
LECTURE 11

Representability of centralisers and transporters
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25. Weil restriction

Let us fix a morphism of schemes Z → S.

Definition 25.1. For any Z-scheme Y , its Weil restriction of scalars from Z to S,
denoted by RZ/S(Y ) (or sometimes

∏
Z/S Y ) is the contravariant functor from (Sch/S) to (Sets)

such that, for every S-scheme T :

HomS

(
T,RZ/S(Y )

)
= HomZ(T ×S Z, Y ).

Remark 25.2. Note that RZ/S(Y ) is a sheaf for the fpqc topology. Indeed, let T ′ → T be a
Zariski covering or a faithfully flat and quasi-compact morphism. Setting as usual T ′′ = T ′×T T

′,
one has a commutative diagram:

(25.1) HomS(T,RZ/S(Y )) // HomS(T
′,RZ/S(Y )) //

// HomS(T
′′,RZ/S(Y ))

HomZ(T ×S Z, Y ) // HomZ(T
′ ×S Z, Y ) //

// HomZ(T
′′ ×S Z, Y ).

Since the morphism ZT ′ → ZT obtained by base change is again a Zariski covering or faithfully
flat and quasi-compact and since ZT ′ ×ZT

ZT ′ ≃ Z ×S T ′′, the second row is exact and hence so
is the first row.

Remark 25.3. If S = Spec(A) and Z = Spec(B), where B is a finite free A-module of rank
d, it is easy to see that the functor RZ/S(An

Z) is represented by the S-scheme And
S . Indeed, let

(e1, . . . , ed) be a basis of B as A-module. Since An
Z = An

S one sees that a point of RZ/S(An
Z) with

values in Spec(R), for an arbitrary A-algebra R, is the same thing as a n-tuple (x1, . . . , xn) of

elements of R⊗A B ≃
⊕d

1 Rei, hence a nd-tuple (r1,1, . . . , r1,d, . . . , rn,d) of elements of R. 1.

Here, we will be interested in the case where Y is a closed subscheme of Z, with applications to
the representability of centralisers and transporters, see below. Let us start with the following
definition.

Definition 25.4. One says that the S-scheme Z is essentially free if there exists a covering
(Si) of S by affine open subsets Si and for each i an affine and faithfully flat morphism S ′

i → Si

such that Z ′
i = Z×SS

′
i is covered by affine open subsets Z ′

ij such that every O(Z ′
ij) is a projective

module over O(S ′
i).

0version of Jan. 22, 2024. Thanks to Manoj Kummimi for pointing out an inaccuracy in the previous version
1For further general results about Weil restriction, see e.g. [BLR], §7.6.
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62 11. REPRESENTABILITY OF CENTRALISERS AND TRANSPORTERS

Example 25.5. If H is a S-group of multiplicative type, it is essentially free over S. Indeed,
by assumption there exists a covering (Si)i∈I of S by affine open subsets Si and for each i an
affine and faithfully flat morphism S ′

i → Si such that H ′
i = H ×S S ′

i is a diagonalisable group
over S ′

i of type Mi, for some abelian group Mi. Then O(H ′
i) = O(S ′

i)[Mi] is a free O(S ′
i)-module.

Lemma 25.6. (a) If Z is essentially free over S, it is flat over S.

(b) If S = Spec(k), where k is a field, every S-scheme is essentially free.

(c) If Z is essentially free over S, then for any base-change morphism X → S, the morphism
Z ×S X → X is essentially free.

Proof. Left to the reader. □

Remark 25.7. Suppose that τ : Y ↪→ Z is a closed immersion. Then, for any S-scheme T
one has:

RZ/S(Y )(T ) =

{
{τ−1

T } if τT : YT ↪→ ZT is an isomorphism,

∅ otherwise.

Indeed, RZ/S(Y )(T ) = HomZ(Z×ST, Y ) = HomZT
(ZT , YT ) is the set of morphisms f : ZT → YT

such that τT ◦ f = idZT
. Since τT is a closed immersion, such an f exists if and only if τT is an

isomorphism, and then f = τ−1
T .

