
LECTURE 12

Reductive center. Cartan subalgebras. Maximal tori over a field

28. Goals about maximal tori.

Let us recall three definitions from Lect. 6.

Definition 28.1. Let G be a connected affine smooth group scheme over an algebraically
closed field k. One knows that all maximal tori T of G are conjugate under G(k); in particular
they have the same dimension, which is called the reductive rank of G and denoted by rkred(G).
Of course, if H is a smooth closed subgroup of G, then rkred(H) ≤ rkred(G). If equality holds,
then a maximal torus of H is the same thing as a maximal torus of G contained in H.

One also knows that there exists a largest normal smooth connected solvable (resp. unipotent)
subgroup of G, it is called the radical (resp. unipotent radical) of G and is denoted by rad(G)
(resp. radu(G)).

One says that G is reductive (resp. semi-simple) if radu(G) = {e} (resp. rad(G) = {e}). If
K is a larger algebraically closed field, GK is reductive (resp. semi-simple) if and only if G is.

Definition 28.2. Let S be a base scheme. One says that a S-group scheme G is reductive
(resp. semi-simple) if:

(1) G is affine and smooth, with connected fibers.

(2) Its geometric fibers are reductive (resp. semi-simple), that is, for every s ∈ S, denoting
by s the spectrum of an algebraic closure κ(s) of the residue field κ(s), the κ(s)-group
Gs is reductive (resp. semi-simple).

Definition 28.3. Let G be a smooth affine S-group scheme. A maximal torus of G is a
closed subgroup scheme T such that:

(1) T is a torus (in the sense of Def. 1.3).
(2) For every geometric point s of S, the subgroup Ts is a maximal torus of Gs

Remark 28.4. Note that a maximal torus need not always exist. For example, if S is the
spectrum of a discrete valuation ring R, with fraction field K and uniformizing parameter π, let
G be the group functor such that for every S-scheme U ,

G(U) = {(x, t) ∈ Ga(U)×Gm(U) | t = 1 + πx},
with group law (x1, t1)(x2, t2) = (x1 + x2 + πx1x2, t1t2). Then G is represented by the sub-Hopf
algebra A = R[X,T−1] of K[T, T−1], where X = (T − 1)/pi. The generic fiber of G is Gm,K

whereas is special fiber is Ga,k, where k is the residue field of A. Then the unique torus contained
in G is the unit group T , which is not a maximal torus because in the generic fiber TK = {e} is
not a maximal torus of Gm,K .

Remark 28.5. In [SGA32], XII, Th. 1.7, Grothendieck proves, using that the functor of maximal tori is
represented by a smooth S-scheme, that the following conditions are equivalent:

(1) There exist étale-locally a maximal torus in G.
(2) The function s 7→ rkred(Gs) is locally constant on S.

0version of Jan. 16, 2024. I thank Rajarshi Gosh for pushing me to include in this lecture statement (b) of
Th. 31.2 and for pointing out 2 typos in a previous version.
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Firstly, the goal of the present lecture is to prove the following theorem, which is proved in
[SGA32], XIV, Th. 1.1 for an arbitrary field. For the sake of simplicity, we restrict to the case
of an infinite field.

Theorem 28.6. Let G be a smooth affine group scheme over an infinite field k. Then there
exists a maximal torus in G.

Secondly, the goal for the next 2 or 3 lectures will be to prove, following [SGA33], Exp. XIX,
that if G is reductive over S, then maximal tori exist étale-locally: for each s ∈ S, there exist an
open neighborhood U of s and a surjective étale map V → U such that GV possesses a maximal
torus. Time permitting, we will present the results of [SGA32], XIV, proving that maximal tori
exist even Zariski-locally.

To achieve these goals, several concepts and results, some over a general base and some over
an algebraically closed field, will be needed.

29. Reductive center

Let S be a base scheme and G a smooth affine S-group.

Definition 29.1 (Reductive center). Let Z be a closed subgroup scheme of G. One says
that Z is a reductive center of G if:

(1) Z is central and of multiplicative type.
(2) For every base change S ′ → S and every central homomorphism u : H → GS′ , where

H is a MT-group over S ′ of finite type, u factors through ZS′ .

