
LECTURE 10

Quasi-isotriviality of MT-groups of finite type

22. The spreading theorem over a complete noetherian local ring

Lemma 22.1. Let A be a noetherian ring, with an ideal I such that A is separated and
complete for the I-adic topology. Set S = Spec(A) and S0 = Spec(A/I).

(1) Every maximal ideal of A contains I.

(2) Therefore, if U is an open subset of S containing S0, then U = S.

Proof. (1) Let x ∈ I. For every a ∈ A the element 1 − ax is invertible, its inverse being
1+
∑

n≥1(ax)n (this sum converges since (ax)n ∈ In and A is I-adically complete). Now suppose
that there exists a maximal ideal m such that x 6∈ m, then there exists y ∈ A and z ∈ m such
that yx = 1− z, hence 1− yx = z belongs to m, contradicting the fact that 1− yx is invertible.
This proves (1).

(2) The complement of U is a closed set V (J) = {P ∈ Spec(A) | P ⊃ J}. If it is not empty
(i.e. if J is a proper ideal), it contains a maximal ideal m, which is impossible since all maximal
ideals belong to V (I) = S0. Thus U = S. �

Theorem 22.2. Let A be a noetherian ring, with an ideal I such that A is separated and
complete for the I-adic topology. Set S = Spec(A) and S0 = Spec(A/I)

(1) The functor H 7→ H0 = H ×S S0 is an equivalence of categories:{
isotrivial MT-groups

over S

}
∼ //

{
isotrivial MT-groups

over S0

}
Now, let G be a finite type affine S-group, flat over S at each point of G0, and such that G0 is
an isotrivial MT-group over S0.

(2) There exists a finite type isotrivial MT-group H over S and a morphism of S-groups
u : H → G such that u0 : H0 → G0 is an isomorphism.

(3) If one assumes further that G is a MT-group over S then u is an isomorphism; hence
the hypothesis that G0 be isotrivial implies that G is so.

(4) In general, u is an open and closed immersion.

Proof. (1)1 By assertion (2) of Th. 19.2 we know already that this functor is fully faithful.
Now, let H0 be an isotrivial MT-group over S0. The proof that there exists an isotrivial MT-
group H over S such that H ×S S0 ' H0 is similar to that of assertion (2) of Prop. 18.1.
Namely, there exists a surjective finite étale morphism S ′0 → S0 such that the pullback H ′0 is a
diagonalisable group D(M)S′0 . By [EGA] IV4, Prop. 18.3.2, the functor X 7−→ X0 = X ×S S0 is
an equivalence between the category of schemes finite and étale over S and the corresponding
one over S0. Thus, there exists a surjective finite étale morphism S ′ → S such that S ′0 = S ′×SS0.
Then H ′ = D(M)S′ is such that H ′ ×S′ S

′
0 = H ′0.

Next, one obtains as in the proof of assertion (2) of Th. 18.1 that the descent datum on
H ′0 relative to S ′0 → S0 comes from a descent datum on H ′ relative to S ′ → S. Since H ′ is

0version of Sept. 4, 2023.
1A shorter proof of assertion (1) is given in Lemma 23.10below.
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56 10. QUASI-ISOTRIVIALITY OF MT-GROUPS OF FINITE TYPE

affine over S ′, this descent datum is effective, hence there exists a S-group scheme H such that
H ×S S

′ = H ′ = DS′(M), and hence H is an isotrivial MT-group over S. Further, H ×S S0 and
H0 become isomorphic over S ′0, hence they are isomorphic because S ′0 → S0 is a morphism of
descent. This completes the proof of assertion (1).

Now, let G be a finite type affine S-group, flat over S at each point of G0, and such that G0 is
an isotrivial MT-group over S0. Let M be the abelian group corresponding to G0; it is finitely
generated since G, hence G0, is of finite type.

By assertion (1), there exists an isotrivial MT-group H over S and an isomorphism of S0-

groups u0 : H0
∼−→ G0. By assertion (2) of Th. 19.2 we know that u0 lifts uniquely to a morphism

of S-groups u : H −→ G.
On the other hand, since the type of the fibers Hs is a locally constant function of s, there

exists an open subset U of S containing S0 such that HU is of type M . By Lemma 22.1, the
only open subset of S containing S0 is S itself. Thus, H is of type M over S, in particular it is
of finite type. This proves (2).

