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LECTURE 1

Diagonalisable groups and MT-groups.Representations of
diagonalisable groups

1. Diagonalisable Groups and Groups of Multiplicative Type

In this section, M denotes a finitely generated abelian group.1

Definition 1.1. The group algebra Z[M ] of M over Z is a Hopf algebra, with comultiplica-
tion, counit and antipode given, for all m ∈M , by: 2

∆(em) = em ⊗ em, ε(em) = 1 τ(em) = e−m.

Hence the Z-scheme D(M) = SpecZ[M ] is a commutative group scheme over Z: for every
scheme S, its set of S-points is:

(1.1) D(M)(S) = HomSch(S, SpecZ[M ]) = HomAlg(Z[M ],OS(S)) = Homgrp(M,OS(S)×),

endowed with the group structure (φ · ψ)(m) = φ(m)ψ(m).
The group scheme D(M) is affine, finitely presented and faithfully flat over Z, since Z[M ] is

a free Z-module and a finitely presented Z-algebra (see below).
Note first that D(Z) = Gm and D(Z/nZ) = µn for each n ≥ 2. Note also that if M = N⊕N ′

then Z[M ] = Z[N ]⊗ZZ[N ′] and D(M) = D(N)×D(N ′). Thus, writing M ' Zd⊕
⊕f

i=1 Z/niZ,
one has

D(M) ' (Gm)d × µn1 × · · ·µnf
and Z[M ] ' Z[T±1

1 , . . . , T±1
d ][X1, . . . , Xf ]/(Xn1

1 − 1, . . . , X
nf

f − 1), which shows that it is a finitely presented

Z-algebra.

Next, for any base scheme S, one defines D(M)S = D(M) × S. For every scheme S ′ → S,
one still has: 3

(1.2) D(M)S(S ′) = HomS-Sch(S ′, D(M)S) = HomSch(S ′, D(M)) = Homgrp(M,OS′(S ′)×).

By base change, the group scheme D(M)S is affine, finitely presented and flat over S. It is
smooth if and only if the order of the torsion part of M is invertible on S.

One says that a group scheme H over S is diagonalisable if it is isomorphic with D(M)S for
some M . If M is free of rank d then D(M)S is isomorphic with Gd

m,S and is called a split torus
of dimension d.

Remark 1.2. (added after the lecture) In view of (1.2) each m ∈M defines, for every S-scheme
S ′, a group homomorphism D(M)(S ′)→ OS′(S ′)×, which is functorial in S ′. One says that m is
a character of D(M)S (see Def. 3.5 below). Thus, for every h ∈ D(M)(S ′) one has an element
m(h) of OS′(S ′)×.

For the sake of simplicity, we adopt the definition below, more restrictive than SGA3 IX 1.1 as we fix the

group M beforehand, but this entails no loss of generality (see remarks 7.7 and 7.9 later).

0version of August 16, 2023. Two minor typos corrected.
1In SGA3, arbitrary abelian groups are also considered, e.g. M = Q, but the most interesting results are

obtained when M is finitely generated.
2Here (em)m∈M is the canonical basis of Z[M ]. In the sequel we will often write simply m instead of em.
3That is, the functor D(M)S is the restriction of D(M) to the category of S-schemes.
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2 1. DIAGONALISABLE GROUPS AND MT-GROUPS.REPRESENTATIONS OF DIAGONALISABLE GROUPS

Definition 1.3. A group scheme H over S is said to be of multiplicative type of type M
if for each s ∈ S there exists an affine open neighbourhood U of s and a surjective flat morphism
U ′ → U , with U ′ affine,4 such that H ×S U ′ ' D(M)U ′ . Further, one says that H is :

• quasi-isotrivial if one may choose the maps U ′ → U to be étale;
• isotrivial if there exists a surjective finite étale map S ′ → S such that H ×S S ′ '
D(M)S′ .
• locally isotrivial (resp. locally trivial) if each s ∈ S admits an affine open neighbourhood
U such that HU = H ×S U is isotrivial (resp. diagonalisable).

If M is free of rank d, one says that H is a d-dimensional torus over S.

Proposition 1.4. Let H be a S-group scheme of multiplicative type of type M . Then H is
affine, finitely presented and flat over S.

Proof. The assertion to prove is that the structural morphism f : H → S is affine, finitely
presented and flat. This assertion is local on the base so we may assume that S is affine and
there exists a surjective flat morphism S ′ → S, with S ′ affine, such that HS′ ' D(M)S′ . Then
the morphism fS′ : HS′ → S ′ is affine, finitely presented and flat. By [EGA] IV2, Prop. 2.7.1,
these properties are already true for f , since the morphism S ′ → S is flat, surjective and affine,
hence faithfully flat and quasi-compact. �

It is easy to give examples of isotrivial groups of multiplicative type which are not diagonal-
isable.

Example 1.5. Let R be a ring, R → R′ an étale covering with Galois group Γ and Γ →
Aut(M) a morphism of groups. Then Γ acts by semi-linear automorphisms of Hopf algebra on
B = R′[M ] via γ(bm) = γ(b)γ(m),5 and the invariants form a Hopf algebra A over R.

By Galois descent (see e.g. [BLR], §6.2, Example B), we know that B ' A ⊗R R′ as Hopf
algebras and as Γ-modules, where on the right-hand side Γ acts by γ(a ⊗ r′) = a ⊗ γ(r′).
Therefore, H = SpecA is an isotrivial group of multiplicative type of type M over S = SpecR,
which becomes diagonalisable over S ′ = SpecR′. In general it is not diagonalisable; in fact, we
will see later that H is diagonalisable if and only if the action of Γ on M is trivial.

(Added after the lecture) For every S-scheme T , one has natural identifications:

HomS(T,H) = HomS(T ×S S ′, H)Γ = HomS′((T ×S S ′, HS′)
Γ = HomS′((T ×S S ′, D(M)S′)

Γ

= Homgrp(M,Gm(T ×S S ′))Γ.

Thus, H represents the group functor T 7→ Homgrp(M,Gm(T ×S S ′))Γ.

A basic, and already instructive, example is:

Example 1.6. Consider R → C, with Galois group Γ = {id, τ}, and the morphism Γ →
GL(Z) = Z× which sends τ to −1. Then the R-algebra A of Γ-invariants in C[Z] = C[T, T−1] is
generated by X = (T +T−1)/2 and Y = (T −T−1)/2i and one has A ' R[X, Y ]/(X2 +Y 2− 1).
Note that S1 = SpecA represents the group functor which associates to every R-algebra R the
group of elements z = a+ ib in R⊗RC = R⊕ iR such that z−1 = z, that is, (a+ ib)(a− ib) = 1.

A more elaborate example is:

Example 1.7. Let k be a field of characteristic p, let x, y be indeterminates and consider the Artin-Schreier
extension k[y]→ k[x], given by y 7→ xp−x. It is a Galois covering with group Γ = Z/pZ. Let Γ→ GL(Zp) be the
group morphism which sends the generator 1 of Γ to the automorphism which permutes cyclically the generators:
e1 7→ e2 7→ · · · 7→ ep 7→ e1, and let A = (k[x][Zp])Γ. Then H = SpecA is an isotrivial torus of dimension p over

4If U is only required to be quasi-compact, it is covered by finitely many affine open subsets V ′1 , . . . , V
′
n, then

their sum V ′ is affine and V ′ → U is flat and surjective. So there is no loss in assuming that U ′ is affine.
5The semi-linearity means in fact that the action of Γ on B is compatible with its action on R′.