Note that in this case ZS′ is a reductive center of GS′ for every base change S ′ → S.

Remark 29.2. The group G considered in Rem. 28.4 does not have a reductive center.

Before proving a theorem about reductive centers, we need the following proposition and nota-
tion.

Proposition 29.3. Let H be a commutative affine group scheme over S. Suppose that there
exist MT-groups K,Q over S such that K is a closed subgroup of H and the quotient H/K is
isomorphic with Q. Then H is a MT-group over S.

Proof. See [SGA32], XVII, Prop. 7.1.1, or [DG70], §IV, §1.4, Prop. 4.5 when S is the
spectrum of a field. □

Notation 29.4. Let T be a closed MT-subgroup of G. By Prop. 27.6 of Lect. 11, the cen-
traliser CentG(T ) is represented by a smooth closed subgroup scheme of G, denoted by C(T ).
Further, we recall that Lie(C(T )) = Lie(G)T (the T -invariants in Lie(G).

Theorem 29.5. Let G be a smooth affine S-group scheme.

(a) If G has a reductive center locally for the fpqc topology, it has a reductive center.

(b) A subgroup scheme Z of G is a reductive center if and only if it is so locally for the
fpqc topology.

(c) Suppose that G has a reductive center Z. Then the quotient group scheme G/Z exists
and has trivial reductive center.

(d) Suppose that G has connected fibers and admits a maximal torus T .

(1) Let H be a MT-group of finite type over S. Then any central homomorphism u :
H → G factors through T .

(2) Let g = Lie(G) and let θ : T → GL(g) be the restriction to T of the the adjoint
representation of G. Then Ker(θ) is a reductive center of G.
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(e) Suppose that S is the spectrum of a field k. Then G admits a reductive center Z. Further,
the maximal tori of G are in bijection with those of G′ = G/Z.

Proof. Let us prove (a). Let S ′ → S be a covering morphism for the fpqc topology such
that G′ = GS′ admits a reductive center Z ′. Let S ′′ = S ′ ×S S

′ for i = 1, 2 let G′′
i and Z ′′

i denote
the pull-backs over S ′′ by the projection pri. Then Z ′′

i is the reductive center of G′′
i hence the

descent datum c : G′′
1

∼−→ G′′
2 relative to S ′/S induces a descent datum c : Z ′′

1
∼−→ Z ′′

2 . Since
Z ′ is affine over S ′ (being a MT-group over S ′), this descent datum is effective, i.e. Z ′ comes by
base change from a closed subgroup scheme Z of G, of multiplicative type. Let us prove that Z
is indeed a reductive center of G.

Let T → S and let u : H → GT be a central homomorphism, where H is a MT-group over
T of finite type. Set T ′ = T ×S S

′. By hypothesis, the pulback u′ : HT ′ → GT ′ factors through
Z ′ ×S′ T = ZT × T ′, hence it belongs to the equaliser of the double arrow

HomT ′-Gr(HT ′ , ZT ′) //
// HomT ′′-Gr(HT ′′ , ZT ′′).

Since S ′ → S is a universal effective epimorphism, this equaliser is HomT -Gr(HT , ZT ). This
proves that Z is a reductive center for G. This proof also gives assertion (b).

Let us prove (c). By Cor. 21.2 of Lect. 9, the quotient G/Z is represented by an affine S-group
scheme G′. Further, by [SGA31], VIB, Prop. 9.2 (xii), G′ is smooth over S, and its fibers are
connected since those of G are.