(3) Assume further that G is a MT-group over S. The same reasoning as above, applied to
G instead of H, shows that G is of type M over S, in particular it is of finite type. Then, by
Prop. 7.10 of Lecture 3, K = Ker(u) and C = Coker(u) are MT-groups over S, hence the type
of their fibers is again a locally constant function of s. Since u0 is an isomorphism, the type of
K and of C is the trivial abelian group {0} over S0 and hence over S. Thus K and C are trivial
and hence u is an isomorphism. This proves (3)

Let us prove (4). Let S ′ → S be a finite étale map such that H ′ ' D(M)S′ . It suffices to prove
that u′ is an open and closed immersion, because then u will be so ([EGA] IV2, Prop. 2.7.1).
So, replacing S by S ′, we may assume that H = D(M)S.

Let us denote by un the pullback over Sn of the morphism u : H → G. By assumption, un is
an isomorphism; in particular it is flat. By the local criterion of flatness (see e.g. [EGA], IV3,
Lemma 11.3.10.2 or [Mat86], Th. 22.3) it follows that u is flat at any point of H0, in particular
at any point of the unit section of H0. Now, one knows that the locus V of points of H where u
is flat is open ([EGA] IV3, Th. 11.1.1), hence its inverse image by the unit section ε : S → H is
an open subset U of S containing S0. By Lemma 22.1 one has U = S, hence u : H → S is flat
near every point of the unit section. For every s ∈ S it follows that us is flat, because over a field
one can show, going to an algebraic closure and using translations, that a morphism between
finite type groups is flat as soon as it is flat near the identity (see [SGA31], VIB, Prop. 1.3 and
also VIA, Lemma 2.5.3 for the stronger result without finiteness hypotheses). Thus, by the fibral
criterion of flatness (see [EGA] IV3, Cor. 11.3.11), u : H → G is flat.

Let K = Ker(u). As we have a cartesian diagram

H
u // G

K //

OO

S

ε

OO

and the unit section ε : S → G is a closed immersion (G being affine hence separated over S),
one obtains that K is a closed sugbgroup of H, flat over S, and such that K0 is trivial. Let us
prove that K is trivial.

For each n ∈ N∗ the n-torsion subgroup nG = D(M/nM)S is finite over S, hence so is its
closed subgroup nK. Its pullback nK0 over S0 is trivial, hence by Nakayama’s lemma nK is
trivial. In particular, for each s ∈ S we have that n(Ks) = (nK)s is trivial. One knows that
over a field every closed subgroup of a diagonalisable group is diagonalisable (see [SGA32] IX,
Prop. 8.1 or [Oes14], §5.4). Thus each fiber Ks is a diagonalisable group over κ(s), and since

n(Ks) is trivial for each n it follows from the density theorem 20.2 that Ks is trivial. Therefore,
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the unit section ε : S → K is an isomorphism on each fiber and hence, by Lemma 22.3 below,
K is the trivial group. This proves that u : H → G is a monomorphism.

Since H is diagonalisable, Cor. 21.2 tells us that u is in fact a closed immersion. On the
other hand, as it is flat and of finite presentation (because H and G are of finite type over the
noetherian base S) it is open, and is therefore an isomorphism from H to an open and closed
subgroup of G. This completes the proof of assertion (4). �

In the proof of assertion (4), we have used the lemma below, which is [EGA] IV4, Cor. 17.9.5.

Lemma 22.3. Let f : X → Y be a morphism of S-schemes, where X, Y are locally of finite
presentation over S and X is flat over S. If for each s ∈ S the morphism fs : Xs → Ys is an
open immersion, resp. an isomorphism, so is f .

23. MT-groups of finite type over a henselian local ring

In this section, (A,m) denotes a local ring, S = SpecA, s the closed point of S and S0 = {s}.

Definition 23.1. One says that (A,m) is henselian if it satisfies the following equivalent
conditions:

(1) Every finite A-algebra B decomposes as a product of local rings.