2. REPRESENTATIONS OF DIAGONALISABLE GROUPS 3

the affine line S = Spec k[y], which becomes trivial over S′ = Spec k[x]. On can see that it represents the group
functor which associates to every k[y]-algebra R the group of invertible elements in R⊗k[y] k[x], see Remark 4.9
below.

Remark 1.8. Over a connected base, it is not easy to give examples of groups of multiplica-
tive type of type M which are not isotrivial, or which are locally trivial but not diagonalisable.
In fact, as we shall see later, no such examples exist over a connected, normal, locally noetherian
base S.

Two such examples over a nodal curve (irreducible or not) appear in [SGA32], Exp. X, 1.6
(see also [Oes14], end of §7.1)) and will be detailed in another lecture.

2. Representations of diagonalisable groups

Again, M denotes a finitely generated abelian group.

Definition 2.1. Let G be an affine group scheme over S, given by a quasi-coherent OS-
algebra A. Let ∆ : A → A ⊗OS A (called the comultiplication map) and ε : A → OS (called
the augmentation map) be the morphisms of OS-algebras corresponding to the multiplication
G×S G→ G and to the unit section S → G. They satisfy the following equalities:

(2.1) (∆⊗ IdA) ◦∆ = (IdA ⊗∆) ◦∆ and (ε⊗ IdA) ◦∆ = IdA = (IdA ⊗ ε) ◦∆

where in the second set of equalities we have used the identifications OS⊗OSA = A = A⊗OSOS.
The inversion map of G induces a morphism of OS-algebras τ : A → A (the antipodal map), satisfying the

equalities corresponding to the identities gg−1 = e = g−1g and (gh)−1 = h−1g−1.

Then, a quasi-coherent OS-module F is called a G-module if it is endowed with a structure
of right A-comodule, that is, a map of OS-modules µF : F → F ⊗OS A satisfying:

(2.2) (µF ⊗ IdA) ◦ µF = (IdF ⊗∆) ◦ µF and (IdF ⊗ ε) ◦ µF = IdF .

Remark 2.2. (added after the lecture) Let U = SpecR be an affine open subset of S. Then
F(U) is a R-module, GU = SpecA for some R-Hopf algebra A and we have the R-linear map
µF(U) : F(U) → F(U) ⊗R A. Let x ∈ F(U). For every affine U -scheme U ′ = SpecR′ and
g ∈ G(U ′) = HomR-Alg(A,R′), one has in F(U)⊗R R′ the equality

(2.3) g · (x⊗ 1) = (IdF(U) ⊗ g)µF(U)(x).

Now, suppose that G = D(M)S and let F be a quasi-coherent G-OS-module. Thus, one has
the comodule map µF : F → F ⊗OS OS[M ]. This means that for any affine open subset U of S,
one has an OS(U)-linear map

µF(U) : F(U)→
⊕
m∈M

F(U)⊗OS(U) OS(U)m,

sending each section x ∈ F(U) to a finite sum
∑

m∈M pm(x) ⊗ m, where the pm’s are OS(U)-
linear endomorphisms of F(U), all zero on F(U) but a finite number of them. Then (2.2) gives
that ∑

m′,m∈M

pm′(pm(x))⊗m′ ⊗m =
∑
m∈M

pm(x)⊗m⊗m and x =
∑
m∈M

pµ(x).

In particular, the pm’s are orthogonal projectors whose sum is the identity of F(U). Moreover,
the image of pm is the direct summand

Fm(U) = {x ∈ F(U) | µF(x) = x⊗m}.
Thus F(U) =

⊕
m∈M Fm(U) and hence F coincides with the sheaf

⊕
m∈M Fm, since it does so

on each affine open subset of S. This proves the following proposition:
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Proposition 2.3. Let F be a quasi-coherent OS-module. Then giving a structure of D(M)S-
module on F is the same thing as giving to F a M-grading.

Remark 2.4. (added after the lecture) Note that Fm is the “weight space corresponding to the
character m”, that is, for any affine open subset U = SpecR of S, Fm(U) is the R-submodule
of those x ∈ Fm(U) such that for every affine U -scheme U ′ = SpecR′ and h ∈ D(M)(U ′) one
has in F(U)⊗R R′ the equality

(2.4) h · (x⊗ 1) = (IdF(U) ⊗ h)(x⊗m) = m(h)(x⊗ 1).

So the M -grading is in fact a decomposition into weight spaces.

Remark 2.5. Beware that if the base S is not quasi-compact, the (separated) presheaf U 7→
⊕

m∈M Fm(U)
is not a sheaf, and needs to be sheafified to get the direct sum sheaf

⊕
m∈M Fm. For example, take M infinite,

for example M = Z, let k be a field, say algebraically closed, and let S be the constant scheme MSpec(k). For
each m ∈ M , denote by fm the function equal to 1 on the m-th copy and to 0 on the other copies. Define
a D(M)S-action on F = OS by µ(fm) = fm ⊗ m for each m. Then any quasi-compact open subset U of S
corresponds to a finite subset E of M , and F(U) is the direct sum of the Fm(U), all zero except for those m ∈ E.
However, F(S) =

∏
m∈M km is not the direct sum of the Fm(S) = km.

Notes for this Lecture

Diagonalisable groups are introduced in Exp. I, §4.7 (where Proposition 2.3 is proved), and again in Exp. VIII,

Def. 1.1.



LECTURE 2

Constant and twisted constant groups, biduality

3. Constant groups and biduality. Character groups

In this section we fix a base scheme S. For the sake of brevity, we will sometimes write D-group

(resp. MT-group) over S instead of diagonalisable group over S (resp. S-group of multiplicative type).

Definition 3.1. To every non-empty set M one associates the S-scheme MS which is the
direct sum of a family (Sm)m∈M of copies of S indexed by M . It is étale over S, and is finite
over S if and only M is finite. Such a scheme is called a constant scheme over S.

The sections Γ(MS/S) of the projection MS → S are the locally constant functions from the
topological space S to M , denoted by Loc(S,M). For any S-scheme S ′, one has MS×S S ′ 'MS′

hence:

(3.1) HomS-Sch(S ′,MS) = HomS′-Sch(S ′,MS′) = Loc(S ′,M).

Thus, MS represents the functor which associates Loc(S ′,M) to every S-scheme S ′.

On the other hand, to give a morphism from MS to a S-scheme H is the same as giving, for
each m ∈M , a morphism of S-schemes S → H, i.e. an element of H(S); thus one has:

(3.2) HomS-Sch(MS, H) = HomSets(M,H(S)).

If u : M → N is a map of sets, it induces a morphism of S-schemes uS : MS → NS. One
therefore obtains a functor M 7→MS from the category of non-empty sets to that of S-schemes.
It commutes with products, i.e. one has

MS ×S NS ' (M ×N)S.

Thus, if M is a group one obtains that MS is a group scheme, called a constant group scheme
over S. If u : M → N is a morphism of groups, then uS : MS → NS is a morphism of S-group
schemes. Thus, M → MS is a functor from the category of groups to that of S-group schemes.
Further, as in (3.2), for every S-group scheme H one has:

(3.3) HomS-Gr(MS, H) = Homgrps(M,H(S)).

Definition 3.2. Let G,H be S-group schemes. The functor HomS-Gr(G,H) is defined as

follows: its value on a S-scheme T is the set HomT -Gr(GT , HT ) of morphisms of T -group schemes
from GT to HT . This is a contravariant functor from the category of S-group schemes to the
category of sets. This functor is clearly “compatible with base change”, that is, for any S-scheme
T one has:

(3.4) HomS-Gr(G,H)×S T = HomT -Gr(GT , HT )

as both sides send any T -scheme U to HomU -Gr(GU , HU).