Let Z ′ be a central MT-subgroup of G′; we want to prove that Z ′ is the trivial group. It
suffices to prove this fiberwise, so we may and do assume that S is the spectrum of an algebraically
closed field k. Let Z1 = π−1(Z ′), where π is the projection G→ G′; let us prove that Z1 is central
in G. Consider the action of Z1 on G by inner automorphisms; since Z is central this action
factors through G′. Further, the action is trivial on Z (which is central) and the induced action
on G′ = G/Z is trivial, since Z ′ is central in G′. Hence, for points z′ ∈ Z ′(U) and g ∈ G(U),
where U is an arbitrary S-scheme, we may write:

z′ · g = z′gz′−1 = g · b(z′, π(g)),
with b(z′, π(g)) ∈ Z(U). As Z is central in G, it follows that the S-scheme morphism b :
Z ′ ×S G

′ → Z is bimultiplicative:

b(z′, g′1g
′
2) = b(z′, g′1)b(z

′, g′2) and b(z′1z
′
2, g

′) = b(z′1, g)b(z
′
2, g

′).

Thus, it corresponds to a morphism of S-group functors u : G′ → HomS-Gr(Z
′, Z). But the RHS,

call it E, is represented by an étale S-group scheme: if U is an open subset of S over which the
MT-groups Z and Z ′ have type M and M ′, for some abelian groups M,M ′, then E|U RHS is a
twisted constant group of type Homgrp(M,M ′), see Prop. 7.5 in Lect. 3.

Since E is étale, its unit section is an open immersion, hence Ker(u) is an open subgroup
of G’. Since G′ is connected it follows that u is trivial, hence b is the constant morphism with
value the unit element e. This proves that the action of Z1 on G is trivial, i.e. Z1 is central in
G.

Thus, one has an exact sequence 1 // Z // Z1
// Z ′ // 1, with Z1 commutative.

Hence, using Prop. 29.3, we obtain that Z1 is a MT-group, central in G. It is therefore contained
in (and in fact equal to) Z and hence Z ′ is the unit group. This completes the proof of (c).

Let us prove (d) (1). By Cor. 27.6 of Lect. 11, the centraliser CentG(T ) is represented by a
closed subscheme C of G, which is affine and smooth over S. As T is central in C it is a fortiori
invariant, and by Cor. 21.2 the quotient C/T is representable by an affine group scheme U . As
u is central, it factors through C; thus, denoting by π the projection C → U , we have to prove
that the homomorphism v = π ◦ u is trivial. By Cor. 21.2 of Lect. 9, we know that K = Ker(v)
is a MT-group over S and to prove that K = H it suffices to prove that they have the same
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type on each geometric fiber, hence we are reduced to the case where S is the spectrum of an
algebraically closed field. In this case, U is a smooth connected unipotent group and one knows
that every homomorphism H → U is trivial. This proves (d) (1).

Let us prove (d) (2). Set Z = Ker(θ); it is a MT-subgroup of T , by Prop. 7.10 of Lect. 3. If
H is a MT-group over S and u : H → G a central homomorphism, then u factors through the
kernel of the adjoint representation (since it is central) and through T by assertion (1), hence u
factors through Z. This property is preserved by any base change S ′ → S, since ZS′ = Ker(θS′).
Thus, it remains to prove that Z is central in G, i.e. that C = CentG(Z) equals G.

By Cor. 27.6 of Lect. 11, we know that C is a smooth closed subgroup of G and Lie(C) = gZ

equals g since Z acts trivially on g. Then on each fiber the closed immersion C ↪→ G is étale at
the origin, hence étale, hence is an open immersion (see [SGA1], Exp. I, Th. 5.1), hence is an
isomorphism since the fibers of G are connected. Therefore, by the fibral criterion of isomorphism
(see [EGA], IV4, Cor. 17.9.5 or Lemma 22.3 in Lect. 10), one has C = G. This completes the
proof of (d) (2).

Let us prove (e). We know that Cent(G) is represented by a closed subgroup scheme of G
(not necessarily smooth, even if G is). Thus, replacing G by its center, we may assume that G
is commutative. Then, one knows that there exists a largest MT-subgroup scheme Z of G, the
quotient U = G/Z is unipotent, and ZK is the largest MT-subgroup scheme of GK for every field
extension K/k (and UK = GK/ZK is unipotent), see [SGA33], Exp. XVII, Th. 7.2.1 or [DG70],
§IV.3, Th. 1.1 and Prop. 1.3 a).

