
LECTURE 14

Reductive groups: roots and root subgroups

In this lecture, G is a reductive group scheme over a base scheme S (unless stated otherwise).

36. Roots

Let s ∈ S. By Th. 35.1 of Lect. 13, one can find an étale neighbourhood U of s such that GU

has a split maximal torus T = DU(M), where M ≃ Zd for some d > 0. So, from now on, we
take S = U . Recall in passing that M = DS(T ) is called the character group of T and is often
denoted by X(T ).

Since G is smooth over S, its Lie algebra g = Lie(G) is a vector bundle over S. It is endowed
with the adjoint action of G, hence in particular of T . Set t = Lie(T ) and recall from Prop. 27.6
of Lect. 11 that t = gT . Since T = DS(M) we obtain (see Prop. 2.3 in Lect. 1) that g splits as a
direct sum of T -modules:

g = t⊕
⊕

m∈M−{0}

gm,

where each gm is locally free sheaf of OS-modules1. By the theory over an algebraically closed
field, we know that the geometric fibers of a given gm are 0 are 1-dimensional. Hence each gm is
a line bundle over some clopen subset of S, and 0 over the complement.

Definition 36.1. Following [SGA33], Exp. XIX, Definitions 3.2 and 3.6, we say that a root
of (G, T ) is a section α of MS, i.e. a locally constant function α : S → M , such that for each
s ∈ S, one has:

(1) α(s) ̸= 0,
(2) Denoting simply by α this non-zero element of M , the fiber gα(s) is non-zero, hence gα

is a line bundle over some open neighbourhood of s.

Then, we say that a set R of such roots is a root system of (G, T ) if one has

(⋆) g = t⊕
⊕
α∈R

gα.

Or equivalently: for each s ∈ S, the map α 7→ α(s) is a bijection from R to the usual root
system of (Gs, Ts).

In [Co14], Def. 4.1.1, Conrad takes the more restrictive definition that a root of (G, T ) is a
constant element α of M .

Lemma 36.2. If α is a root of (G, T ), then so is −α.

Proof. This is true fiberwise. □

Example 36.3. Let k be an algebraically closed field and S = S1⊔S2 the direct sum of two copies of Spec(k).
Let G = SL2,S and T the maximal torus of diagonal matrices. Then g = t⊕ gα ⊕ g−α, where α is the character
of T sending the diagonal matrix diag(t, t−1) to t2. But we may also consider the character β of T which equals
α on S1 and −α on S2; then we also have g = t⊕ gβ ⊕ g−β .

0version of Jan. 22, 2024.
1As S is not required to be connected, the rank of this “vector bundle” may vary on different connected

components of S.
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For later use in connection with descent theory, let us record here the following lemma, of
which the previous example is an illustration.

Lemma 36.4. Assume that R is a root system of (G, T ). Then every root of (G, T ) is locally
on S equal to an element of R.

Proof. This follows from (⋆) above. □

The next step is: given a root α, construct a closed smooth subgroup Uα of G which is
normalized by T , with Lie algebra gα. The first reduction is the following.

Definition 36.5. The connected component Tα of Ker(α) is a codimension 1 subtorus of T .
We know that its centraliser in G is represented by a closed smooth subgroup Gα of G. By the
classical theory, its geometric fibers are reductive groups (of semi-simple rank one), hence Gα is
a reductive group scheme over S.2 Further one has

g = t⊕ gα ⊕ g−α

and gα and g−α are line bundles over S.

Now, the goal is to prove the following theorem, which is [SGA33], Exp. XX, Th. 1.5 and
Cor. 5.9 or, alternatively, [Co14], Th. 4.1.4. Recall that the adjoint action of T on gα is given
on arbitrary S ′-points t ∈ T (S ′) and v ∈ gα ⊗O(S) O(S ′) by t · v = α(t)v. On the other hand, T
acts on G by inner automorphisms.

Theorem 36.6. (1) There exists a unique closed smooth subgroup Uα of G normalized by T
and such that Lie(U) = gα; further, one has Uα ⊂ Gα.

(2) There exists a unique T -equivariant homomorphism of S-groups expα : gα → G whose
differential at the identity is the canonical inclusion gα ↪→ g. It gives a T -equivariant group
isomorphism gα

∼−→ Uα.

(3) The same is true for −α, and the multiplication map of G induces an isomorphism

U−α × T × Uα
∼−→ Ω

where Ω is an open subscheme of Gα, called the big cell of Gα.

The proof will be given in the next sections. Firstly, replacing if necessary S by an open
subset, we may assume that α is a constant section of M . Let M∨ = HomZ(M,Z). Since α ̸= 0,
we can find an element λ ∈ M∨ such that α ◦ λ is an integer n > 0. Then λ is an element of
HomS-Gr(Gm,S, T ) (which is the group of locally constant functions S → M∨), hence through
λ : Gm,S → T we obtain an action of Gm,S on G.

37. The dynamical method of Conrad-Gabber-Prasad

The following lemma is [CGP], Lemma 2.1.4.

Lemma 37.1. Let V be an affine S-scheme with an action of Gm,S. Then:

(1) The subfunctor V + of V defined by: for any S ′ → S,

V +(S ′) =

{
v ∈ V (S ′)

∣∣∣∣ the morphism ρv : Gm,S′ → VS′, t 7→ t · v
extends to a morphism ρ̃v : A1

S′ → VS′

}
is represented by a closed subscheme of V . For v as above, ρ̃v(0) will be denoted by limt→0 t · v.