Further, if the group law of H is commutative, it induces on HomS-Gr(G,H) the structure of
a commutative group functor. In particular, the group functor HomS-Gr(G,Gm,S) is denoted
by D(G). For future use, let us record (3.4) in this case as:

(3.5) D(G)T = D(GT )
0version of August 16, 2023, after the lecture.
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6 2. CONSTANT AND TWISTED CONSTANT GROUPS, BIDUALITY

In the rest of this section, M denotes a finitely generated abelian group.

Remark 3.3. Suppose that G = MS. Then, for every S-scheme T one has, by the previous
definition and (1.2):

D(MS)(T ) = HomT -Gr(MT ,Gm,T ) = Homgrps(M,OT (T )×) = D(M)S(T ).

Thus the functor D(MS) is represented by the diagonalisable S-group scheme D(M)S.

Next, let G = D(M)S. For every S-scheme T , both GT = D(M)T and Gm,T are affine
over T and correspond to the quasi-coherent OT -Hopf algebras OT [M ] and OT [X,X−1] (the
comultiplication of the latter being ∆(X) = X ⊗X). Hence, one has:

D(D(M)S)(T ) = HomT -Gr(D(M)T ,Gm,T ) = HomOT -Hopf(OT [X,X−1],OT [M ]).

Note that any locally constant function φ : T → M defines a partition of S into the open and
closed subschemes Sm on which φ takes the value m, and on Sm this defines the Hopf algebra
morphism given by X 7→ m. This defines a monomorphism MS → D(D(M)S). Further, one
has the following biduality theorem:

Theorem 3.4. The natural morphism MS → D(D(M)S) is an isomorphism.

Proof. We must prove that every morphim of OT -Hopf algebras ψ : OT [X,X−1]→ OT [M ]
is obtained as above. But OT has a natural structure of OT [X,X−1]-comodule, given by
µGm(f) = f ⊗X for any local section of OT (this corresponds to the natural action of OT ′(T ′)×
on OT ′(T ′) for any T -scheme T ′).

Therefore, ψ makes F = OT into an OT [M ]-comodule, with coaction µG given by

(∗) µG(f) = f ⊗ ψ(X).

for any local section of OT . Hence, by Proposition 2.3, for each t ∈ T , the local ring OT,t is the
direct sum of the stalks Fm,t, for m ∈ M , which are therefore projective OT,t-modules of rank
0 or 1. It follows that for each t ∈ T there exists a unique m ∈ M such that Fm 6= 0 on some
open neighbourhood of t, and one has Fm = OT on this neighbourhood.

This gives a partition of T into open and closed subschemes Tm, hence a locally constant
function φ : T → M . Further, over each Tm one has OT = Fm hence for any local section f of
OTm one has µG(f) = f ⊗m.

Comparing with (∗) above, we see that on Tm the Hopf algebra morphism ψ is given by
X 7→ m, hence ψ is the Hopf algebra morphism corresponding to the locally constant function
φ. This proves the theorem. �

Definition 3.5. The constant group scheme MS is called the character group of the diago-
nalisable group D(M)S.

4. Twisted constant groups. Anti-equivalence with groups of multiplicative type

Definition 4.1. A group scheme E over S is said to be a twisted constant group of
type M if for each s ∈ S there exists an affine open neighbourhood U of s and a surjective flat
morphism U ′ → U , with U ′ affine, such that E ×S U ′ 'MU ′ . Further, one says that E is :

• quasi-isotrivial if one may choose the maps U ′ → U to be étale;
• isotrivial if there exists a surjective finite étale map S ′ → S such that E×S S ′ 'MS′ .
• locally isotrivial (resp. locally trivial) if each s ∈ S admits an affine open neighbourhood
U such that E ×S U is isotrivial (resp. constant).

Example 4.2. Let S ′ → S be a finite étale Galois covering with Galois group Γ and let
Γ → Aut(M) be a morphism of groups. Then recall (see e.g. [SGA1], Exp. V) the following
facts:
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(1) One has S ′ ×S S ′ ' S ′ × Γ (a disjoint sum of copies of S ′).

(2) For each subgroup G of Γ, there exists a scheme Y , étale over S, which is the quotient
S ′/G, that is, for every S-scheme Z one has

HomS(S ′/G,Z) = HomS(S ′, Z)G

where the right-hand side denotes the G-equivariant S-morphims f : S ′ → Z, that is,
f ◦ γ = f for all γ ∈ Γ (note that the action of G on Z is trivial).1

(3) For any S-scheme T , one has (S ′/G)×S T ' (S ′ ×S T )/G.

(4) In particular, one has (S ′/G)×S S ′ ' (S ′ × Γ)/G ' S ′ × (Γ/G).

Now Γ acts on MS′ =
∐

m∈M S ′m by sending the m-th copy of S ′ to the γ(m)-th copy via the
automorphism γ of S ′. Denote by M/Γ the set of Γ-orbits in M , choose a representative m in
each orbit and denote by Γm its stabilizer. Consider the étale S-scheme

E =
∐

m∈M/Γ

S ′/Γm

and denote it by MS′/Γ. As we will see in a later lecture, this is indeed the quotient of MS′ by Γ, in the
sense that for any S-scheme Z, we have natural identifications

HomS(E,Z) =
∏

m∈M/Γ

HomS(S′/Γm, Z) =
∏

m∈M/Γ

HomS(S′, Z)Γm =
∏
m∈M

HomS(MS′ , Z)Γ.

Further, applying Fact (4) above to each S ′/Γm, one obtains that E ×S S ′ 'MS′ .

On the other hand, for any S-scheme T , one has natural identifications

HomS(T,E) = HomS(T ×S S ′, E)Γ = HomS′(T ×S S ′, ES′)Γ

= HomS′(T ×S S ′,MS′)
Γ = Loc(T ×S S ′,M)Γ.

Therefore, E represents the group functor T → Loc(T ×S S ′,M)Γ. Since ES′ ' MS′ , it an
isotrivial twisted constant group of type M , which splits over S ′.

Example 4.3. Let S = SpecR and S ′ = SpecC, with Galois group Γ = {id, τ} acting
on M = Z by τ(n) = −n. Then τ acts on ZS′ =

∐
n∈Z(SpecC)n by swapping (SpecC)n and

Spec(C−n), the comorphism being τ : C → C. The quotient scheme E = ZS′/Γ is the sum of
Spec(R)0 and a sum of copies of SpecC indexed by (Z − {0})/Γ. This is an isotrivial twisted
constant group of type Z over SpecR, which splits over SpecC.

Now, we have the following three results. The complete proofs rely on the powerful technique
of faithfully flat descent, to be discussed in another lecture.

Proposition 4.4. Let E be a twisted constant S-group scheme of type M . Then:

(1) D(E) is representable by a S-group scheme H of multiplicative type of type M .
(2) One has E ' D(H). Thus E is reflexive.
(3) E is constant if and only if H is diagonalisable, and E is quasi-isotrivial (resp. isotrivial,

resp. locally isotrivial, resp. locally trivial) if and only if H is so.

Proposition 4.5. Let H be a S-group scheme of multiplicative type, quasi-isotrivial of type
M . Then:

(1) D(H) is representable by a quasi-isotrival twisted constant group E of type M .
(2) One has H ' D(E). Thus H is reflexive.
(3) H is diagonalisable if and only if E is constant, and is isotrivial (resp. locally isotrivial,

resp. locally trivial) if and only if E is so.