Theorem 25.8. Suppose that Y ↪→ Z is a closed immersion and that Z is essentially free
over S.

(i) Then RZ/S(Y ) is represented by a closed subscheme C of S.

(ii) Further, if Z → S is quasi-compact and Y ↪→ Z is of finite presentation, then C ↪→ S is
of finite presentation.

Proof. Set F = RZ/S(Y ). The proof is in four steps.
(1) Suppose firstly that S = Spec(A) and Z = Spec(B), where B is a projective A-module.

Hence B is a direct summand of a free A-module L with basis (eλ)λ∈Λ. Let φλ : L → A be the
coordinate forms with respect to this basis. Let E be a set of generators of the ideal J of B
defining the closed subscheme Y ⊂ Z and let I be the ideal of A generated by the φλ(x), for
x ∈ E and λ ∈ Λ.

Now, let T → S be a morphism such that the closed immersion YT → ZT is an isomorphism.
Then, for any affine open subset T ′ = Spec(R) of T , one has a morphism of rings f : A → R
and one obtains that the surjective morphism B⊗A R → (B/J)⊗A R is an isomorphism, which
amounts to saying that for any x ∈ E the image of x⊗1 in B⊗AR or, equivalently, in L⊗AR is
zero. Since x =

∑
λ φλ(x)eλ, the latter image is

∑
λ eλ ⊗ f(φλ(x)) and this is zero if and only if

f(φλ(x)) = 0. Thus Ker(f) contains I and hence T ′ → S factors through the closed subscheme
C = V(I). Since this is true for any open affine subset of T , one obtains thats T → S factors
through C. Conversely, under this condition one has YT = ZT . This proves the first assertion.
Further, if J is finitely generated we may take E to be finite and as each x ∈ E as only finitely
many non-zero coordinates φλ(x), it follows that I is finitely generated.

(2) Still with S = Spec(A), suppose now that Z is covered by affine open subsets Zj such that
each Bj = O(Zj) is a projective A-module. For each j, set Yj = Y ∩Zj and let the ideals Jj ⊂ Bj

and Ij ⊂ A be defined as above. Then, for any S-scheme T , the base change of Y → Z is an
isomorphism if and only if the same is true for each Yj → Zj. It follows that F is represented by
the intersection C of the closed subschemes Cj = V(Ij), defined by the ideal I =

∑
j Ij. Assume

further that Z → S is quasi-compact, then Z is quasi-compact hence can be covered by finitely
many open subsets Zj. Therefore, if the closed immersion Y ↪→ Z is of finite presentation, so is
the closed immersion C ↪→ S.

(3) Suppose now that S = Spec(A) and there exists an affine and faithfully flat morphism
S ′ → S such that Z ′ = Z ×S S ′ is covered by affine open subsets Z ′

j such that every O(Z ′
j)



26. TRANSPORTERS AND NORMALISERS 63

is a projective module over O(S ′). Then, by the previous step, FS′ is represented by a closed
subscheme C ′ of S ′. It is endowed with a descent datum relative to S ′/S (because FS′ is) and,
by [SGA1], Exp. VIII, Cor. 1.9, C ′ descends to a closed subscheme C of S; moreover, since F
is a fpqc sheaf, C represents F (see the proof of Prop. 10.7 in Lecture 5). Further, if Z → S is
quasi-compact and Y ↪→ Z is of finite presentation, then C ′ ↪→ S ′ is of finite presentation and
hence so is C ↪→ S, by [EGA] IV2, Prop. 2.7.1.