(2) For every morphisms X → S finite and Y → S étale and separated, the natural map
HomS(X, Y )→ HomS0(X0, Y0) is bijective.

(3) For every smooth morphism f : X → S and every point x ∈ X over s such that
κ(x) = κ(s), there exists a section u : S → X of f such that u(s) = x.

Remark 23.2. Of course, the equivalence of the conditions is far from trivial. The first one is usually taken
as the definition, see [SGA32], Exp. X, §4 and [EGA] IV4, Def. 18.5.8 and Prop. 18.5.9 (ii). The equivalence
with (2) is proved in [EGA] IV4, Cor. 18.5.12 and that with (3) in loc. cit. Th. 18.5.17.

Notation 23.3. A morphism of local rings f : (A,m)→ (B, n) is local if f−1(n) = m. In this
case2 it induces an extension of residue fields A/m ↪→ B/n; if further this extension is trivial, we
will say for brevity that f is tlocal. Beware that this is not standard terminology!

Remark 23.4. Recall that a flat local morphism (A,m)→ (B, n) is faithfully flat.

For what follows, we refer to [EGA] IV4, Th. 18.6.6 or [StaPr], Algebra, §155 (Tag 0BSK).
One can prove that the set of tlocal étale morphims f1 : (A,m) → (A1,m1) is filtered, that is,
if f2 is another such morphism, there exists a third one f3 which dominates f1 and f2, i.e. such
that f3 factors through f1 and f2:

(A,m)
f1

xx

f2

&&
f3

��

(A1,m1)

&&

(A2,m2)

xx
(A3,m3).

Definition 23.5. Using this, one can construct the filtered inductive limit of these mor-

phisms. One obtains a flat tlocal morphism A → Ã, where Ã is a local henselian ring with

maximal ideal Ãm, which is determined up to unique isomorphism by the universal property
that, for every local henselian ring B,

(23.1) Loc.Hom(Ã, B) = Loc.Hom(A,B).

2Note that, for example, the inclusion A ↪→ K of a DVR in its field of fractions is not a local morphism.
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One says that Ã is the henselisation of A.

From now on, suppose that A is noetherian and denote its m-adic completion by Â. Then

one knows that A −→ Â is faithfully flat (in particular, injective). Further, in this case one has
the following proposition.

Proposition 23.6. Let (A,m) be a noetherian local ring. Then:

(1) Ã is noetherian and has the same m-adic completion than A.

(2) Thus, one has tlocal, flat morphisms A −→ Ã −→ Â of local noetherian rings.

Remark 23.7. Under the assumption that A be noetherian, one can define informally Ã as follows. Set k =

A/m and Ŝ = Spec Â. We know already that Â is henselian. Let (A,m)→ (A′,m′) be an étale tlocal morphism,
corresponding to an étale map f : S′ → S sending s′ to s (with obvious notation). Since κ(ŝ) ⊗k κ(s′) = k,

there is a unique point x of Ŝ ×S S
′ mapping to ŝ and to s′ and, by condition (2) of Def. 23.1, the morphism

Ŝ ×S S
′ → Ŝ admits a section sending s to x, which is necessarily étale (see [EGA] IV4, Prop. 17.3.4). In other

words, the morphism Â → Â⊗A A
′ admits a retraction τ which is a tlocal étale morphism and this gives a flat

tlocal morphism A′ → Â. Then Ã is the union of the images of these morphisms (since they form a filtered set,
the union of their images is a subring).

Notation 23.8. For the rest of this section, we fix a noetherian local henselian ring (A,m),
denote by A′ its completion, by S, S ′ their spectra, and we set S0 = Spec(k), where k = A/m.

Remark 23.9. Consider the following diagram of categories and base-change functors:{
Schemes finite and

étale over S

}
X 7→X×SS

′
//

X 7→X×SS0

'

))

{
Schemes finite and

étale over S ′

}
X′ 7→X′×S′S0

'

uu{
Schemes finite and

étale over S0

}
.

The two oblique arrows are equivalence of categories, hence so is the horizontal one.