1If S = SpecR and S′ = SpecR′, then S′/G = SpecR′G.
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Theorem 4.6. Fix a base scheme S.

(1) The functors E 7→ D(E) and H 7→ D(H) are type-preserving anti-equivalences, quasi-
inverse one to another, between the category of twisted constant finitely generated abelian
groups E, quasi-isotrivial over S, and the category of finitely presented groups of mul-
tiplicative type, quasi-isotrivial over S.

(2) These functors induce anti-equivalences, quasi-inverse one to another, between the sub-
categories of groups which are isotrivial, resp. locally isotrivial, resp. locally trivial.

We will begin the proof of these results in the next section, and complete it in the next
lecture. Before that, let us describe everything explicitly in the Galoisian case: for the rest of
this section, S ′ → S is a Galois covering with group Γ, and Γ acts by group automorphisms on
M .

Example 4.7. Let E = MS′/Γ be as in example 4.2. For every S-scheme T one has

E ×S T = (MS′ ×S T )/Γ = MS′×ST/Γ,

by Fact (3) of 4.2, and hence one has natural identifications

D(E)(T ) = HomT -Gr(ET ,Gm,T ) = HomT -Gr(MS′×ST ,Gm,T )Γ = Homgrp

(
M,Gm(S ′ ×S T )

)Γ
.

Combined with the discussion in Example 1.5, this shows that D(E) is represented by the S-
group of multiplicative type H = SpecR′[M ]Γ, assuming for simplicity that S = SpecR and
S ′ = SpecR′.

Example 4.8. Conversely, if H = SpecR′[M ]Γ, it follows from the reflexivity part of
Prop. 4.4 that D(H) = MS′/Γ. This can also be seen directly, as follows. Let T be a S-scheme.
Firstly, one has

HT ×S S ′ = H ×S T ×S S ′ = HS′ ×S T = D(M)S′ ×S T = D(M)S′×ST

and hence

HomT -Gr(HT ×S S ′,Gm,T ) = HomT -Gr(D(M)S′×ST ,Gm,T )

= HomT ×S S′-Gr(D(M)S′×ST ,Gm,T×SS′) = Loc(T ×S S ′,M).

Therefore, one has

D(H)(T ) = HomT -Gr(HT ,Gm,T ) = HomT -Gr(HT ×S S ′,Gm,T )Γ = Loc(T ×S S ′,M)Γ

and it follows that D(H) is represented by MS′/Γ.

Example 4.9. Now, consider the case where H corresponds to the permutation representa-
tion M = Z[Γ]. Then, by the discussion in Example 1.5, one has for every S-scheme T :

H(T ) = Homgrp

(
Z[Γ],Gm(T ×S S ′)

)Γ
= Homgrp

(
Z,Gm(T ×S S ′)

)
= Gm(T ×S S ′).

Thus, H is the Weil restriction ResS
′

S Gm,S′ . (This generalizes Example 1.7.)

Remark 4.10. To answer a question of Prof. Balaji during the lecture, let us give immediately an example
of a MT-group over S which is quasi-isotrivial but not locally isotrivial. Let k be a field, algebraically closed
if one wants, and let S be the affine curve obtained by identifying the points 0 and 1 of A1

k, that is, its ring of
functions is R = O(S) = {P ∈ k[t] | P (0) = P (1)}. As k-algebra, R is generated by the elements x = t(t − 1)
and y = t2(t− 1), which satisfy the equation x3 = y(y − x) and one finds that S is the nodal cubic given by this
equation.

Consider the auxiliary curve S obtained by glueing two copies of A1
k by identifying 0 of each copy with 1 of

the other copy. Then Γ = Z/22Z acts freely on Q and the quotient is S; thus Q→ S is an étale covering.2 Then
the open subscheme U of Q obtained by removing one of the singular points is still étale over S. Let us say that
it is copy 0 of A1

k with its point 1 glued to point 0 of the copy number 1 of A1
k. Then we can glue the point 0

2For another proof, see [Tsi14], Lect. 7, §5.3.
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of that copy to the point 0 of a copy number 2 of A1
k, and then the point 1 of that copy to the point 0 of copy

number 3, and so on. We can do the same in the negative direction, that is, glue the point 0 of copy 0 to the
point 1 of copy −1, and so on. In this way, we obtain a curve P (not quasi-compact!) which is étale over S, is
endowed with an obvious action of the constant group ZZ, and is in fact a principal Z-bundle over S in the étale
topology; that is, P ×S P ' P × Z.

Using the group morphism Z→ GL(Z2) given by n 7→
(

1 n
0 1

)
, ones obtains an action of Γ = Z on the split

2-dimensional torus D(Z2)P , extending the action of P . Using that D(Z2)P is affine over P , one can construct
the quotient by Γ (more on this in a later lecture) and one obtains a S-group scheme H such that HP ' D(Z2)P ,
hence H is isotrivial. From the principal Z-bundle P we can construct a (Z/nZ)-bundle P over S, for each integer
n > 1. (Note that P2 is the previous auxiliary curve Q.) Clearly, the pull-back of H to Pn is not trivial because
the given action of Z on Z2 does not factor trough any quotient Z/nZ.

Finally, one can prove that P is a universal cover of S, in the sense that any finite Galois covering S′ → S
is dominated by some Pn. (This is implicit in [SGA1], Exp. I, §11 a) together with [SGA32], Exp. X, 1.6, and
a proof can be found, e.g. in [Tsi14], Lect. 7, §5.3.) It follows that H is not isotrivial on any neighbourhood of
the singular point s. (However one sees that is is trivial on S − {s}.)

5. Notes for this Lecture

The biduality theorem (Th. 3.5) is proved in Exp. VIII, Th. 1.2 in a greater generality.
Groups of multiplicative type over S are defined in Exp. IX, Def. 1.1. Their duals, the twisted constant

groups, are introduced in Exp. X, Def. 5.1.

The example of the previous remark is discussed in Exp. X, 1.6.





LECTURE 3

Duality between twisted constant and MT-groups. Exactness of the
functor D

6. More on the duality functor D: reflexive groups

In this section we fix a base scheme S. As in SGA3 VIII §1, we denote by I the commutative
group scheme Gm,S. Let G be a group scheme over S, and assume that the functor D(G) =
HomS-Gr(G, I) is representable.1 For every S-scheme T , one has:

HomS-Sch(T,D(G)) = D(G)(T ) = HomT -Gr(GT , IT ) = HomS-Gr(G×S T, I).

This is the subset of morphisms of S-schemes G ×S T → I which are “multiplicative with
respect to the first argument”. If T = G′ is another S-group scheme, we may consider the
subset HomS-Gr(G

′, D(G)); it is the subset of morphims of S-schemes G ×S G′ → I which are
bimultiplicative, that is, multiplicative with respect to both arguments. As here G and G′ play
symmetric roles, we obtain the first assertion of the following proposition:

Proposition 6.1. Let G,G′ be S-group schemes, and assume that D(G) is representable.
Then one has the first equality below, and also the second if D(G′) is representable:

(6.1) HomS-Gr(G
′, D(G)) = D(G′)(G) = HomS-Gr(G,D(G′)).

This is compatible with any base change T → S, i.e. if f : G′ → D(G) is a morphism of S-group
schemes corresponding to g : G → D(G′), then the morphism fT : G′T → D(G)T = D(GT )
corresponds to gT : GT → D(G′)T = D(G′T ).

The second assertion follows since f and g correspond to a given bimultiplicative morphism φ : G×SG′ → I;

by base change it defines a bimultiplicative map φT : (G ×S G′)T = GT ×T G′T → IT which gives rise to fT on

the one hand and to gT on the other hand.

