
LECTURE 13

Existence étale-locally of maximal tori in reductive groups

33. Proposition 6.1 of Exp. XIX in the strictly henselian local case

Definition 33.1. Let A be a local ring. One says that A is strictly henselian if it is
henselian (see Def. 23.1 in Lect. 10) and, further, its residue field is separably closed.

The goal of this lecture is to prove the following theorem, which is part of [SGA33], Exp. XIX,
Prop. 6.1.

Theorem 33.2. Let A be a strictly henselian noetherian local ring, S = SpecA, s0 its closed
point, and G a smooth, affine S-group scheme with connected fibers. Let us make the following
assumption: 1

Each maximal torus of the geometric fiber Gs0 equals its own centraliser.

Then there exists a split maximal torus T in G.

Proof. Let m be the maximal ideal of A and k the residue field. Since k is infinite, we know
that Gs0 has a maximal torus T0, say of dimension d. Further, since k is separably closed, T0 is
a split torus Gd

m,k, see Prop. 12.6 in Lect. 5. Hence we have a closed immersion f0 : Gd
m,k ↪→ G0.

In order to use the results of formal smoothness proved in Section 17 of Lect. 7, we first
replace Gm,k by a finite MT-group. Let m be an integer > 1 invertible on S0 hence on S. For
each h ∈ N∗, the centraliser CentG(mhT0) is represented by a closed subgroup scheme of G0. As
the family of subgroups mhT0 is schematically dense in T0 and as G0 is noetherian, there exists
h ∈ N∗ such that

CentG0
(mhT0) = CentG0

(T0) = T0.

Set n = mh and E0 = nT0 = µd
n,k. Then f0 induces a closed immersion u0 : E0 → G0 such that

CentG0
(E0) = T0. Set E = µd

n,S and consider the S-functor

P = HomS-Gr(E,G).

Denote by nG the closed subscheme ofG which is the “kernel” of the n-th power map πn : G → G,
that is, nG is the fiber-product of πn and the unit section S → G. Since n is invertible on S,
one has µn,S ≃ (Z/nZ)S and hence HomS-Gr(µn,S, G) is represented by nG. It follows that P is
represented by a closed subscheme of (nG)d, the fiber-product over S of d copies2 of nG; namely,
it is the closed subscheme of d-tuples (g1, . . . , gd) which pairwise commute. Therefore, since S
is noetherian, P is of finite type over S.

On the other hand, P → S is formally smooth by Th. 17.1 in Lect. 7, hence P is a smooth
S-scheme. Therefore, by Hensel’s lemma, the section u0 ∈ P (k) lifts to a section u ∈ P (S), that
is, a morphism of S-group schemes u : E → G. By Cor. 21.2 of Lect. 9, we know that Ker(u) is
a MT-group over S and that u is a closed immersion if Ker(u) is the unit group. But the type
of Ker(u) over the closed point s0 is the abelian group {0}, and S is connected since A is local.
Since the type of the fibers is a locally constant function, it follows that u is a closed immersion.

0Version of Jan. 23, 2024, after the lecture.
1Note that if G is a reductive group scheme over S, this assumption is satisfied for every point s of S.
2Unfortunately, the exponent d is missing in [SGA33], Exp. XIX (and also in the original edition).
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78 13. EXISTENCE ÉTALE-LOCALLY OF MAXIMAL TORI IN REDUCTIVE GROUPS

Next, CentG(E) is represented by a smooth closed subgroup H of G, and its closed fiber
is CentG0

(E0) = T0. Since S is local henselian, it follows from the remarkable Theorem 4.4 of
[SGA32], Exp. X, whose proof we will give in the next section, that H contains an open and
closed MT-subgroup T , whose closed fiber is T0. As S is connected, the same reasoning as above
gives that T is a d-dimensional torus, necessarily split since A is strictly henselian. It remains
to prove that T is a maximal torus of G.

Again, we know that CentG(T ) is represented by a smooth closed subgroup C of G. By the
classical result of Prop. 29.6 (1), we know that the fibers of C are connected, since those of G
are. Then T is a closed subgroup of C and they have the same closed fiber. By Nakayama’s
lemma, it follows that T = C. This equality ensures that each geometric fiber Ts is a maximal
torus of Gs, hence T is a maximal torus of G. □

34. Theorem 4.4 of Exp. X in the henselian local case

Recall that, using the results about infinitesimal liftings of MT-groups, we proved in Lect. 10,
Th. 22.2 the following result:

Theorem 34.1. Let A be a noetherian ring, with an ideal I such that A is separated and
complete for the I-adic topology. Set S = Spec(A) and S0 = Spec(A/I) Let G be an affine
S-group scheme such that:

(i) G → S is of finite type and G is flat over S at each point of G0,
(ii) G0 is an isotrivial MT-group over S0.