(4) Finally, in the general case, with the notation of Def. 25.4, each functor Fi = F ×S Si is
represented by a closed subscheme Ci of Si. Since F is a local functor, the Ci glue together to
give a closed subscheme C of S, which represents F (see the proof of Lemma 10.2 in Lect. 5).
Further, if Z → S is quasi-compact and Y ↪→ Z is of finite presentation, then each Ci ↪→ Si

is of finite presentation, hence C ↪→ S is locally of presentation, and being a closed immersion
(hence quasi-compact and separated), it is of finite presentation. □

26. Transporters and normalisers

26.1. A first consequence of theorem 25.8. Let S be a base scheme and let G,U,X
denote S-schemes, with U essentially free over S.

Proposition 26.1. Let P = G ×S U , let a : P → X be a S-morphism, let V be a closed
subscheme of X and let P ′ = P ×X V . Then RP/G(P

′) is represented by a closed subscheme G′

of G and for any S-scheme T one has:

G′(T ) = {g ∈ G(T ) | the morphism a ◦ (g × idU) : T ×S U → X factors through V }.
Further, if U → S is quasi-compact and V → X is of finite presentation, then G′ → G is of
finite presentation.

Proof. Since P ′ is a closed subscheme of P and P = G ×S U is essentially free over G,
the first assertion follows from Theorem 25.8 applied to S = G, Z = P and Y = P ′. For any
S-scheme T one has, by Remark 25.7,

G′(T ) = {g ∈ G(T ) | T ×G P ′ = T ×G P, where T is over G via g : T → G}.
Since T ×G P = T ×S U and T ×G P ′ = T ×S U ×X V , one obtains that G′(T ) is the set of those
g ∈ G(T ) such that a ◦ (g × idU)(T ×S U) ⊂ V .

Further, the second assertion follows from assertion (ii) of Th. 25.8. □

26.2. Transporters and normalisers. Suppose now that G is a S-group scheme acting
on a S-scheme X. Let U, V be subschemes of X.

Definition 26.2. (1) The transporter of U in V , denoted TranG(U, V ), is the subfunctor of
G whose T -points are those g ∈ G(T ) such that g(UT ) ⊂ VT .

(2) The strict transporter of U to V , denoted TranstG(U, V ), is the subfunctor of G whose
T -points are those g ∈ G(T ) such that g(UT ) = VT .

(3) Denoting by ϕ : G → G ×S G the morphism sending an arbitrary T -point g to (g, g−1),
one sees that TranstG(U, V ) is the inverse image by ϕ of TranG(U, V ) ×S TranG(V, U). There-
fore, if both TranG(U, V ) and TranG(V, U) are represented by closed subschemes of G, so is
TranstG(U, V ).

Then one deduces from Prop. 26.1 the following corollary.

Corollary 26.3. Let G be a S-group scheme acting on a S-scheme X and let U, V be
subschemes of X.

(1) If V is a closed subscheme and U is essentially free over S, then TranG(U, V ) is repre-
sented by a closed subscheme of G.
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(2) If U, V are closed subschemes and are essentially free over S, then TranstG(U, V ) is
represented by a closed subscheme of G.

For X = G, on which G acts by conjugation, one obtains:

(3) If H is a closed subscheme of G, essentially free over S, then NormG(H) is represented
by a closed subgroup scheme of G.

(4) In particular, if H is a closed S-subgroup scheme of multiplicative type, then NormG(H)
is represented by a closed subgroup scheme of G.

Proof. Assertion (4) follows from assertion (3) since any S-group of multiplicative type is
essentially free over S (Example 25.5). □

27. Kernels, fixed points and centralisers

27.1. A second consequence of theorem 25.8. Let S be a base scheme and let G,X, Y
be S-schemes.

Proposition 27.1. Suppose that X → S is essentially free and Y → S separated. Let
P = G ×S X, let a1, a2 be two S-morphisms P → Y , let a = a1 × a2 be the corresponding
morphism P → W = Y ×S Y and let P ′ be the pull-back of the diagonal of W by a. Then
RP/G(P

′) is represented by a closed subscheme G′ of G and for any S-scheme T one has:

G′(T ) = {g ∈ G(T ) | the morphisms ai ◦ (g × idX) : T ×S X → Y coincide, for i = 1, 2}.