Definition 6.2. Let G be an S-group scheme. We say that G is reflexive if D(G) is
representable and the canonical morphism G → D(D(G)) is an isomorphism.2 Note that this
implies that G is commutative.

In this case, for any S-group scheme G′ such that D(G′) is representable, (6.1) gives:

(6.2) HomS-Gr(G
′, G) = HomS-Gr(D(G), D(G′)).

Corollary 6.3. The functor D induces an anti-equivalence of categories from the category
of reflexive S-group schemes to itself.

In view of this corollary, we see that Theorem 4.6 follows from Propositions 4.4 and4.5.

We will prove in the next lecture assertion (1) of both propositions. We take this for granted
for the moment and we prove assertions (2) and (3), firstly in the case of 4.4.

0version of August 16, 2023, after the 2nd lecture.
1This is not really needed, see SGA3 VIII §1.
2This is more restrictive than Exp. VIII, Def. 1.0.1, which does not require that D(G) be representable, but

this suffices for our purposes.

11
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Proof. Let us prove assertion (2). Since H = D(E), Proposition 6.1 gives us a S-morphism
u : E → D(H). The assertion that u is an S-isomorphism is local on the base so we may assume
that S is affine and that there exists a surjective flat morphism S ′ → S, with S ′ affine, such that
ES′ 'MS′ . Then HS′ = D(E)S′ = D(ES′) ' D(MS′).

Further, the morphism uS′ : ES′ → D(H)S′ = D(HS′) obtained by base-change corresponds
to the bimultiplicative map

ES′ ×S′ HS′ 'MS′ ×S′ D(MS′)→ Gm,S′ ,

hence uS′ is an isomorphism since MS′ is reflexive. Then one can invoke again [EGA] IV2,
Prop. 2.7.1, which says that u is an isomorphim.3 This proves assertion (2).

Now, over any S ′ → S, if ES′ is constant then D(E)S′ = D(ES′) is diagonalisable, and the
converse is true by the biduality theorem 3.4. This proves assertion (3). The proof is completely
similar in the case of 4.5. �

7. Exactness of the functor D

In this section, we fix a base scheme S. Before we can speak of kernels and quotients
in Proposition 7.4, we need to introduce some definitions. Consider a morphism of S-group
schemes φ : G→ Y .

Definition 7.1. Its kernel K = Kerφ is the S-group scheme defined as the fiber product:

K //

��

G

φ

��
S

e // Y

where e : S → Y denotes the unit section. For any S-scheme T , one has K(T ) = Kerφ(T ),
which is a normal subgroup of G(T ); thus K is a normal subgroup scheme of G.4 If e is a closed
immersion5, so is K → G.

Definition 7.2. Note that the morphism G×Y G→ G×S G is an immersion6, see [EGA],
I 5.3.10 together with the correction III2, Err10 to I 5.3.9. The multiplication of G induces a
morphism of S-schemes G×SK → G×SG, given on arbitrary T -points by (g, k) 7→ (g, gk), and
this morphism induces an isomorphism of S-schemes:

(7.1) G×S K → G×Y G.
Set Rφ = G×Y G and denote by p1, p2 the two projections from Rφ to G.

Given a S-scheme Z, we say that a morphism of S-schemes u : G → Z is K-invariant if
p∗1(u) = p∗2(u); this is equivalent to saying that for an arbitrary S-scheme T and any x ∈ G(T )
and h ∈ K(T ), one has u(T )(xh) = u(T )(x).

Next, we say that the morphism φ : G→ Y “is the quotient scheme G/K” if the map φ∗

induces, for every S-scheme Z, a bijection:

(7.2) HomS-Sch(Y, Z)
φ∗

∼
// {K-invariant S-morphisms X → Z}.

3In loc. cit. this is buried as one among 17 cases of fpqc descent of properties of morphisms, but in fact
this follows from first principles of descent theory for fpqc morphisms ([SGA1], VIII, Cor. 5.3 combined with
[SGA31], IV, Prop. 2.4 a)), as we shall explain in another lecture.

4This can be expressed in terms of morphisms by saying that the morphism G×SK → G “given on arbitrary
T -points by (g, k) 7→ gkg−1” factors through K.

5This is the case if Y is separated (in particular, affine) over S, because e is the pull-back of the diagonal
map G→ G×S G by the map idG × e.

6That is, a closed immersion followed by an open immersion.
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Using the language of the next lecture, (7.2) means that φ : G → Y is an effective epimor-
phism.

Remark 7.3. In the classical theory, if k is an algebraically closed field and H ⊂ G are algebraic groups over
k (that is, reduced k-group schemes of finite type), one shows that the set G(k)/H(k) is the set of k-points of
some algebraic variety W , namely the orbit G(k) · [v] in P(V ), where V is a representation of G and [v] is a line
for which the isotropy group is H(k) and the isotropy Lie algebra inside Lie(G) is Lie(H) (which ensures that
H is actually the schematic stabiliser of [v]), and one defines G/H as W . Then it is proved, somehow as a side
result, that W satisfies the universal property (7.2) above, with K replaced by H.

Over a general base scheme S, the situation is completely different: quotients G/H do not always exist ! For
this reason, one has to characterize the quotients G/H (if they exist) by the universal property (7.2) above (with
K replaced by H), and then look for some S-scheme Y satisfying this property. By Yoneda lemma, such a Y is
unique up to unique isomorphism; due to this strong uniqueness property, Y may be constructed locally, that is,
if we find an open cover (Ui) of S and a scheme Yi over Ui, then the Yi glue to a scheme Y over S which is the
sought-for quotient G/H. More on this in the next lecture.

In the rest of this section, given an abelian group M we write DS(M) instead of D(M)S.

Proposition 7.4. Let 0 // P
u // M

v // N // 0 be an exact sequence of abelian
groups. Set G = DS(M) and Y = DS(P ). Then:

(1) DS(v) is an isomorphism from K = DS(N) to KerDS(u) and is a closed immersion.

(2) DS(u) : G→ Y is affine and faithfully flat.

(3) Y is the quotient G/K.

(4) The formation of this quotient commutes with base change, i.e. for any S-scheme T ,
YT is the quotient GT/KT .

Proof. (1) Let us prove that the morphism DS(v) : DS(N) → K is an isomorphism. It
suffices to prove that, for any S-scheme T , the map DS(N)(T )→ K(T ) is bijective. But K(T )
is the set of group morphisms f : M → OT (T )× such that f ◦u is the trivial morphism, which is
the same as Homgrp(M/P,OT (T )×) = DS(N)(T ). This proves the first assertion. Further, the
map OS[M ]→ OS[N ] is surjective, hence DS(v) is a closed immersion.7

(2) Let (Ui) be a covering of S by affine open subschemes Ui = SpecAi. Then Y = DS(P )
is covered by the affine open subschemes YUi = SpecAi[P ] and GUi = SpecAi[M ] is affine over
YUi . Further, denoting by τ : N →M a set-theoretic section of the projection M → N , one sees
that Ai[M ] is free over Ai[P ] with basis (τ(n))n∈N . It follows that G is affine and faithfully flat.

Assertion (3) follows since any faithfully flat quasi-compact morphism is an effective epi-
morphism (see Def. 7.2), as we shall see in the next lecture.

As for (4), we could invoke the general fact that a faithfully flat quasi-compact morphism
remains so after base change. But here (4) follows directly since GT = DT (M) and KT = DT (N),
hence by (3) applied to T instead of S one has GT/KT = DT (P ) = DS(P )×S T = YT . �

Proposition 7.5. Let M,N be abelian groups. Set E = Homgrp(M,N).