Note that S, S ′ and S0 are connected. So, choosing a geometric point s over s, the observations
above imply that fundamental (profinite) groups are isomorphic:

(23.2) π1(S, s) π1(S0, s)
∼oo ∼ // π1(S

′, s).

Lemma 23.10. The functor H 7→ H0 = H ×S S0 is an equivalence between the category of
isotrivial MT-groups over S, resp. S ′, and the corresponding one over S0.

Proof. Since S, S ′ and S0 are connected, it follows from Th. 12.3 of Lecture 5 that the
category of isotrivial MT-groups over S is anti-equivalent to the category of π1(S0, s)-modules
M such that the kernel of π1(S, s)→ Aut(M) is an open subgroup, and similarly for S0 and S ′.
Since the three fundamental groups are the same, the result follows.

Note that this argument also proves assertion (1) of Th. 22.2. �

Proposition 23.11. In the following diagram of categories and base-change functors, all
arrows are equivalence of categories:{

MT-groups
finite over S

}
X 7→X×SS

′
//

X 7→X×SS0

'

''

{
MT-groups

finite over S ′

}
X′ 7→X′×S′S0

'

vv{
MT-groups

finite over S0

}
.
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Proof. Any MT-group H0 finite over S0 is, in particular, of finite type, hence isotrivial by
Prop. 12.6 of Lecture 5, so it comes by change from a MT-group H over S, of the same type as
H0, hence finite over S.

Let H,G be finite MT-groups over S. We have a commutative diagram

HomS-Gr(H,G) // HomS0-Gr(H0, G0)

HomS-Gr(D(G), D(H)) // HomS0-Gr(D(G0), D(H0))

and, since D(G), D(H) are finite étale group schemes, the bottom horizontal map is bijective
(the unique lift u of a group morphism u0 : D(G0) → D(H0) is a group morphism, as one sees
by considering the diagram involving the group laws of D(G0) and D(H)). Therefore, the top
horizontal map is bijective too.

This proves that the base-change from S to S0 is fully faithful. The same argument applies
to the base-change from S ′ to S0, since S ′ is also local henselian with closed point s. Thus the
two oblique arrows are equivalence of categories, hence so is the horizontal one. �

Proposition 23.12. Recall the hypotheses of 23.8. Let H,G be MT-groups of finite type
over S and let H ′, G′ be their pull-backs over S ′. Then the natural map below is bijective :

(23.3) HomS-Gr(H,G)→ HomS′-Gr(H
′, G′).

Proof. Set S ′′ = S ′×SS
′ and let pr1, pr2 be its two projections to S ′. As S ′ → S is faithfully

flat and quasi-compact, one has an exact diagram

HomS-Gr(H,G) // HomS′-Gr(H
′, G′)

pr∗2

//
pr∗1 // HomS′′-Gr(H

′′, G′′)

hence we see that the assertion is that for every morphism of S ′-groups f ′ : H ′ → G′, the two
morphisms of S ′′-groups pr∗1(f

′), pr∗2(f)′ : H ′′ → G′′ coincide.

Note that f ′ induces for each n ∈ N∗ a morphism of S ′-groups f ′n : nH
′ → nG

′. But nH
′ and

nG
′ are finite MT-groups over S ′ hence, by the previous proposition, f ′n comes from a morphism

of S-groups fn : nH → nG and hence satisfies pr∗1(f
′
n) = pr∗2(f

′
n).

Now, since G′′ is affine hence separated over S ′′, the locus where pr∗1(f
′) and pr∗2(f

′) coincide
is a closed subscheme of H ′′, and by the previous paragraph, it contains all the subgroups nH

′′.
Hence, by the density theorem 20.2, pr∗1(f

′) = pr∗2(f
′). This proves the proposition. �

Corollary 23.13. Recall the hypotheses of 23.8. Let G be a MT-group of finite type over
S. Then G is isotrivial. 3

Proof. As G0 is a MT-group of finite type over S0 = Spec(k) it is isotrivial, say of type
M for some finitely generated abelian group M (see Prop. 12.6 in Lecture 5). By Lemma 23.10,
there exists an isotrivial MT-group H over S and an isomorphism u0 : H0 ' G0. Since S is
connected, both H and G are of constant type M over S.

