
LECTURE 1

Diagonalisable groups and MT-groups.Representations of
diagonalisable groups

1. Diagonalisable Groups and Groups of Multiplicative Type

In this section, M denotes a finitely generated abelian group.1

Definition 1.1. The group algebra Z[M ] of M over Z is a Hopf algebra, with comultiplica-
tion, counit and antipode given, for all m ∈M , by: 2

∆(em) = em ⊗ em, ε(em) = 1 τ(em) = e−m.

Hence the Z-scheme D(M) = SpecZ[M ] is a commutative group scheme over Z: for every
scheme S, its set of S-points is:

(1.1) D(M)(S) = HomSch(S, SpecZ[M ]) = HomAlg(Z[M ],OS(S)) = Homgrp(M,OS(S)×),

endowed with the group structure (φ · ψ)(m) = φ(m)ψ(m).
The group scheme D(M) is affine, finitely presented and faithfully flat over Z, since Z[M ] is

a free Z-module and a finitely presented Z-algebra (see below).
Note first that D(Z) = Gm and D(Z/nZ) = µn for each n ≥ 2. Note also that if M = N⊕N ′

then Z[M ] = Z[N ]⊗ZZ[N ′] and D(M) = D(N)×D(N ′). Thus, writing M ' Zd⊕
⊕f

i=1 Z/niZ,
one has

D(M) ' (Gm)d × µn1 × · · ·µnf

and Z[M ] ' Z[T±1
1 , . . . , T±1

d ][X1, . . . , Xf ]/(Xn1
1 − 1, . . . , X

nf

f − 1), which shows that it is a finitely presented

Z-algebra.

Next, for any base scheme S, one defines D(M)S = D(M) × S. For every scheme S ′ → S,
one still has: 3

(1.2) D(M)S(S ′) = HomS-Sch(S ′, D(M)S) = HomSch(S ′, D(M)) = Homgrp(M,OS′(S ′)×).

By base change, the group scheme D(M)S is affine, finitely presented and flat over S. It is
smooth if and only if the order of the torsion part of M is invertible on S.

One says that a group scheme H over S is diagonalisable if it is isomorphic with D(M)S for
some M . If M is free of rank d then D(M)S is isomorphic with Gd

m,S and is called a split torus
of dimension d.

Remark 1.2. (added after the lecture) In view of (1.2) each m ∈M defines, for every S-scheme
S ′, a group homomorphism D(M)(S ′)→ OS′(S ′)×, which is functorial in S ′. One says that m is
a character of D(M)S (see Def. 3.5 below). Thus, for every h ∈ D(M)(S ′) one has an element
m(h) of OS′(S ′)×.

For the sake of simplicity, we adopt the definition below, more restrictive than SGA3 IX 1.1 as we fix the

group M beforehand, but this entails no loss of generality (see remarks 7.7 and 7.9 later).

0version of August 16, 2023. Two minor typos corrected.
1In SGA3, arbitrary abelian groups are also considered, e.g. M = Q, but the most interesting results are

obtained when M is finitely generated.
2Here (em)m∈M is the canonical basis of Z[M ]. In the sequel we will often write simply m instead of em.
3That is, the functor D(M)S is the restriction of D(M) to the category of S-schemes.
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Definition 1.3. A group scheme H over S is said to be of multiplicative type of type M
if for each s ∈ S there exists an affine open neighbourhood U of s and a surjective flat morphism
U ′ → U , with U ′ affine,4 such that H ×S U ′ ' D(M)U ′ . Further, one says that H is :

• quasi-isotrivial if one may choose the maps U ′ → U to be étale;
• isotrivial if there exists a surjective finite étale map S ′ → S such that H ×S S ′ '
D(M)S′ .
• locally isotrivial (resp. locally trivial) if each s ∈ S admits an affine open neighbourhood
U such that HU = H ×S U is isotrivial (resp. diagonalisable).

If M is free of rank d, one says that H is a d-dimensional torus over S.

Proposition 1.4. Let H be a S-group scheme of multiplicative type of type M . Then H is
affine, finitely presented and flat over S.