(1) There is a natural monomorphism ES → HomS-Gr(MS, NS).

(2) If M is finitely generated, this monomorphism is an isomorphism.

Proof. Set F = HomS-Gr(MS, NS). Let T be a S-scheme. Then ES(T ) = Loc(T,E)
identifies with the set of maps f : M × T → N which are additive in the first variable and
“uniformly locally constant” in the second variable, i.e. each t ∈ T admits a neighbourhood U
such that f(m, t) = f(m,u) for all u ∈ U and m ∈ M , whereas F (T ) is the larger set of all
maps g : M ×T → N which are additive in the first variable and such that for each m ∈M and
t ∈ T , there exists a neighbourhood Um of t such that the function gm : u 7→ f(m,u) is constant
on Um.

7One could also say that DS(M)→ S is affine, hence separated, and apply a general result.
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Note that, by additivity, gm′ is constant on Um for all m′ in the subgroup generated by
m. Therefore, if M is generated by elements m1, . . . ,mr, then all gm are constant on the open
neighbourhood

⋂r
i=1 Umi of t. This proves that g belongs to the subset Loc(T,E).8 �

From now on, we assume again that all abelian groups (resp. S-group schemes of multiplica-
tive type) under consideration are finitely generated. Recall that a S-group scheme G is called
locally diagonalisable if each s ∈ S admits an open neighbourhood U such that GU ' D(M)U
for some abelian group M (uniquely defined by s since M = Loc(SpecOS,s,MU)). Thus, one
obtains a partition of S into open and closed subsets over which G is diagonalisable.

Proposition 7.6. Let u : G→ G′ be a morphism of locally diagonalisable S-group schemes
and let K = Keru. Then:

(1) K is locally diagonalisable and K → G is a closed immersion.
(2) The quotient Y = G/K exists and is a locally diagonalizable S-group.
(3) One has u = i ◦ p, where p : G → Y is affine and faithfully flat, and i is a closed

immersion.
(4) Setting H = i(Y ), the quotient G′/H exists, is locally diagonalisable, and is a cokernel

of u.

Therefore, the category of locally diagonalisable S-groups is abelian.

Proof. Since all assertions are local on S, we may assume that G = DS(M) and G′ =
DS(M ′), for some finitely generated abelian groups M,M ′. Then, by the biduality theorem 3.4
and Cor. 6.3, combined with Prop. 7.5, we have

HomS-Gr(G,G
′) = HomS-Gr(M

′
S,MS) = Loc(S,Homgrp(M ′,M)).

Then, again, S is partitioned into open and closed subsets over which u comes from a morphism
of groups f : M ′ → M .9 Setting P ′ = Ker f and N ′ = P = f(M ′) and N = Coker f , we have
exact sequences

0 // P ′ // M ′ // N ′ // 0,

0 // P // M // N // 0.

Then the result follows from Prop. 7.4, with K = DS(N), Y = DS(P ) = DS(N ′) = H and
G′/H = DS(P ′). �

Remark 7.7. The enlargement, when S is not connected, of the category of diagonalisable S-groups to that
of locally diagonalisable S-groups was necessary in order to obtain an abelian category. For example, if k1, k2

are fields, Si = Spec ki and S is the sum of S1 and S2, one may consider the morphism f : Gm,S → Gm,S which
is the identity on S1 and the trivial morphism on S2, then Ker f is the locally diagonalisable group which is the
trivial group over S1 and Gm over S2. It is not diagonalisable.

Using the same technique of faithfully flat descent as the one needed for the proof of assertion
(1) of propositions 4.4 and 4.5 (see the next lecture), one can extend the previous proposition to
the case of S-groups of multiplicative type. For this, we need to adopt the definition of [SGA32],
X, Def. 1.1:

Definition 7.8. A group scheme H over S is said to be of multiplicative type if for each
s ∈ S there exists an affine open neighbourhood U of s, a surjective flat morphism U ′ → U , with
U ′ affine, and a (finitely generated) abelian group M such that H ×S U ′ ' D(M)U ′ . Further,
one says that H is :

• quasi-isotrivial if one may choose the maps U ′ → U to be étale;

8This explanation, nicer than the one in N.D.E. (3) of [SGA32], Exp. VIII, was given orally by Joseph
Oesterlé in his lectures [Oes14].

9This reduction was omitted in [SGA32], VIII, Cor. 3.4.
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• isotrivial if there exists a surjective finite étale map S ′ → S such that H ×S S ′ '
D(M)S′ .
• locally isotrivial (resp. locally trivial) if each s ∈ S admits an affine open neighbourhood
U such that HU = H ×S U is isotrivial (resp. diagonalisable).

Remark 7.9. Then there is a partition of S into open and closed subschemes over which the type of H is
constant. So, in most results we can restrict ourselves to groups of multiplicative type of a given type M , and
the more general definition only brings complications in the statements or hypotheses. However when the base
S is not connected this generality is needed to ensure that the category groups of multiplicative type has kernels
(and is in fact abelian).

Proposition 7.10. Let u : G→ G′ be a morphism of S-group schemes of multiplicative type
and let K = Keru. Then:

(1) K is of multiplicative type and K → G is a closed immersion.
(2) The quotient Y = G/K exists and is of multiplicative type.
(3) One has u = i ◦ p, where p : G → Y is affine and faithfully flat, and i is a closed

immersion.
(4) Setting H = i(Y ), the quotient G′/H exists, is of multiplicative type, and is a cokernel

of u.

Therefore, the category of S-groups of multiplicative type is abelian.

Notes for this Lecture

The exactness of the functor D and the fact that the category is abelian are proved in Exp. VIII, Th. 3.1 and

Prop. 3.4 in the (locally) diagonalisable case, and in Exp. IX, Prop. 2.7 in the general case; see also [Oes14], 5.3

and 6.5.





LECTURE 4

Faithfully flat descent

8. Faithfully flat descent

We give an overview of descent theory, trying to emphasize the main ideas and to avoid
unnecessary formalism. The two main notions are that of universal effective epimorphisms
and morphisms of effective descent.1 Beware that effective does not have the same meaning
in both expressions: we will see below that a universal effective epimorphism is the same thing
as a morphism of descent, whereas the effectiveness of descent is a further property.

In this section, C denotes a category with fiber products. (In our applications, it will be the
category of schemes.)

Definition 8.1. Consider a morphism p : X → Y in C . One says that:

(1) p is an epimorphism if for every morphism Y → Z, the induced map Hom(Y, Z) →
Hom(X,Z) is injective.2

(2) p is a universal epimorphism if for every morphism T → Y in C the morphism
pT : X ×Y T → T obtained by base change is an epimorphism (in this case each pT is again a
universal epimorphism).

(3) p is an effective epimorphism if, denoting by p1, p2 the two projections from X ×Y X
to X, the following diagram in C :

(8.1) X ×Y X
p2
//

p1 // X
p // Y

is exact, which means that for every object Z of C the following diagram of sets:

(8.2) Hom(Y, Z)
p∗ // Hom(X,Z)

p∗2

//
p∗1 // Hom(X ×Y X,Z)

is exact, which in turn means that the map f 7→ f ◦ p is a bijection from Hom(Y, Z) onto the
set {g ∈ Hom(X,Z) | g ◦ p1 = g ◦ p2}.

(4) p is a universal effective epimorphism if for every morphism T → Y in C the
morphism pT : X ×Y T → T obtained by base change is an effective epimorphism (in this case
each pT is a universal effective epimorphism).