By assertion (2) of Theorem Th. 19.2, that is, by the algebrisation theorem Th. 19.2 (1) and
by the lifting results of Th. 18.3 and Prop. 18.1 (which use duality to extend the cohomological
result of Th. 17.1 to MT-groups, not necessarily smooth), we know that u0 lifts uniquely to a
morphism of S ′-groups u′ : H ′ −→ G′. By the previous proposition, u comes by base-change
from a morphism of S-groups u : H −→ G.

Now, both H and G are MT-groups of constant type M over S, with M finitely generated.
Hence, by Prop. 7.10 of Lecture 3, K = Ker(u) and C = Coker(u) are MT-groups over S, and

3This extends assertion (3) of Th. 22.2 from the complete to the henselian case. There is also an extension
of assertion (4), but the proof is more difficult, see Exp. X, Lemma 4.3 and Th. 4.4.
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since S is connected they also have a constant type over S. Since u0 is an isomorphism, the
type of K and of C is the trivial abelian group {0}. Thus K and C are trivial and hence u is
an isomorphism. �

24. Quasi-isotriviality of finitely generated MT-groups

From the previous corollary, one deduces the following theorem, valid over an arbitrary base
scheme S.

Theorem 24.1. Let G be a MT-group of finite type over a scheme S. Then G is quasi-
isotrivial, i.e. for every s ∈ S there exist an open neighbourhood and a surjective étale morphism
U ′ → U such that GU ′ is diagonalisable.

Sketch of proof. This uses the principle, detailed in [EGA] IV3, §8, that is f : X → Y
is a morphism of schemes of finite presentation over the spectrum S of a ring Λ, and if Λ is
the filtered inductive limit of a family of subrings (Λi)i∈I , then, denoting by a subscript i the
pull-backs over Si = Spec Λi, one has:

a) There exists an index i ∈ I and a morphism fi : Xi → Yi such that f comes from fi by
base change.

b) If one considers a property (P) like being: an isomorphism, an open or closed immersion,
an affine, quasi-affine, finite, quasi-finite, or proper morphism, then f has property (P)
if and only if there exists an index i1 ≥ i such that for every j ≥ i1 the morphism fj
obtained from fi by base-change has property (P).

Applying this firstly to the local ring OS,s, it suffices to prove the theorem over SpecOS,s.
Next, OS,s is the inductive limit of local subrings which are localizations of finitely generated Z-

algebras, so we are reduced to the case where A = OS,s is noetherian. Let Ã be its henselisation.

Then, by the previous corollary, there exists a finite étale morphism Ã → A′ such that the

pull-back G′ of G over SpecA′ is diagonalisable. Since Ã is the filtered inductive limit of “étale
neighbourhoods of s”, one obtains from the previous principle an open neighbourhood U of s
in S and a surjective étale morphism U ′ → U such that GU ′ is diagonalisable. This proves the
theorem. �

Notes for this Lecture

In Theorem 22.2, assertions (1) and (3) are in Th. 3.2 of Exp. X, whereas assertion (4) is Th. 3.7 of Exp. X.

The proof of assertion (4) is taken from the proof of [Co14], Th. B.3.2; it is easier to understand than the
proof of X, Th. 3.7, which relies on the results 6.1 to 6.6 of Exp. IX.

Remark 23.9, Lemma 23.10 and Prop. 23.11 are Exp. X, 4.0, Rem. 4.0.1 and Lemma 4.1.

Prop. 23.12 and Cor. 23.13 are taken from Exp. X, Lemma 4.3 and Th. 4.4, which prove a more general result,
namely that the spreading theorem (assertion (4) of Th. 22.2) holds true over a local henselian ring. We have
followed the more comprehensible proof of [Co14], Prop. B.3.4.

Theorem 24.1 is Exp. X, Cor. 4.5. The reductions to the local ring OS,s, then to a noetherian local ring and
then to a noetherian local henselian ring are detailed in the proof of X, Th. 4.4 in the new edition of [SGA32],
whose preliminary version is available on the lecturer’s web page.


