Observe then that, for each s ∈ S, we
have a natural identification of M with the character group X(Ts) of Ts.

Let g = Lie(G); this is a locally free OS-module, equipped with the adjoint action of T . As
T is diagonalisable and we saw that in Lect. 11 that the 0-weight space gT is just t = Lie(T ), we
can write as in Lect. 14:

g = t⊕
⊕

m∈M−{0}

gm,

where each gm is a locally free OS-module. By the theory over an algebraically closed field, we
know that the geometric fibers of a given gm are 0 or 1-dimensional. Hence each gm is a line
bundle over some clopen (open and closed) subscheme of S, and 0 over the complement.

Now, recall from Lect. 14, §28 the following definitions and lemma.

Definition 40.3. With assumptions as above, a root of (G, T ) is a section α of the constant
scheme (M − {0})S, i.e. a locally constant function α : S → M − {0}, such that for each s ∈ S,
the fiber (gα(s))s is non-zero, so that gα(s) is a line bundle over some open neighbourhood of s.

Then, we say that a set R of such roots is a system of roots3 for (G, T ) if one has

(⋆) g = t⊕
⊕
α∈R

gα.

Or equivalently: for each s ∈ S, the map α 7→ α(s) is a bijection from R to the usual root
system of (Gs, Ts).

Lemma 40.4. (i) If α is a root of (G, T ), then so is −α.
(ii) If R is a system of roots for (G, T ), every root of (G, T ) is locally on S equal to an

element of R.

2Since a connected algebraic group over a field is geometrically connected (see [SGA31], VIA, Prop. 2.1.1),
the fibers are then geometrically connected.

3We suggest this terminology, in order to use “root system” only when we actually have a true root system
in the usual sense.
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Proof. (i) is true since it is true fiberwise, and (ii) follows from (⋆) above. □

Remarks 40.5. (a) The flexibility in the previous definition, taken from [SGA33], Exp. XIX,
Def. 3.2 and 3.6, seems to be needed for purposes of descent theory. However, one should be
aware that a system of roots for (G, T ) need not be a root system in the usual sense (but becomes
one if S is replaced by an appropriate clopen subscheme), below.

(b) In [Co14], Def. 4.1.1, Conrad takes the more restrictive definition that a root of (G, T )
is a constant element α of M .

Examples 40.6. Let k be an algebraically closed field and S = S1 ⊔ S2 the direct sum of two copies of
Spec(k).

(1) Let G be the S-group scheme which is PGL2 over S1 and SL2 over S2. The maximal torus T of diagonal
matrices is isomorphic to Gm,S and its character group to Z. Over S1 (resp. S2), its acts on the Lie algebra with
the non-zero weights ±1 (resp. ±2), hence we have

g = t⊕ g1 ⊕ g−1 ⊕ g2 ⊕ g−2

with g±1 a line bundle over S1 and zero over S2, and conversely for g±2.
We could define the root α : S → Z by α = i on Si for i = 1, 2. Then {±α} is a system of roots for (G,T ).

Or we could replace S by either of the clopen subschemes Si, over which we have the constant root system {±i}.
(2) Perhaps more disturbing is the following example: Let n ≥ 3 and let G be the S-group scheme which

is the simply-connected group of type Bn (that is, Spin(2n + 1)) over S1 and of type Cn (that is, Sp(2n)) over
S2. Then the maximal torus T of diagonal matrices is isomorphic to (Gm,S)

n and its character group to Zn,
with canonical basis (ε1, . . . , εn). The constant sections εi − εj , for i ̸= j, are roots over S1 and S2 and we may
complete these with the locally constant functions ±ηi, for i = 1, . . . , n, equal to ±εi on S1 and ±2εi on S2.
These n2 functions form a system of roots for (G,T ). However, one may prefer to restrict to S1 (resp. S2) over
which we have the honest, constant root system of type Bn (resp. Cn).

Let us now record from [SGA33], Exp. XXII, Prop. 2.1 the following result.

Lemma 40.7. Keep notation as above. Then:

(a) S is the disjoint union of clopen subschemes UR, such that (G, T ) possesses over each
UR a constant system of roots R.

(b) Further, for each s ∈ S belonging to some UR, there exists a neighborhood V of s such
that over V one has g = t⊕

⊕
α∈R gα with each gα a trivial line bundle.