Let us prove that Z is a reductive center of G. Let S be a k-scheme and u : H → GS a
morphism of S-groups, where H is a MT-group over S, say of type M . Composing with the
morphism GS → US, whose kernel is ZS, we want to prove that the morphism v : H → US is
the trivial morphism. As Ker(v) is a MT-group over S, it suffices to prove that its type at each
geometric point s of S isM . But as Hs is of multiplicative type and Us unipotent, the morphism
vs is trivial. This proves that Z is a reductive center of G, whence the first assertion of (d).

Finally, denote by π the projection G → G′ = G/Z and let k be an algebraic closure of k.
Suppose first that T is a maximal torus of G, then Tk is a maximal torus of Gk and one knows
that π(Tk) is a maximal torus of G′

k
, see e.g. [Che04], §7.3, Th. 3 (a). Since π(Tk) = π(T )k, this

proves that π(T ) is a maximal torus of G′.
Conversely, suppose that T ′ is a maximal torus of G′ and let T = π−1(T ′). Let T0 be a

maximal torus of Gk, then π(T0) is a maximal torus of G′
k
, by loc. cit. Since all maximal tori of

G′
k
are conjugate under G′(k) = π(G(k)), there exists g ∈ G(k) such that π(gT0g

−1) = T ′
k
. Since

T0 contains Z, this implies that gT0g
−1 = π−1(T ′

k
) = Tk, and this proves that T is a maximal

torus of G. □

Before deriving a corollary of the previous theorem, let us recall the following known proposition,
see [Bo91], 11.5, 11.7, 11.12–13, or [Che04], §6.5, Cor. 2 and Cor. 4, and §6.7 Th. 6.7.

Proposition 29.6. Let K be an algebraically closed field and G a connected smooth affine
K-group.

(1) If S is a torus of G, the centraliser C(S) is connected.

(2) For a connected smooth affine K-group H, the following conditions are equivalent:

(a) H has a maximal torus T which is central.
(b) H has a unique maximal torus T .
(c) H is nilpotent.

In this case, H is the direct product of T and a unipotent group Hu and T is the largest K-
subgroup of H of multiplicative type.

(3) If T is a maximal torus of G, then C(T ) is connected and nilpotent.
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In the setting of (2) above note that, by the proof of the first part of assertion (e) in Th. 29.5,
T is then the reductive center of H.

Corollary 29.7. Let G be a smooth affine algebraic group over a field k. Let K be an alge-
braically closed field containing k and suppose that GK is nilpotent. Then G admits a maximal
torus T .

Proof. By hypothesis, G′ = GK has a unique maximal torus T ′ and T ′ is a reductive center
of G′. By assertion (a) of Th. 29.5, T ′ comes from a MT-subgroup T of G, and T is a maximal
torus of G. □

30. Cartan subalgebras over an infinite field

In this section, let k be an infinite field and K an algebraically closed field containing k. Let
g be a finite-dimensional Lie algebra over k.

Definition 30.1 (Cartan subalgebras). One says that a Lie subalgebra h of g is a Cartan
subalgebra if h is nilpotent and equals its own normaliser, that is, h = {x ∈ g | ad(x)(h) ⊂ h}.

Definition 30.2. (1) Let x ∈ g. Its nilspace, denoted Nil(x, g) is
⋃

i∈N Ker ad(x)i. One
says that x is regular if dimk Nil(x, g) is minimal.

(2) Let r be this minimal value, it is called the nilpotent rank of g and denoted by rknil(g).

(3) Let T be an indeterminate and d = dimk g. For each x ∈ g, one may write

det
(
T − ad(x)

)
= T d + c1(x)T

n−1 + · · ·+ cd(x)

for some polynomial functions c1, . . . , cd on g, and since k is infinite, these define actual poly-
nomials c1, . . . , cd ∈ S(g∗) and a polynomial Pg(T ) ∈ S(g∗)[T ]. Then r = rknil(g) is the largest
integer such that Pg(T ) is divisible by T r, i.e. such that the polynomials ci are identically 0 for
i > d− r. In particular, r = rknil(g) is invariant under any field extension k′/k. Further, the set
of regular elements is the dense open set Reg(g) defined by the non-vanishing of cn−r, and since
k is infinite, we know that regular elements do exist.