Then there exists an open and closed subgroup H of G, which is an isotrivial MT-group over
S, such that H0 = G0.

We are going to build on this result. We start with the following lemma.

Lemma 34.2. Let k be a field, G a commutative algebraic group over k. Assume that G has
an open subgroup H of multiplicative type such that nH = nG for all n > 0. Then H = G.

Proof. We may assume that k is algebraically closed. Then H = Dk(M) for some finitely
generated abelian groupM . Let Q be the quotient ofM by its torsion subgroup, then T = Dk(Q)
is the largest torus contained in H and H/T is finite, as well as G/T . Hence there exists an
integer d > 0 such that G/T = d(G/T ) and there exist a finite number of elements gi ∈ G(k) such
that G is the disjoint union of the translates giH. One has gdi ∈ T (k) and since k is algebraically
closed, the d-th power map of T (k) is surjective, there exist ti ∈ T (k) such that tdi = gdi . Hence,
replacing each gi by git

−1
i , we may assume that gdi = 1. Thus, gi ∈ dG(k) = dH(k) and it follows

that G = H. □

Now, let us derive from Th. 34.1 the following result, which is interesting in its own right.

Theorem 34.3. Let A be a noetherian ring, with an ideal I such that A is separated and
complete for the I-adic topology. Set S = Spec(A) and S0 = Spec(A/I). Let G be an affine
S-group such that:

(i) G → S is of finite type and G is flat over S,3

(ii) G0 is an isotrivial MT-group over S0.

Then G is an isotrivial MT-group over S if one of the following conditions is satisfied:

(a) G has connected fibers.
(b) G is abelian and the torsion subgroups nG are finite over S, for n > 0.
(c) The fibers of G are MT-groups, of constant type on each connected component of S.

3Suffices to assume this at the points of G0?
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Proof. Let H be the open and closed subgroup given by the previous theorem. If the fibers
of G are connected, then H = G and we are done. Now, denote by u the open immersion
H ↪→ G.

Assume condition (b). Then u induces for each n > 0 an open immersion nu : nH ↪→ nG

which induces an isomorphism (nH)0
∼−→ (nG)0. Then the complement of its image is finite over

S, hence its projection to S is a closed subset of S which does not meet S0, hence is empty (see
Lemma 22.1 in Lect. 10). Therefore, nu is an isomorphism, and it follows from Lemma 34.2 that
the open immersion u is an isomorphism on each fiber, hence an isomorphism. This proves (b).

Assume condition (c). As S is noetherian and complete for the I-adic topology, the connected
components of S are open and are in bijection with those of S0. So, we may assume that S
and S0 are connected (which is the case when A is local with maximal ideal I). Then for each
geometric point s, the fibers of Hs and Gs have isomorphic types N and M respectively (since
it is so on S0), and the closed immersion us : Hs → Gs corresponds to a surjective morphism
π : M → N . Since M,N are isomorphic abelian groups of finite type, π must be an isomorphism,
hence so is each us. As in (b), it follows that u is an isomorphism. □

Before we can state the main proposition and theorem, we need the following result about
local henselian schemes.

Proposition 34.4. Let S be a local henselian scheme, s its closed point, X a S-scheme
locally of finite type, x an isolated point in the fiber Xs.

(i) Then OX,x is finite over OS,s.
(ii) Further, if X → S is separated, then X ′ = Spec(OX,x) is an open and closed subscheme

of X.

Proof. By the local form of Zariski’s main theorem (see e.g. [Ray70], Ch. IV, Th. 1), x has
an affine open neighbourhood U = Spec(B) which is of finite type and quai-finite over A = OS,s,
and there exists an open immersion U ↪→ Y = Spec(C), where C is a finite A-algebra.

Since A is henselian, Y is the disjoint sum of a finite number of local schemes Yi = Spec(Ci),
each finite over S, and the points of Y over s are the closed points yi. Hence x = yi for some i
and OX,x = OU,x = Ci is finite over A. Further, X

′ = Yi is an open subscheme of U hence of X.

Assume further that X → S is separated. Then, by [EGA] II, 6.1.5 (v), since X ′ → S is
finite, so is X ′ → X, hence X ′ is also a closed subscheme of X. □

Now we can state and prove the following proposition, which generalizes Prop. 23.12 of
Lect. 10.