Proof. (a) Let us write g =
⊕

m∈M gm, with g0 = t and gm is locally free of rank 0 or 1 at
each point. Let s0 ∈ S and let R = {m ∈ M − {0} | (gm)s0 ̸= 0}. Then the set of s ∈ S such
that gs = ts ⊕

⊕
α∈R(gα)s} is an open subscheme UR of S, and S is the disjoint union of these

subsets as R runs through the subsets of M which occur in some fiber. Therefore, each UR is
also a closed subscheme.

Then (b) follows immediately: we have a finite number of line bundles gα, for α ∈ R, and
they can be all trivialised over some neighborhood V of s. □

40.2. Existence of root subgroups. Further, using the dynamical method of Conrad-
Gabber-Prasad4 (see [Co14], §4.1) we proved in Lect. 14 that for each (constant) root α of (G, T ),
there exists a unique closed subgroup scheme Uα normalised by T and such that Lie(Uα) = gα
and a unique T -equivariant morphism of S-groups expα : gα → G whose differential along the
unit section is the giving embedding gα ↪→ g. Moreover, it induces a T -equivariant isomorphism
of groups gα

∼−→ Uα. The same is true for −α.

Further, let Zα be the centraliser in G of the subgroup Ker(α) ⊂ T ; it is a smooth closed
subgroup of G and Lie(Zα) = t⊕gα⊕g−α; form this it follows that the multiplication morphism
induces an isomorphism:

(40.1) U−α × T × Uα
∼−→ Ω,

4It is shorter than Demazure’s proof of Th. 1.5 in [SGA33], Exp. XIX.
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where Ω is a dense open subscheme of Zα, called the big cell.

41. Semi-simple Lie algebras and reductive groups over C, root data

41.1. The Tits convention of signs. Let g be a complex semi-simple Lie algebra, κ its
Killing form and h a Cartan subalgebra. Recall that one obtains first the set of roots R ⊂ h∗ as
the set of non-zero weights of the adjoint action of h on g, i.e. one has g0 = h and

g = h⊕
⊕
α∈R

gα.

Then, one proves that κ(gα, gβ) = 0 if α+ β ̸= 0; it follows that R is stable under α 7→ −α and
that the restriction of κ to h and to each subspace gα ⊕ g−α is non-degenerate. If we denote by
hα the unique element of h such that κ(hα, h) = α(h) for all h ∈ h, then for all x ∈ gα, y ∈ g−α

and h ∈ h, one has

κ([x, y], h) = κ(x, [y, h]) = α(h)κ(x, y) = κ(x, y)κ(hα, h) = κ
(
κ(x, y)hα, h

)
and since κ|h×h is non degenerate, it follows that [x, y] = κ(x, y)hα. In particular, hα = [gα, g−α]
is 1-dimensional. Thus, there exists a unique Hα ∈ hα such that α(Hα) = 2, namely Hα =
2hα/κ(hα, hα) (it is called the coroot associated with α). Further, one may choose X±α ∈ g±α

such that slα = Vect(Xα, Hα, X−α) is a Lie subalgebra isomorphic to sl2 and then, using the
representation theory of sl2, one obtains dim g±α = 1 and the integrality property β(Hα) ∈ Z for

all α, β ∈ R, see e.g. [Hu72], Prop. 8.3 and 8.4. The usual choice for the isomorphism sl2
∼−→ slα

is:

E = E12 7→ Xα, H =

(
1 0
0 −1

)
7→ Hα, F = E21 7→ X−α,

one then has [Xα, X−α] = Hα. In fact, as discovered by Tits ([Ti66], it is better to use the
isomorphism

E12 7→ Xα, H =

(
1 0
0 −1

)
7→ Hα, −E21 7→ X−α,

in which case one has [X−α, Xα] = Hα. This is the convention used in [BLie75].

One advantage of this convention, explained in [Ti66], bottom of p. 21 (see also [BLie75],
§VIII.2.4, Prop. 7), is the following. If one wants to construct a Chevalley basis over Z of g or,
what amounts to the same, and admissible Z-lattice in g using the Kostant Z-form (see [Hu72],
§26 or [BLie75], §VIII.12.4), then with this convention the Chevalley constants Nα,β satisfy
N−α,−β = Nα,β.