Proof. The assertion to prove is that the structural morphism f : H → S is affine, finitely
presented and flat. This assertion is local on the base so we may assume that S is affine and
there exists a surjective flat morphism S ′ → S, with S ′ affine, such that HS′ ' D(M)S′ . Then
the morphism fS′ : HS′ → S ′ is affine, finitely presented and flat. By [EGA] IV2, Prop. 2.7.1,
these properties are already true for f , since the morphism S ′ → S is flat, surjective and affine,
hence faithfully flat and quasi-compact. �

It is easy to give examples of isotrivial groups of multiplicative type which are not diagonal-
isable.

Example 1.5. Let R be a ring, R → R′ an étale covering with Galois group Γ and Γ →
Aut(M) a morphism of groups. Then Γ acts by semi-linear automorphisms of Hopf algebra on
B = R′[M ] via γ(bm) = γ(b)γ(m),5 and the invariants form a Hopf algebra A over R.

By Galois descent (see e.g. [BLR], §6.2, Example B), we know that B ' A ⊗R R′ as Hopf
algebras and as Γ-modules, where on the right-hand side Γ acts by γ(a ⊗ r′) = a ⊗ γ(r′).
Therefore, H = SpecA is an isotrivial group of multiplicative type of type M over S = SpecR,
which becomes diagonalisable over S ′ = SpecR′. In general it is not diagonalisable; in fact, we
will see later that H is diagonalisable if and only if the action of Γ on M is trivial.

(Added after the lecture) For every S-scheme T , one has natural identifications:

HomS(T,H) = HomS(T ×S S ′, H)Γ = HomS′((T ×S S ′, HS′)Γ = HomS′((T ×S S ′, D(M)S′)Γ

= Homgrp(M,Gm(T ×S S ′))Γ.

Thus, H represents the group functor T 7→ Homgrp(M,Gm(T ×S S ′))Γ.

A basic, and already instructive, example is:

Example 1.6. Consider R → C, with Galois group Γ = {id, τ}, and the morphism Γ →
GL(Z) = Z× which sends τ to −1. Then the R-algebra A of Γ-invariants in C[Z] = C[T, T−1] is
generated by X = (T +T−1)/2 and Y = (T −T−1)/2i and one has A ' R[X, Y ]/(X2 +Y 2− 1).
Note that S1 = SpecA represents the group functor which associates to every R-algebra R the
group of elements z = a+ ib in R⊗RC = R⊕ iR such that z−1 = z, that is, (a+ ib)(a− ib) = 1.

A more elaborate example is:

Example 1.7. Let k be a field of characteristic p, let x, y be indeterminates and consider the Artin-Schreier
extension k[y]→ k[x], given by y 7→ xp−x. It is a Galois covering with group Γ = Z/pZ. Let Γ→ GL(Zp) be the
group morphism which sends the generator 1 of Γ to the automorphism which permutes cyclically the generators:
e1 7→ e2 7→ · · · 7→ ep 7→ e1, and let A = (k[x][Zp])Γ. Then H = SpecA is an isotrivial torus of dimension p over

4If U is only required to be quasi-compact, it is covered by finitely many affine open subsets V ′1 , . . . , V
′
n, then

their sum V ′ is affine and V ′ → U is flat and surjective. So there is no loss in assuming that U ′ is affine.
5The semi-linearity means in fact that the action of Γ on B is compatible with its action on R′.
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the affine line S = Spec k[y], which becomes trivial over S′ = Spec k[x]. On can see that it represents the group
functor which associates to every k[y]-algebra R the group of invertible elements in R⊗k[y] k[x], see Remark 4.9
below.

Remark 1.8. Over a connected base, it is not easy to give examples of groups of multiplica-
tive type of type M which are not isotrivial, or which are locally trivial but not diagonalisable.
In fact, as we shall see later, no such examples exist over a connected, normal, locally noetherian
base S.

Two such examples over a nodal curve (irreducible or not) appear in [SGA32], Exp. X, 1.6
(see also [Oes14], end of §7.1)) and will be detailed in another lecture.

2. Representations of diagonalisable groups

Again, M denotes a finitely generated abelian group.