Further, if X → S is quasi-compact and Y → S is locally of finite type, the closed immersion
G′ ↪→ G is of finite presentation.

Proof. As before, P = G ×S X is essentially free over G. Since Y → S is separated, the
diagonal ∆Y/S of W = Y ×S Y is a closed subscheme and hence P ′ is a closed subscheme of P .
Thus, the first assertion follows from Theorem 25.8 applied to S = G, Z = P and the closed
subscheme P ′ of Z. For any S-scheme T one has, by Remark 25.7,

G′(T ) = {g ∈ G(T ) | T ×G P ′ = T ×G P, where T is over G via g : T → G}.

Since T ×G P = T ×S X and T ×G P ′ = T ×S X ×W ∆Y/S, one obtains that G′(T ) is the set of
those g ∈ G(T ) such that a ◦ (g × idX)(T ×S X) ⊂ ∆Y/S, i.e. such that ai ◦ (g × idX) coincide
on T ×S X, for i = 1, 2.

Finally, if Y → S is separated and locally of finite type, the closed immersion ∆Y/S ↪→ Y ×SY
is of finite presentation (see [EGA] IV1, Cor. 1.4.3.1), hence the second assertion follows from
assertion (ii) of Th. 25.8. □

27.2. Kernels, fixed points. Suppose now that G is a S-group scheme acting on the S-
scheme X. Let us now derive from Prop. 27.1 the following results about the kernel and fixed
points of an action.

Corollary 27.2. If X is essentially free and separated over S, then the kernel of the action
of G on X is represented by a closed S-subgroup scheme K of G.

If further X → S is of finite type, the closed immersion K ↪→ G is of finite presentation.

Proof. One applies Prop. 27.1 to the given action a1 : G×S X → X of G on X and to the
trivial action a2 : (g, x) 7→ x. (For the second assertion, recall that finite type = quasi-compact
and locally of finite type.) □

Next, replacing (G,X, Y ) in Prop. 27.1 by (X,G,X) in that order, that is, applying Prop. 27.1
to the maps a1 : X ×S G → X, (x, g) 7→ gx and a2 : (x, g) 7→ x, one obtains the:
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Corollary 27.3. If G is essentially free over S and X separated over S, the subfunctor of
invariants XG is represented by a closed subscheme of X.

If further G → S is quasi-compact and X → S locally of finite type, the closed immersion
XG ↪→ X is of finite presentation.

Proof. Since G is essentially free over S then P = X ×S G is essentially free over X. And
since X → S is separated, the diagonal ∆X/S of W = X ×S X is a closed subscheme and hence
P ′ is a closed subscheme of P . Thus, the first assertion follows from Theorem 25.8 applied to
S = X, Z = P and Y = P ′. For any S-scheme T one has, by Remark 25.7,

XG(T ) = {x ∈ X(T ) | T ×X P ′ = T ×X P, where T is over X via x : T → X}.
Since T ×X P = T ×S G and T ×X P ′ = T ×S G ×W ∆X/S, one obtains that XG(T ) is the set
of those x ∈ X(T ) such that ai ◦ (x × idG) coincide on T ×S G, for i = 1, 2, which amounts to
saying that for every T ′ → T and g ∈ G(T ′), one has gxT ′ = xT ′ .

Further, the last assertion follows from the last assertion of Prop. 27.1. □

27.3. Centralisers. Let G be a S-group scheme and X a S-scheme. Suppose given two
morphisms of S-schemes u, v : X → G.

Definition 27.4. The transporter of u into v, denoted by TranG(u, v), is the S-subfunctor
of G defined as follows. Note first that for any S-scheme T and g ∈ G(T ), conjugation by g
defines an automorphism int(g) of GT = G×S T . Then, for every S-scheme T , one has:

TranG(u, v)(T ) =

{
g ∈ G(T )

∣∣∣∣ the morphisms int(g) ◦ uT , vT : XT → GT coincide,

i.e. , for every T ′ → T and x ∈ X(T ′) one has gu(x)g−1 = v(x).