Proposition 30.3. Let x ∈ g. Set h = Nil(x, g).

(1) Then h is a Lie subalgebra of g and equals its own normalizer. Moreover, ad(x)g/h is
injective.

(2) Further, if x is a regular element, then h is nilpotent.

Proof. (1) Set D = ad(x). Then h is the set of elements y ∈ g such that Dn(y) = 0
for n large enough (and in fact, for n ≥ d = dimk g). Since D is a derivation of g, that is,
D([y, z]) = [D(y), z] + [y,D(z)] for all y, z ∈ g, the Leibniz formula tells us that, for every
n ∈ N∗, one has:

Dn([y, z]) =
n∑

i=0

(
n

i

)[
Di(y), Dn−i(z)

]
.

It follows that if y, z ∈ h then [y, z] ∈ h, that is, h is a Lie subalgebra of g.

Next, let y ∈ g such that [y, h] ⊂ h. Since x ∈ h, this gives D(y) ∈ h and hence there exists
n ∈ N such that Dn+1(y) = 0. Thus y ∈ h. This proves that h equals its own normalizer, and
also that ad(x)g/h is injective (since D(y) ∈ h implies that y ∈ h).

(2) By Engel’s theorem, it suffices to prove that ad(y)h is nilpotent, for every y ∈ h. Set

h′ = h′ ⊗k k and g′ = g ⊗k k. It suffices to prove that for every y ∈ h′ the adjoint action of y
on h′ is nilpotent. Since h′ = Nil(x, g′) and r = dimk Nil(x, g) = rknil(g) is invariant under the
extension k/k, we are reduced to the case where k = k.
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Since ad(x)g/h is injective, there exists a non-empty open, hence dense, subset U of h such
that ad(y)g/h is injective for y ∈ U(k). Therefore, for y ∈ U(k) one has Nil(y, g) ⊂ h. Then
V = U ∩ Reg(g) is a dense open subset of h and for every y ∈ V (k) the inclusion Nil(y, g) ⊂
h = Nil(x, g) is an equality, since both have dimension r. It follows that ad(y)h is nilpotent, for
every y ∈ V (k), thus the map h × h → h, (y, z) 7→ ad(y)r(z) is zero on V (k) × h (recall that
r = dimk h). Since V (k) is dense in h, this map is identically zero. Hence, by Engel’s theorem,
h is nilpotent. □

Definition 30.4 (G-Cartan subalgebras). We will say that a Lie subalgebra h of g is a
G-Cartan subalgebra if h = Nil(x, g) for a regular element x of g.

By the previous proposition, h is then a nilpotent subalgebra equal to its own normaliser,
hence is a Cartan subalgebra in the usual sense.

Remark 30.5. Note that if g itself is nilpotent, then Nil(x, g) = g for every x ∈ g, hence every x ∈ g is
regular and g is a G-Cartan subalgebra of itself.

For future use, let us prove here the following proposition.

Proposition 30.6. Let x be a regular element and h a Lie subalgebra of g containing x.

(1) Then h is nilpotent if and only if h ⊂ Nil(x, g).

(2) Nil(x, g) is the unique G-Cartan subalgebra of g containing x.

Proof. (1) By Prop. 30.3, we know that Nil(x, g) is nilpotent, hence the implication “if”
is obvious. Conversely, if h is nilpotent and x ∈ h, then ad(x) acts nilpotently on h and hence
h ⊂ Nil(x, g).

(2) Let h′ be another G-Cartan subalgebra of g containing x. Then h′ is nilpotent hence
h′ ⊂ Nil(x, g). But dimk h

′ = rknil(g) = dimk Nil(x, g), hence h′ = Nil(x, g). □

Now, a key result is the following theorem, whose proof we postpone to the next lecture.