In hindsight, one can also see that this is the “right” convention as follows: if we start with
the highest weight vector Xα in the adjoint representation of slα, then applying the divided

powers X
(n)
−α = Xn

−α/n! we get:

X−α ·Xα = [X−α, Xα] = Hα, and then X
(2)
−α ·Xα =

1

2
[X−α, Hα] = X−α

(with no minus signs) and, starting with the lowest weight vector X−α and applying the divided

powers X
(n)
α we have:

Xα ·X−α = [Xα, X−α] = −Hα = H−α, and then X(2)
α ·X−α =

1

2
[Xα,−Hα] = Xα.

Another advantage of this convention, emphasized by Demazure in [De15] (but already
present in [Ti66]) is the following. In the group SL2, consider the elements

uα = exp(Xα) = I2 +Xα =

(
1 1
0 1

)
and u−α = exp(X−α) = I2 +X−α =

(
1 0
−1 1

)
.
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Then an easy computation shows that

(41.1) uαu−αuα =

(
0 1
−1 0

)
= u−αuαu−α ;

this element mα belongs to the normalizer of the torus, its image in the Weyl group is the
reflection sα, and it is unchanged if we exchange α and −α.

Moreover, setting Uα(x) =

(
1 x
0 1

)
and U−α(y) =

(
1 0
−y 1

)
an easy computation gives:

Uα(x)U−α(y) =

(
1−xy x
−y 1

)
and this element belongs to the big celle Ω = U−α × T × Uα if and only if 1 − xy is invertible,
and in this case one has the formula:

(41.2) Uα(x)U−α(y) = U−α

( y

1− xy

)
α∨(1− xy)Uα

( x

1− xy

)
,

where α∨ denotes the morphism Gm → SL2, z 7→ diag(z, z−1). Now, in the general setting of
paragraph 40.2 above, Demazure’s idea was to perform a similar computation to define the
sought-for morphism α∨ : Gm,S → Zα. We will explain his computations and results in the next
lecture.

41.2. Root data. Let us start with the following definition (see [SGA33], XXI, Def. 1.1.1
or [Sp98], §7.4.1).

Definition 41.1. Let M and M∨ be finite free Z-modules in duality by a pairing M×M∨ →
Z denoted by ⟨ , ⟩. Let be given a finite subset R of M and a map α 7→ α∨ from R to M∨ and
set R∨ = {α∨ | α ∈ R}. For α ∈ R we define endomorphisms sα and s∨α of M and M∨ by:

sα(λ) = λ− ⟨λ, α∨⟩α, ∀λ ∈ M,(41.3)

s∨α(η) = η − ⟨α, η⟩α∨, ∀η ∈ M∨.(41.4)

One says that the quadruple R = (M,R,M∨, R∨) is a root datum if the following axioms are
satisfied:

(RD 1) For each α ∈ R, one has ⟨α, α∨⟩ = 2

(RD 2) For each α ∈ R, one has sα(R) ⊂ R and s∨α(R
∨) ⊂ R∨.

It follows from (RD 1) that s2α = idM and sα(α) = −α. One denotes by W the group of
automorphisms of M generated by the sα, for α ∈ R.

Set V = ZR ⊗Z R and denote by π the natural map from M∨ to the dual vector space V ∗.
The axioms imply that R is a root system in V in the sense of [BLie68], the coroot of each
root α being π(α∨). It follows (see loc. cit.) that the map α 7→ α∨ is injective, that ZR∨ ⊗Z R
identifies with V ∗ and that R∨ is a root system in V ∗, called the dual root system of R. Further,
W is called the Weyl group of R.

Remark 41.2. Note that s∨α is simply the transpose of sα: for any η ∈ M∨ and λ ∈ M , one has:

⟨λ, tsα(η)⟩ = ⟨sα(λ), η⟩ = ⟨λ− ⟨λ, α∨⟩α, η⟩ = ⟨λ, η⟩ − ⟨λ, α∨⟩⟨α, η⟩ = ⟨λ, η − ⟨α, η⟩α∨⟩ = ⟨λ, s∨α(η)⟩

and since ⟨ , ⟩ is non-degenerate it follows that tsα(η) = s∨α(η). For this reason, one sometimes denote s∨α simply
by sα.