Proposition 34.5. Let A be a noetherian local henselian ring, A′ its completion, S and S ′

their spectra, s the closed point of S, and H,G two S-group schemes such that:

• H is a MT-group of finite type over S,
• G → S is separated and locally of finite type, Gs is a MT-group over κ(s) and G is flat
over S at the points of Gs.

Let H ′, G′ be the pull-backs of H,G to S ′. Then the natural map below is bijective:

HomS-Gr(H,G)
∼−→ HomS′-Gr(H

′, G′).

Proof. Since A → A′ is faithfully flat, we know already that this map is a bijection from
the LHS to the subset of S ′-group morphisms u′ : H ′ → G′ whose two pull-backs u′′

1 and u′′
2 to

S ′′ = S ′ ×S S ′ coincide. So let u′ ∈ HomS′-Gr(H
′, G′), let us prove that u′′

1 = u′′
2.

By the density theorem of Lect. 9 (Th. 20.2) it suffices, as in the proof of Prop. 23.12 of
Lect. 10, to prove that u′′

1 and u′′
2 coincide on the torsion subgroup nH

′′, for each n > 0. So,
let us fix n > 0 and replace H by its subgroup nH, which is finite over S (if M is the finitely
generated abelian group corresponding to H, then nH corresponds to the finite abelian group
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M/nM). Let ϕn denote the n-th power map of G (which need not be a group homomorphism)
and denote by nG its “kernel”, i.e. the fiber-product of ϕn and the unit section of G. Note that
for any base change T → S, one has n(GT ) = (nG)T .

Let m and k denote the maximal ideal and residue field of A; for each m ∈ N denote by a
subscript m on the right the reduction modulo mm+1. Then each Gm is flat over Sm (since G
is flat over S at the points of G0) and since G0 is a finite type MT-group over S0 = Spec(k),
necessarily isotrivial (see Lect. 5, Prop. 12.6), it follows from Th. 18.3 of Lect. 8 that:

(∗) Gm is a finite type MT-group over Sm.

(∗∗) Hence (nG)m = n(Gm) is a MT-group, finite and flat over Sm.

This is true, in particular, for m = 0. Let us assume for the moment the following claim:

Claim 34.6. (1) There exists an open and closed subscheme Z of nG, which is finite over S
and such that every morphism of S-schemes Y → nG, with Y finite over S, factors through Z.

(2) The subscheme Z ′ = Z ×S S ′ of nG
′ has the analogous universal property.

(3) Z ′ is an isotrivial MT-group over S ′, and Z an isotrivial MT-group over S.

Taking this claim for granted for the moment, let us complete the proof of Prop. 34.5. Recall
that H = nH is finite over S and let u′ : H ′ → G′ be a morphism of S ′-groups. It factors
obviously through nG

′ and hence, by assertion (2) of the Claim, through Z ′. As H and Z are
MT-groups finite over S, it follows from Prop. 23.11 of Lect. 10 that u′ : H ′ → Z ′ comes from
a morphism of S-groups u : H → Z, and therefore the two pull-backs u′′

1, u
′′
2 coincide. This

completes the proof of Prop. 34.5, up to the proof of the previous claim.

Let us now prove the claim. Since nG is, like G, separated and locally of finite type over
S and since (nG)0 is finite over S0, it follows from Lemma 34.4 that the local rings of nG at
the points over s are finite over S and that one has a decomposition into two open and closed
subschemes:

(⋆) nG = Z
∐

(nG)∗

where Z is finite over S and (nG)∗ lies above S − {s}. Further, every morphism of S-schemes
Y → nG, with Y finite over S, factors through Z, and one sees that the pull-back of (⋆) to S ′ is
the analogous decomposition of nG

′. This proves assertions (1) and (2).

Let us prove that Z ′ is a commutative subgroup scheme of G′. As Z ′ is finite over S ′, so is
P ′ = Z ′ ×S′ Z ′. Denote by µ the restriction to P ′ of the multiplication map of H ′. Note that it
is not clear that µ factors through nG

′, so we cannot invoke the claim to assert that µ(P ′) ⊂ Z ′.
Instead, we use the following argument.

By [EGA], II 5.4.3 and IV1 1.1.3, since P ′ → S ′ is finite and H ′ → S ′ separated and locally
of finite type, Y = µ(P ′) is a closed subscheme of H ′, which is proper over S ′ (it is universally
closed and quasi-compact, hence of finite type). Further, Y → S ′ has finite fibers (since this is
true for P ′ → S ′) and hence, since S ′ is noetherian, it follows from [EGA] III, 4.4.2 that Y → S ′

is finite. Hence Y = Spec(B) for some finite A′-algebra B.
As Z ′ contains the unit section, one has Z ′ ⊂ Y . Over each Sm, we saw in (∗∗) above that

(nG)m = n(Gm) is a MT-group, finite over Sm, hence Z ′
m = (nG)m = Ym. Thus, if I is the ideal

of B defining Z ′, one has I ⊂ mnB for all n. Since B is finite over A′, it is separated for the
m-adic topology, hence I = 0 and Z ′ = Y . Therefore Z ′ is a subgroup scheme of H ′. Let us
prove that it is commutative.