Firstly, let us record here the following easy remark and lemma.

Remark 8.2. It is clear that if p : X → Y and q : Y → Z are epimorphisms (resp. universal
epimorphisms), so is q ◦ p. Further, if p and p′ : X ′ → Y ′ are universal epimorphisms, so is
p × p′ : X ×X ′ → Y × Y ′, since it is the composition of the two morphisms obtained by base

change: X ×X ′
idX×p′

// X × Y ′
p×idY ′

// Y × Y ′ .

Lemma 8.3. If p : X → Y admits a section σ, then p is a universal effective epimorphism.

0version of August 20, 2023
1And the companion notions of equivalence relations and descent data.
2For example, an epimorphism in the category of sets is just a surjective map.
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Proof. Since having a section is preserved by base change, it suffices to prove that p is an effective epimor-
phism. It is clear that p∗ is injective, since σ∗ ◦ p∗ = id. Let τ be the morphism X → X ×Y X, x 7→ (x, σp(x)).
Let g : X → Z such that g ◦p1 = g ◦p2, then g = g ◦p1 ◦τ = g ◦p2 ◦τ = g ◦σ ◦p, i.e. g = p∗(f) with f = g ◦σ. �

To be concrete, let us enunciate immediately the following fundamental result (see [SGA1],
VIII, Th. 5.2 or [BLR], §6.1, Th. 6).

Theorem 8.4. In the category of schemes, every faithfully flat, quasi-compact morphism is
a universal effective epimorphism.

Now, let us fix a morphism p : S ′ → S in our category C . We want to study the base-change
functor C/S → C/S′ which sends every object X over S to the object X ×S S ′ over S ′. The goal
of descent theory is to give conditions on an arbitrary S ′-object X ′ which would ensure that
X ′ ' X ×S S ′ for some S-object X.

Notation 8.5. Denote by S ′′1 (resp. S ′′2 ) the scheme S ′′ = S ′ ×S S ′ regarded as a S ′-scheme
via the first projection p1 (resp. second projection p2).

Further,3 for i = 1, 2, 3, denote by S ′′′i the scheme S ′′′ = S ′ ×S S ′ ×S S ′ regarded as a S ′-
scheme via the projection to the i-th factor. For i < j in {1, 2, 3}, denote by prji : S ′′′ → S ′′ the
projection to the factors i and j. Further, for every S ′-object X ′, set X ′′i = X ′×S′ S ′′i for i = 1, 2
and X ′′′i = X ′ ×S′ S ′′′i for i = 1, 2, 3.

Definition 8.6. One says that p is a morphism of descent if the following property is
satisfied: for all objects X, Y over S, if we set X ′ = X ×S S ′ and X ′′ = X ×S S ′′ and define
Y ′, Y ′′ similarly, then the following diagram of sets is exact:

(8.3) HomS(X, Y )
p∗ // HomS′(X

′, Y ′)
p∗2

//
p∗1 // HomS′′(X

′′, Y ′′).

Proposition 8.7. p : S ′ → S is a morphism of descent if and only if it is a universal
effective epimorphism.4

Proof. Let X, Y be arbitrary S-objects. The diagram (8.3) identifies with the diagram:

(8.4) HomS(X, Y )
p∗ // HomS(X ′, Y )

p∗2

//
p∗1 // HomS(X ′′, Y ).

Since X ′′ = X ×S S ′′ identifies with the fiber product X ′ ×X X ′ where pX : X ′ → X is obtained
from p by the base change X → S, we see that the exactness of the second diagram, for all Y
and each given X, means that pX is an effective epimorphism. Thus we see that p is a morphism
of descent if and only if p is a universal effective epimorphism. �

Before we introduce the notion of descent datum, we need to introduce that of equivalence
relation.

Definition 8.8. An equivalence relation5 on an object X is a subfunctor of X × X,
which is represented by an object R (equivalently, one is given a monomorphism R ↪→ X ×X)
such that, for every object T of C , the set R(T ) is the graph of an equivalence relation on
X(T )×X(T ).
In this case, one denotes by p1, p2 the restrictions to R of the two projections from X ×X to X.

Here are two important examples.

3This is not used in the definition of morphism of descent, but this will be used later.
4One may wonder why introducing a new name for an already existing notion. The reason will appear later.
5By hypothesis, C has a final object e and the unadorned fiber product × is taken over e. When C = (Sch/S)

we will write explicitly ×S and we say that R is an equivalence relation on X “over S”.
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Example 8.9. To every morphism f : X → Y in C is associated the equivalence relation
Rf = X ×Y X on X. In this case, Rf → X ×X is an immersion.6 For every object T , one has
Rf (T ) = {(x, x′) ∈ X(T )×X(T ) | f(T )(x) = f(T )(x′)}.

Definition 8.10 (Free actions). Let X be an object of C and H a group-object in C
acting on X, say on the right. One says that H acts freely if for every object T , the group H(T )
acts freely on X(T ). In this case, the morphism X ×H → X ×X defined on arbitrary T -points
by (x, h) 7→ (x, xh) is a monomorphism and is an equivalence relation RH on X.7

Now, let us study more closely the base change functor C/S → C/S′ . Observe that for each
S-object X the S ′-object X ′ = X ×S S ′ has the following three properties:

(1) There is a canonical isomorphism of S ′′-schemes ϕ : X ′′1 ' X ×S S ′′ ' X ′′2 .

(2) The pull-back of ϕ via the diagonal map δ : S ′ → S ′′ is idX′ .

(3) The pull-backs pr∗ji(ϕ) all identify with the canonical isomorphisms X ′′′i ' X×SS ′′ ' X ′′′j ;
in particular they satisfy the cocyle condition:

(8.5) pr∗31(ϕ) = pr∗32(ϕ) ◦ pr∗21(ϕ).

Thus, we see that these conditions are necessary for X ′ to come from a S-object. This motivates
the following definition.

Definition 8.11. (1) A descent datum on a S ′-object X ′ relative to S ′ → S is an S ′′-

isomorphism ϕ : X ′′1
∼−→ X ′′2 which satisfies the cocycle condition (8.5). (This implies that

δ∗(ϕ) = idX′ , see below.)

A more intuitive way to formulate this is as follows (see [TDTE1], §A.1 (c), p. 190-05 or
[BLR], §6.1, p. 133). For any S-object T and any S-morphism (t1, t2) : T → S ′′, we have a
T -isomorphism

(8.6) ϕt2,t1 : X ′t1
∼−→ X ′t2

where X ′ti = X ′ ×S′,ti T (i.e. T is over S ′ via ti), and these isomorphisms are subject to the
transitivity condition below, when t1, t2, t3 are S-morphisms T → S ′:

(8.7) ϕt3,t1 = ϕt3,t2 ◦ ϕt2,t1 .
In particular, for t1 = t2 = t3 = t one obtains ϕt,t = ϕt,t◦ϕt,t hence (since ϕt,t is an isomorphism)
ϕt,t = idXt . This implies that ϕt1,t2 = ϕ−1

t2,t1 . Further, applying this to the identity morphism
S ′ → S ′, one obtains that δ∗(ϕ) = idX′ .