Now let G be a reductive algebraic group over C (or, more generally, over an algebraically
closed field K), let T be a maximal torus. To (G, T ) one associates its root datum R as follows.
Let M = X(T ) and M∨ = X∨(T ) the groups of characters and cocharacters of T , which are in
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duality by the pairing (λ ◦ η)(z) = z⟨λ,η⟩ for all z ∈ Gm(K). Let g = Lie(G) and t = Lie(T ).
One can prove that, w.r.t. the adjoint action of T , one has

(∗) g = t⊕
⊕
β∈R

gβ

for some finite subset R of M , and that each gα is 1-dimensional. This is the first, easy, step.
Some more work is needed to get the coroots α∨ and verify the axioms (RD 1) and (RD 2).

Here is an outline, see e.g. [Sp98] §7.4.3 for the details. Let α ∈ R and let Zα be the
centraliser in G of the subgroup Ker(α) ⊂ T ; then Zα is a reductive group and Lie(Zα) =
t⊕ gα ⊕ g−α. Let Z

′
α be the derived subgroup of Zα; one can prove that Z ′

α is isomorphic to SL2

or PGL2 and that there is a unique cocharacter α∨ : Gm → T ∩ Z ′
α such that ⟨α, α∨⟩ = 2.

Next, note that the normaliser NG(T ) acts naturally on M = X(T ) and M∨ = X∨(T ). One
deduces from the SL2-computation (41.1) that Z ′

α contains an element mα which normalises
T and acts on M and M∨ as sα. Since the decomposition (∗) is preserved by the adjoint
action of mα, it follows that for each β ∈ R one has that mα(β) = sα(β) is still a root.
Further, the conjugate mαZ

′
βm

−1
α equals Z ′

γ, where γ = sα(β), and it follows that the cocharacter
mα(β

∨) = sα(β
∨) equals γ∨. This proves that axiom (RD 2) is satisfied.

Examples 41.3. (1) For G = GL2, let T be the maximal torus of diagonal matrices. Then
X(T ) = Zε1 ⊕ Zε2, where εi(diag(z1, z2)) = zi for i = 1, 2, while X∨(T ) = Zη1 ⊕ Zη2, where
η1(z) = diag(z, 1) and η2(z) = diag(1, z). Then T acts (by conjugation) on the matrix E12

(resp. E21) with the weight α = ε1 − ε2 (resp. −α). The corresponding cocharacters are α∨ =
η1 − η2 and −α∨. Thus, the root datum of GL2 is:

R(GL2) =
(
Zε1 ⊕ Zε2, {±(ε1 − ε2)},Zη1 ⊕ Zη2, {±(η1 − η2)}

)
.

(2) Now, T ′ = T ∩SL2 is the kernel of ε1+ε2 and one has X(T ′) = X(T )/Z(ε1+ε2), whereas
X∨(T ′) = Z(η1 − η2). Denoting by εi the image of εi in X(T ′), one obtains that the root datum
of SL2 is:

R(SL2) =
(Zε1 ⊕ Zε2
Z(ε1 + ε2)

, {±(ε1 − ε2)},Z(η1 − η2), {±(η1 − η2)}
)
.

(3) Next, the image T of T in PGL2 is the quotient of T by the subtorus (η1 + η2)(Gm).
One has X∨(T ) = X∨(T )/Z(η1 + η2) and X(T ) is the orthogonal of η1 + η2 in X(T ), which is
spanned by α = ε1 − ε2. Thus, denoting by ηi the image of ηi in X∨(T ), one obtains that the
root datum of PGL2 is:

R(PGL2) =
(
Z(ε1 − ε2), {±(ε1 − ε2)},

Zη1 ⊕ Zη2
Z(η1 + η2)

, {±(η1 − η2)},
)
.

(4) If M is a free Z-module of rank d and M∨ its dual, the root datum of the torus T = D(M)
is R(T ) = (M,∅,M∨,∅) (there are no roots!).

(5) There is an obvious notion of “direct sum” of root data. Note that R(GL2) is not the
direct sum of R(Gm) and the root datum of either SL2 or PGL2. (For more on this, see [SGA33],
Exp. XIX, §6).