Let τ be the automorphism of P ′ which swaps the two factors. The equalizer K of µ and
µ ◦ τ is a closed subscheme of P ′, hence is finite over S ′, and for each m one has Km = P ′

m since
Z ′

m = n(Gm) is commutative. By the same reasoning as above, it follows that K = P ′, hence Z ′

is a commutative S ′-group scheme.
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Moreover, as each Z ′
m = n(Gm) is flat over Sm, it follows from the local criterion of flatness

(see [EGA], 0III, 10.2.2 or [Mat86]) that Z ′ is flat over S ′. Further, Z ′
0 = n(G0) is a MT-group

over S0 = Spec(k), necessarily isotrivial.

Hence, assertion (b) of Th. 34.3 tells us that Z ′ is an isotrivial MT-group over S ′. This
proves the first assertion of (3). Finally, as S ′ → S is faithfully flat (and affine), it follows that
the multiplication map Z ×S Z → G factors through Z, hence Z is a S-group scheme, and of
multiplicative type since Z ′ is. This completes the proof of Claim 34.6 and of Prop. 34.5. □

We then obtain the following theorem.

Theorem 34.7. Let S be the spectrum of a noetherian local henselian ring A, and s its closed
point. Let G be an affine S-group scheme of finite type, flat over S at the points of Hs and such
that Hs is a MT-group.

Then there exists an open and closed immersion H → G, where H is an isotrivial MT-group
over S such that Hs = Gs.

Remark 34.8. If Gs is a torus, then so isH, and H is the connected component of G. Therefore G normalizes
T . One such example over S = Spec(k[[t]]), with k a field, is given in [SGA33], Exp. XIX, §5.

Proof. The proof is analogous to that of Cor. 23.10 of Lect. 10, once that we have Prop. 34.5
at our disposal. Namely, let A′ be the completion of A. Set S ′ = Spec(A′) and G′ = GS′ . Recall
(Lect. 5, Prop. 12.6) that Gs is isotrivial over Specκ(s). Hence, by Th. 34.1, there exists an
open and closed immersion u′ : H ′ → G′, where H ′ is an isotrivial MT-group over S ′ such that
H ′

s = G′
s. Recall that, by Lemma 23.10 of Lect. 10, the categories of isotrivial MT-groups over

S, S0 = {s} and S ′ are equivalent; thus H ′ comes from an isotrivial MT-group H over S.
Then, by Prop. 34.5, u′ comes from a homomorphism of S-groups u : H → G, and u is an

open and closed immersion inducing an isomorphism Hs
∼−→ Gs because this is so after the

faithfully flat affine base change S ′ → S. □

35. Existence étale-locally of maximal tori in reductive groups

Using Grothendieck’s technique of reducing the general case to the case of a noetherian
local henselian base (see [EGA] IV3, §8, with additional results for group schemes in [SGA31],
Exp. VIB, §10), which we sketched in Section 24 of Lect. 10, one obtains the following:

Theorem 35.1. Let S be a scheme, G a reductive S-group scheme and s ∈ S. There exists
an étale neighbourhood U of s such that GU possesses a split maximal torus T .

Notes for this Lecture

Theorems 33.2 and 35.1 are contained in Exp. XIX, Prop. 6.1; we have arranged the proof slightly differently,
using Exp. XIV, Th. 1.1 (Th. 30.2 in Lect. 12) in order not to rely on the results of Exp. XI (representability
of the functor of maximal tori by a smooth S-scheme), and at the end of the proof of Th. 33.2 we derived the
existence of T directly from Th. 4.4, instead of the more elaborate Th. 8.1 of Exp. X.

Lemma 34.2 is contained in Exp. X, Lemma 3.6, whereas Cor. 34.3 is Exp. X, Cor. 3.8.

Prop. 34.4 is X, Prop. 4.3.0, which is an addition in the new edition of [SGA32].

Prop. 34.5 is X, Lemma 4.3, whereas Th. 34.7 is contained in X, Th. 4.4. The detailed proof of X, Lemma
4.3, as it appears in the new edition of [SGA32], was communicated to the author by M. Raynaud.