Theorem 30.7. Let h = Nil(x, g), where x is a regular element of g. Then:
(1) There exists a unique smooth connected closed subgroup H of G such that Lie(H) = h.

(2) Further, HK contains a maximal torus of GK.

Remark 30.8. Suppose that G is reductive. One could expect that a G-Cartan subalgebra of g is the same
thing as the Lie algebra of a maximal torus of G. Alas, this is not true in general: if char(k) = 2 and G = SL2,
then g = Lie(G) is isomorphic to a Heisenberg algebra ([X,Y ] = H, with H central), hence nilpotent!

However, we will see in the next section that the expected result is true if G is replaced by its adjoint quotient
G′ = G/Z, where Z is the reductive center of G.

31. Existence of maximal tori over an infinite field

In this section, let k be an infinite field, G a connected smooth affine k-group and g = Lie(G).
Let K be an algebraically closed field containing k.

Proposition 31.1. Suppose that the reductive center of G is the trivial group. If g is
nilpotent, then the trivial group is a maximal torus of G.

Proof. Let T be a maximal torus of GK and t its Lie algebra. It suffices to prove that
T is the trivial group or, equivalently, that t = 0. Consider the adjoint action of T on g. By
assertion (d) (2) of Th. 29.5, the kernel of T → GL(g) is the reductive center of GK , which is
the trivial group by assumption. Hence T → GL(g) is a closed immersion and hence the Lie
algebra map ad : t → End(g) is injective. On the other hand, the adjoint action of T on g is
semi-simple. Thus, for each x ∈ t, ad(x) is semi-simple, and also nilpotent, as gK is nilpotent,
hence ad(x) = 0. It follows that t = 0. □
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Theorem 31.2. Let k be an infinite field and G a connected smooth affine k-group.
(a) G has a maximal torus T .
(b) If G is semi-simple of adjoint type, then a G-Cartan subalgebra of g is the same thing as

the Lie algebra of a maximal torus of G.

Proof. (a) We proceed by induction on n = dim(G). If n = 0, then G is the trivial group
and there is nothing to prove. So we may assume n > 0 and the assertion proved in dimensions
< n. Using assertions (e) and (c) of Th. 29.5, we may and do assume that the reductive center
Z of G is trivial. Let h be a G-Cartan subalgebra of g. By Th. 30.7, there exists a smooth
connected closed subgroup H of G such that Lie(H) = h and, further, HK contains a maximal
torus of GK . There are two cases.

(1) If dim(H) = dim(G), then H = G and hence g = h is nilpotent. Since Z = {e}, this
implies, by the previous proposition, that {e} is a maximal torus of G.

(2) If dim(H) < dim(G) then, by the inductive hypothesis, there exists in H a maximal torus
T . Since HK contains a maximal torus of GK , one has dim(H) = rkred(G) and hence T is a
maximal torus of G. This completes the proof of assertion (a).

(b) Assume now that G is semi-simple of adjoint type and let H ⊃ T be as in the proof of
assertion (a). We want to prove that H = T and for this it suffices to prove that they have the
same dimension. For this, we may replace k by K and we drop the subscript K in the following.

One knows that dim(H) = rknil(g) is the minimal possible dimension for a nilspace Nil(x, gK).
On the other hand, for the adjoint action of T on g (we are now over K, which is algebraically
closed), one has

(∗) g = gT ⊕
⊕
α∈R

gα,

where R is the root system of (G, T ). One has gT = Lie(T ) = t and every t ∈ t acts on frakgα
by ad(t)(x) = α(t)x, where by abuse of notation we still denote by α the linear form on t which
is the differential of the character α : T → Gm. Let ∆ be a set of simple roots of R; since G is of
adjoint type, ∆ is a basis of t∗ = X(T )⊗Z K, and since every root is conjugate under the Weyl
group to a simple root, it follows α is a non-zero linear form on t, for every α ∈ R. Since K is
infinite, there exists x ∈ t not belonging to any of the hyperplanes Ker(α), for α ∈ R. Then (∗)
shows that Nil(x, g) = t. Hence dim(T ) = dim t is ≥ rknil(g) = dim(H). It follows that H = T ,
as desired. □

Let us conclude this section with some terminology and remarks.