Definition 2.1. Let G be an affine group scheme over S, given by a quasi-coherent OS-
algebra A. Let ∆ : A → A ⊗OS

A (called the comultiplication map) and ε : A → OS (called
the augmentation map) be the morphisms of OS-algebras corresponding to the multiplication
G×S G→ G and to the unit section S → G. They satisfy the following equalities:

(2.1) (∆⊗ IdA) ◦∆ = (IdA ⊗∆) ◦∆ and (ε⊗ IdA) ◦∆ = IdA = (IdA ⊗ ε) ◦∆

where in the second set of equalities we have used the identifications OS⊗OS
A = A = A⊗OS

OS.
The inversion map of G induces a morphism of OS-algebras τ : A → A (the antipodal map), satisfying the

equalities corresponding to the identities gg−1 = e = g−1g and (gh)−1 = h−1g−1.

Then, a quasi-coherent OS-module F is called a G-module if it is endowed with a structure
of right A-comodule, that is, a map of OS-modules µF : F → F ⊗OS

A satisfying:

(2.2) (µF ⊗ IdA) ◦ µF = (IdF ⊗∆) ◦ µF and (IdF ⊗ ε) ◦ µF = IdF .

Remark 2.2. (added after the lecture) Let U = SpecR be an affine open subset of S. Then
F(U) is a R-module, GU = SpecA for some R-Hopf algebra A and we have the R-linear map
µF(U) : F(U) → F(U) ⊗R A. Let x ∈ F(U). For every affine U -scheme U ′ = SpecR′ and
g ∈ G(U ′) = HomR-Alg(A,R′), one has in F(U)⊗R R′ the equality

(2.3) g · (x⊗ 1) = (IdF(U) ⊗ g)µF(U)(x).

Now, suppose that G = D(M)S and let F be a quasi-coherent G-OS-module. Thus, one has
the comodule map µF : F → F ⊗OS

OS[M ]. This means that for any affine open subset U of S,
one has an OS(U)-linear map

µF(U) : F(U)→
⊕
m∈M

F(U)⊗OS(U) OS(U)m,

sending each section x ∈ F(U) to a finite sum
∑

m∈M pm(x) ⊗ m, where the pm’s are OS(U)-
linear endomorphisms of F(U), all zero on F(U) but a finite number of them. Then (2.2) gives
that ∑

m′,m∈M

pm′(pm(x))⊗m′ ⊗m =
∑
m∈M

pm(x)⊗m⊗m and x =
∑
m∈M

pµ(x).

In particular, the pm’s are orthogonal projectors whose sum is the identity of F(U). Moreover,
the image of pm is the direct summand

Fm(U) = {x ∈ F(U) | µF(x) = x⊗m}.
Thus F(U) =

⊕
m∈M Fm(U) and hence F coincides with the sheaf

⊕
m∈M Fm, since it does so

on each affine open subset of S. This proves the following proposition:
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Proposition 2.3. Let F be a quasi-coherent OS-module. Then giving a structure of D(M)S-
module on F is the same thing as giving to F a M-grading.

Remark 2.4. (added after the lecture) Note that Fm is the “weight space corresponding to the
character m”, that is, for any affine open subset U = SpecR of S, Fm(U) is the R-submodule
of those x ∈ Fm(U) such that for every affine U -scheme U ′ = SpecR′ and h ∈ D(M)(U ′) one
has in F(U)⊗R R′ the equality

(2.4) h · (x⊗ 1) = (IdF(U) ⊗ h)(x⊗m) = m(h)(x⊗ 1).

So the M -grading is in fact a decomposition into weight spaces.

Remark 2.5. Beware that if the base S is not quasi-compact, the (separated) presheaf U 7→
⊕

m∈M Fm(U)
is not a sheaf, and needs to be sheafified to get the direct sum sheaf

⊕
m∈M Fm. For example, take M infinite,

for example M = Z, let k be a field, say algebraically closed, and let S be the constant scheme MSpec(k). For
each m ∈ M , denote by fm the function equal to 1 on the m-th copy and to 0 on the other copies. Define
a D(M)S-action on F = OS by µ(fm) = fm ⊗ m for each m. Then any quasi-compact open subset U of S
corresponds to a finite subset E of M , and F(U) is the direct sum of the Fm(U), all zero except for those m ∈ E.
However, F(S) =

∏
m∈M km is not the direct sum of the Fm(S) = km.

Notes for this Lecture

Diagonalisable groups are introduced in Exp. I, §4.7 (where Proposition 2.3 is proved), and again in Exp. VIII,

Def. 1.1.