(2) The same is true for the subfunctor V − defined by the condition “ limt→0 t
−1 · v exists”,

and for the subfunctor of invariants V 0, which is V + ∩ V −.

(3) For any v ∈ V +(S ′), the point v0 = limt→0 t · v belongs to V 0(S ′). Therefore, we have a
morphism of S-schemes ℓ0 : V

+ → V 0.

2And in fact Gα equals the centraliser of Ker(α).
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(4) The formation of V + commutes with base change. Further, if Z is a closed subscheme of
V stable by the action of Gm,S, then Z+ = Z ∩ V +.

Proof. We may assume that S = Spec(Λ) is affine. Then V = Spec(A) for a Λ-algebra A.
The Gm-action makes A into a graded algebra:

A =
⊕
n∈Z

An.

Denote by ∆A : A → A ⊗Λ Λ[T, T−1] the morphism of algebras corresponding to the action of
Gm,S on V . For any S ′ = Spec(R), where R is a Λ-algebra, any point v ∈ V (S ′) corresponds to
a morphism of Λ-algebras A → R, denoted by f 7→ f(v), and the morphism ρv corresponds to
the morphism of Λ-algebras φv = (v ⊗ id) ◦∆A : A → R⊗Λ Λ[T, T−1], that is,

f 7→
∑
n∈Z

fn(v)⊗ T n, if ∆A(f) =
∑
n∈Z

fn ⊗ T n.

Thus, the condition that ρv extends to A1, i.e. that φv factors through R⊗Λ Λ[T ], is equivalent
to fn(v) = 0 for all fn with n < 0 occuring in an expression as above. But for any f = fn ∈ An,
one has ∆A(fn) = fn ⊗ T n. It follows that V + is the closed subscheme of V defined by the ideal
of A generated by

⊕
n<0An.

The proof for V − is similar. Further, denoting by V 0 the subfunctor of fixed points, one
sees that v ∈ V (S ′) belongs to V 0(S ′) if and only if fn(v) = 0 for all n ̸= 0 and fn ∈ An. In
particular, one has V 0 = V + ∩ V −.

Further, for v ∈ V +(S ′) and with notation as above, the point v0 = limt→0 t · v sends any
f ∈ A to f(v0) = f0(v); in other words, for n ∈ Z and f ∈ An, one has

f(v0) =

{
f(v) if n = 0,

0 otherwise.

Thus φv0(f) = f0(v)⊗ 1, and this shows that v0 ∈ V 0(S ′).

Finally, assertion (4) is not difficult and is left to the reader. □

Definition 37.2. More generally, if T is a torus over S acting on a S-scheme V and if
λ : Gm,S → T is a morphism of S-group schemes (one then says that λ is a 1-psg of T ), one
denotes by V +(λ) the corresponding closed subscheme of V .

The following proposition is contained in [CGP], Lemma 2.1.5 and Prop. 2.1.8.

Proposition 37.3. Let G be an affine S-group scheme, λ : Gm,S → G a 1-psg; consider the
resulting action of Gm,S on G via inner automorphims, set P (λ) = G+(λ) and let Z(λ) be the
centraliser of λ. Then:

(1) P (λ) and Z(λ) are closed subgroup schemes. Further, the S-morphism ℓ0 : P (λ) → Z(λ)
is a group morphism, which is the identity on Z(λ).

(2) Let U(λ) = Ker(ℓ0). Then U(λ) is a closed subgroup of G, and P (λ) is the semi-direct
product Z(λ)⋊ U(λ).

(3) The formation of P (λ), Z(λ) and U(λ) commutes with base change.
(4) If G is of finite presentation over S, so are P (λ), Z(λ) and U(λ).
(5) If G is of finite type over S, the fibers of U(λ) are unipotent groups.
(6) Set g = Lie(G). Then, with obvious notation, one has LieP (λ) = g+(λ) =

⊕
n≥0 gn

and Lie Z(λ) = g0.

Proof. Again, we may assume that S = Spec(Λ) is affine.
(1) is easy since Gm,S acts by group automorphisms. As for (2), recall that, being a fiber-

product, the kernel is always a subscheme, which is closed if G → S is separated, which is the
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case here since G → S is affine. Then the last assertion of (2) follows from the second sentence
of (1).

(3) is left to the reader. As for (4), if G → S is of finite presentation, then G and λ can be
descended to a noetherian subring Λ1 of Λ, then the closed subschemes P (λ)1, etc. are of finite
presentation over S1 = Spec(λ1), hence by base change so are P (λ), etc. over S.

For (5), we may assume that S = Spec(k) for a field k. Since G is affine of finite type, there
is a closed immersion τ : G ↪→ H = GLn,k for some n. Then U(λ) = G ∩ UH(τ ◦ λ) and one can
check by a direct calculation that UH(µ) is unipotent for any 1-psg µ : Gm,k → H = GLn,k, see
[CGP], Example 2.1.1.

Finally, (6) follows from the functorial description of G+(λ) and G0(λ) by considering points
with values in Spec(Λ[ε]), see the proof of [CGP], Prop. 2.1.8 (1). □

Remark 37.4. In [CGP], Prop. 2.1.8 it is proved under the hypotheses of the previous proposition that the
multiplication map U(−λ) × Z(λ) × U(λ) → G is an open immersion if S is the spectrum of a field or if G is
smooth over S. As the proof in this generality is not easy, we will content ourselves below with the result easily
obtained for reductive groups by looking at the fibers.

38. Proof of theorem 36.6: the isomorphism expα : gα → Uα