Definition 31.3 (Cartan subgroups I). Let K be an algebraically closed field, G a
connected smooth affine K-group. Let T be a maximal torus of G. By Prop. 27.6 of Lect. 11,
the centraliser CentG(T ) is represented by a smooth closed subgroup scheme C(T ) of G. One
says that C(T ) is the Cartan subgroup corresponding to T . By Prop. 29.6, C(T ) is connected
and nilpotent.

Definition 31.4. Let k be a field, G a connected smooth affine k-group and g = Lie(G). A
smooth connected closed subgroup H of G such that Lie(H) is a G-Cartan subalgebra of g is a
called a subgroup of type (C) in [SGA32], XIII, Def. 6.2. We suggest the more informative name
almost-Cartan subgroup.

Remarks 31.5. (a) Beware that an almost-Cartan subgroup is not necessarily a Cartan
subgroup, as noted in Remark 30.8 (SL2 over a field of characteristic 2).

(b) With notation as in the previous definition, let H be an almost Cartan subgroup of G and
let HK be an algebraically closed field containing k. We stated in Th. 30.7 and used in Th. 31.2
that HK contains a maximal torus of GK . In [SGA32], Grothendieck proves the stronger result
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that HK contains a Cartan subgroup: see XIII, Rem. 6.6 (b), which builds on the proof of the
implications (vii) =⇒ (vi) =⇒ (i) in XIII, Th. 2.1.

32. Proof of the key theorem 30.7.

Let us recall the standing hypotheses: k is an infinite field, G a connected smooth affine
k-group, g = Lie(G), and K is an algebraically closed field containing k, and we now assume
that the transcendence degree of K over its prime subfield is ≥ d = rkred(G).

Theorem 32.1. Let h = Nil(x, g), where x is a regular element of g. Then:

(1) NormG(h) is represented by a closed subgroup scheme N of G. Further, N is smooth and
Lie(N) = h.

(2) H = N0 is the unique smooth connected closed subgroup H of G such that Lie(H) = h.
Moreover, NormG(H) is represented by N .

(3) Further, HK contains a maximal torus of GK.

Proof. By assertion (1) of Cor. 26.3 in Lect. 11, applied to the vector bundles X = W (g)
and U = V = W (h), we know that NormG(h) is represented by a closed subgroup scheme N of
G. One has Lie(N) ⊂ Normg(h) = h.

By abuse of notation, let us write in the sequel h and g instead of W (h) and W (g). Consider
the morphism φ : G × h → g, (g, y) 7→ Ad(g)(y). The k-group N acts freely on the right on
G× h by (g, y) · n = (gn,Ad(n−1)(y)) and the quotient is represented by a scheme X = G×N h
and φ factors a morphism ψ : X → g. Denote by q the projection G× h → X.

Since h is the unique G-Cartan subalgebra containing x, the fiber of ψ over the rational point
x ∈ g is the single point q(e, x). Therefore, one has dimX ≤ dim g. On the other hand, the
tangent map of φ at the point (e, x) is the map:

g× h → g, (y, t) 7→ t+ [y, x].

It will be surjective if the map ad(x)g/h is surjective, which is the case because this map is injective
by Prop. 30.3. Thus, φ is smooth at (e, x) and hence its image, which is that of ψ, contains a
non-empty open subset of g. Hence, dimX = dim g. Since dimX = dimG−dimN +dim h and
dimG = dim g since G is smooth, we obtain dimN = dim h. Combined with the previously seen
inclusion Lie(N) ⊂ h, this gives that N is smooth and Lie(N) = h. This completes the proof of
assertion (1).