}
When v = u, it is a S-subgroup functor, denoted by CentG(u) and called the centraliser of u.

Further, if X is a subscheme of G one sets CentG(X) = CentG(u), where u denotes the
immersion X ↪→ G.

Then, setting P = G×S X and considering the S-morphisms a1 : P → G, (g, x) 7→ gu(x)g−1

and a2 : (g, x) 7→ v(x), we can use Prop. 27.1 where (G,X, Y ) in that proposition is replaced by
(G,X,G). Thus, we obtain:

Corollary 27.5. Suppose that G → S is separated and that X is essentially free over S.

(1) TranG(u, v) is represented by a closed subscheme TG(u, v) of G. If further X → S is
quasi-compact and G → S locally of finite type, the closed immersion TG(u, v) ↪→ G is of finite
presentation.

(2) When u = v, CentG(u) is represented by a closed subgroup scheme CG(u) of G.

(3) If G → S is locally of finite type and if H is a subgroup scheme of multiplicative type,
the closed immersion CG(H) ↪→ G is of finite presentation.

Proof. (1) and (2) follow from Prop. 27.1. If H is a subgroup scheme of multiplicative type,
then H → S is essentially free (Example 25.5) and affine, hence quasi-compact. Thus (3) follows
from (1) and (2). □

Proposition 27.6. Suppose that G is a smooth affine S-group and H is a subgroup scheme
of multiplicative type.

(1) Then the closed subgroup scheme C = CG(H) is smooth and affine.

(2) Further, Lie(C) is the submodule Lie(G)H of H-invariants in Lie(G).

Proof. (1) By the previous corollary, we know already that C → S is of finite presentation
and affine over S (being closed in G), so it suffices to see that the functor CentG(H) is formally
smooth. Denoting by u the immersion H ↪→ G, one has CentG(H) = CentG(u). Let S ′ =
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Spec(A) be an affine scheme over S, let I be a nilpotent ideal of A and S ′
0 = Spec(A/I). Let u0

denote the pull-back of u to S ′
0 and let z ∈ C(S ′

0). That is, z is an element of G(S ′
0) such that

int(z) ◦ u0 = u0. Since G is smooth, z lifts to an element x ∈ G(S ′). Set v = int(x) ◦ u, then
v0 = u0. By Th. 17.1 in Lect. 7, there exists g ∈ Ker(G(S ′) → G(S ′

0)) such that int(g) ◦ v = u.
Set y = gx, then int(y) ◦ u = u hence y ∈ C(S ′), and the image of y in G(S ′

0) is z. This proves
that C is smooth.

Proof of (2) to be added. This is a general result, see [SGA31], Exp. II, Th. 5.2.3 (ii). □

Notes for this Lecture

The content of this lecture appears in Exp. VIII, §6, nos 6.1 to 6.5 of [SGA32] and has also been reproduced
in the new edition of [SGA31], Exp. VIB , n

os 6.2.1 to 6.2.5, following a footnote by Grothendieck at the beginning
of Exp. VIII, §6: “The natural place for this paragraph would be in Exp. VIB”.

The assertion (ii) of Th. 25.8 (and the similar assertions in all subsequent results) was not in [SGA32] and
was added by the lecturer in [SGA31], Exp. VIB , where the hypothesis that Z → S be quasi-compact has been
overlooked, unfortunately.

The representability of Weil restrictions is also discussed in [BLR], §7.6, where a result similar to Th. 25.8
is proved under the more restrictive hypothesis that Z → S be finite and locally free.

Proposition 27.6 is proved several times in SGA3. In Exp. XI, Cor. 5.3 (a), it is derived from the (hard) result

that the functor of homomorphisms of S-groups H → G is representable. A simpler proof is given in Exp. XI,

Th. 6.2 (iii), see also Cor. 9.8 in the additional section XII.9 in the new edition. Finally, the direct proof given

above is taken from Exp. XIX, proof of Prop. 6.1.