(2) Set H = N0, then H is smooth and Lie(H) = h. Suppose that H ′ is another connected
smooth subgroup such that Lie(H ′) = h. Since the adjoint action of H ′ stabilizes its Lie algebra
h, we have H ′ ⊂ NormG(h) = N whence H ′ ⊂ N0 = H since H ′ is connected, hence H ′ = H
since both are smooth and connected of the same dimension. Moreover one has NormG(H) ⊂
NormG(h) = N , and N normalizes N0 = H, hence NormG(H) = N . This proves assertion (2).

(3) We now extend scalars to K and omit the subscripts. We know that ad(x)g/h is injective
(and hence the set of y ∈ g having this property is open and non-empty, hence dense). It follows
that there exists h1 ∈ H(K) such that Ad(h1) has no fixed point ̸= 0 in g/h. Indeed, otherwise
the regular function H → Ga given by h 7→ detg/h(Id−Ad(h)) is identically zero hence vanishes
on every infinitesimal point e+ εy, which would give detg/h(ad(y)) = 0 for all y ∈ h.

Consider now the morphism φ : G×H → G, (g, h) 7→ ghg−1, as before, it factors through a
morphism ψ : X → G, where X = G ×N H. The tangent map to φ at the point (e, h1) is the
map

g× h → g, (y, t) 7→ t+ (Id− Ad(h1))(y).

It will be surjective if the map (Id−Ad(h1))g/h is surjective, which is the case because this map
is injective by the foregoing discussion. Thus, φ is smooth at (e, h1) and hence its image, which
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is that of ψ, contains a non-empty open subset of G. Since dimX = dimG− dimN + dimH =
dimG, one obtains that ψ is dominant and generically finite.

It follows that G contains a dense open set U such that each g ∈ U(K) is contained in a
conjugate of H (and in fact in finitely many of them). Let T be a maximal torus of G, necessarily
split since K is algebraically closed. By the classical theory (Borel’s density theorem), the union
of the G(K)-conjugates of T is also dense in G. Hence it meets U hence, replacing T by a
conjugate, we may assume that T ∩ U is not empty, hence it is a dense open set V of T such
that each t ∈ V (K) is contained in some G(K)-conjugate of H. Denote by Y the reduced closed
subscheme T − V .

We assumed that the transcendence degree of K over its prime field K0 is ≥ d = dimT ,
hence T (K) contains elements t = (t1, . . . , td) with the ti algebraically independent over K0.
The set of all such elements is clearly dense in T , hence they cannot all lie in Y (K). Thus,
we can find such an element t = (t1, . . . , td) in V (K). It is not contained in any proper closed
subgroup of T since it satisfies no equation tn1

1 · · · tnd
d = 1 with the ni ∈ Z not all zero. On the

other hand, since t ∈ V (K) there exists g ∈ G(K) such that t is contained in gHg−1, hence in
T ∩ gHg−1, which is a closed subgroup of G. It follows that T ⊂ gHg−1 and hence H contains
the maximal torus g−1Tg. This completes the proof of assertion (3). □

Notes for this Lecture

The results about the reductive center are taken from [SGA32], XII, §4.

Cartan subalgebras (nilpotent Lie subalgebras which equal their own normaliser) go back to the works of Élie
Cartan and W. Killing. We have chosen to use G-Cartan subalgebra for the notion introduced by Grothendieck
in [SGA32], Exp. XIII, Def. 4.6.0, after he had mentioned in Exp. XIII, Prop. 4.4 that if g is the Lie algebra of
a smooth affine k-group, the two definitions coincide, a fact proved in Exp. XIII, Cor. 5.7 (a).

Assertion (1) of Theorem 30.7 is proved in XIII, Th. 6.1 and Cor. 6.3, whereas assertion (2) is mentioned in
Rem. 6.6 (b).

Prop. 31.1 is proved in XIV, Lemma 1.3 together with XII, Cor. 4.9. Finally, assertion (a) of Theorem 31.2
is proved in XIV, Th. 1.1, whereas assertion (b) is contained in XIV, Th. 3.18.

The idea to use an algebraically field K with sufficiently large transcendence degree occurs already in
Grothendieck’s presentation of Borel’s density theorem in [Che04], Exp. 6, §6.6, proof of Th. 6.