(2) Moreover, let q1 be the first projection from X ′′1 = X ′×S′S ′′1 to X ′ and q2 the composition
of ϕ and the first projection of X ′′2 . Then the morphism

X ′′1
(q1,q2)

// X ′ ×S X ′

is a monomorphism, since its composition with X ′ → S ′ is the isomorphism X ′′1 ' X ′×S S ′, and
the above interpretation of the cocycle condition shows that (q1, q2) is an equivalence relation
on X ′ over S.8 Namely, for any S-scheme T and pair of points (x1, x2) ∈ HomS(T,X ′ ×S X ′)
mapping to the pair (t1, t2) ∈ HomS(T, S ′ ×S S ′), one has x1 ∼ x2 if and only if x2 = ϕt2,t1(x1).
This is reflexive since ϕt,t = id, symmetric since ϕt1,t2 = ϕ−1

t2,t1 , and transitive since ϕt3,t1 =
ϕt3,t2 ◦ ϕt2,t1 .

6That is, a closed immersion followed by an open immersion, see [EGA], I 5.3.10 and the correction III2,
Err10 to I 5.3.9.

7If there exists a quotient p : X → Y = G/H then RH = Rp = X ×Y X, as we shall see later.
8See [StaPr], Tag 024E (Lemma 30.1 in Chapter Simplicial Spaces) for a proof using only the cocycle

condition and cartesian diagrams.
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(3) There is an obvious notion of morphism of S ′-objects with descent data relative to
S ′ → S. So we may introduce the category Desc(S ′/S) of S ′-objects with descent data.

Then, comparing with Def. 8.6 we obtain the following:

Corollary 8.12. The morphism p : S ′ → S is a morphism of descent if and only if the
base change functor p∗ : C/S → Desc(S ′/S) is fully faithful, i.e. induces bijections between the
Hom-sets.

To illustrate the concept of descent data, consider the following example in the category of
schemes.

Example 8.13. Let S ′ → S be a Galois covering, with group Γ. This means, assuming for
convenience that Γ acts on the right, that the morphism µ : S ′ × Γ → S ′′ = S ′ ×S S ′ given
by µ(s′, γ) = (s′, s′γ), for every T → S and s′ ∈ S ′(T ), is an isomorphism. Then we have
isomorphisms:

S ′ × Γ× Γ
∼−→ S ′ ×S S ′ × Γ

∼−→ S ′ ×S S ′ ×S S ′

(s′, γ1, γ2) 7→ (s′, s′γ1, γ2) 7→ (s′, s′γ1, s
′γ1γ2).

Thus, any T -point of S ′′′ can be written uniquely as (s′, s′γ1, s
′γ1γ2).

Now, let f : X ′ → S ′ and assume given a right action of Γ on X ′ compatible with its action on
S ′: this means that the obvious diagram is commutative, and at the level of arbitrary T -points
this is expressed by f(x′γ) = f(x′)γ. Then we have the S ′′-isomorphism:

ϕ : X ×S′ S ′′1
∼−→ X ′ ×S′ S ′′2 , (x′, s′, s′γ) 7→ (x′γ, s′, s′γ)

and its pull-back pr∗21(ϕ) : X ′ ×S′ S ′′′1
∼−→ X ′ ×S′ S ′′′1 , as well as the two other pull-backs, are

given in terms of arbitrary T -points by the diagram below:

(x′, s′, s′γ1, s
′γ1γ2) � pr∗21(ϕ)

//
�

pr∗31(ϕ) **

(x′γ1, s
′, s′γ1, s

′γ1γ2)
_

pr∗32(ϕ)

��
(x′γ1γ2, s

′, s′γ1, s
′γ1γ2).

So we see that the cocycle condition follows from (and is in fact equivalent to) the associativity
condition (s′γ1)γ2 = s′(γ1γ2).

Definition 8.14. Let p : S ′ → S be a morphism of descent.

(1) On a S ′-object X ′, a descent datum relative to p is said to be effective if X ′ (together
with its descent datum) comes from a S-object X. (Necessarily unique, since the functor p∗ is
fully faithful.)

(2) One says that p is a morphism of effective descent if every descent datum relative to
p on a S ′-object X ′ is effective.

(3) Given a full subcategory of D of Desc(S ′/S), for example the subcategory QAff(S ′/S) of
Desc(S ′/S) consisting of schemes quasi-affine over S ′, one says that:

p is an morphism of effective descent for the category D
if every descent datum relative to p on an object X ′ of D is effective. For example, we will see
later that “A faithfully flat quasi-compact morphism S ′ → S is a morphism of effective descent
for QAff(S ′/S)”.

One has the following important lemma.

Lemma 8.15. Consider morphisms U
v // T

u // S .
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(1) If u ◦ v is a universal effective epimorphism, so is u.

(2) If u ◦ v is a morphism of effective descent, so is u.

(3) If u : U → T and v : T → S are universal effective epimorphisms, resp. morphisms of
effective descent, so is v ◦ u.

Proof. (1) Suppose that u ◦ v is a universal effective epimorphism and consider the diagram

S T
uoo T ×S Too

oo

U

u◦v

OO

U ×S Too

OO

U ×S T ×S Too
oo

OO

U ×S U

OO OO

U ×S U ×S T

OO OO

oo U ×S U ×S T ×S Too
oo

OO OO

.

Columns 1,2,3 are exact since u ◦ v is an universal effective epimorphism. Row 2 is exact, since U ×S T → U is
an effective epimorphism (as it has a section over U , see Lemma 8.3) and so is row 3. Then a diagram-chasing
shows that row 1 is exact, hence u is an effective epimorphism. As the hypotheses are stable under any base
change S′ → S, it follows that u is a universal effective epimorphism.

(2) Now, suppose that u◦v is a morphism of effective descent. Since a morphism of descent is the same thing
as a universal effective epimorphism (by Prop. 8.7), (1) gives already that u is a morphism of descent. Hence,
given a T -object Y , we only have to show that any descent datum on Y relative to u : T → S is effective.

Since f = u ◦ v is a morphism of effective descent, there exists a S-object X such that v∗(Y ) ' (u ◦ v)∗(X)
as objects of Desc(U/S). It remains to show that Y ' u∗(X) as objects of Desc(T/S). Since f is a universal
effective epimorphism, so is the morphism fT : U ×S T → T obtained by base change. Further, f∗T (Y ) ' f∗T (XT )
as objects of Desc(UT /T ) (since f∗T factors through v∗) and it follows that there exists a unique T -isomorphism
Y ' u∗(X), which respects the descent data. This proves (2).

(3) Suppose that u and v are universal effective epimorphisms and consider the diagram

S T
uoo T ×S Too

oo

U

v

OO

U ×S Uoo
oo

v×S v

OO

U ×T U

OO OO 99

.

By hypothesis, the first line and column are exact, and v×S v is an epimorphism by Remark 8.2. The conclusion
follows by diagram-chasing: for every object X of C , if an element xU of X(U) has the same images in X(U ×S U),
it has also the same images in X(U ×T U), hence it comes from an element xT of X(T ) since the first column is
exact. We want to prove that xT comes from an element of X(S). As the first row is exact, it suffices to see that
xT has the same images in X(T ×S T ) and as v×S v is an epimorphism, it suffices to see that xT has the same
images in X(U ×S U), which is true because these are the images of xU . This proves the first assertion of (3).
Then one sees easily that if u, v are morphisms of effective descent, so is u ◦ v. �

From now on, we take C = (Sch). Let us then give another example of morphism of effective
descent.

Lemma 8.16. Let (Ui) be an open cover of a scheme S and let T =
∐

i Ui. Then π : T → S
is a morphism of effective descent.9

Proof. Note that T ×S T =
∐

i,j Ui ×S Uj '
∐

i,j Ui ∩ Uj, and the first (resp. second)

projection T ×S T correspond to the inclusion of each Ui ∩ Uj into Ui (resp. Uj).
Let Y be a T -scheme endowed with a descent datum relative to T → U . Then the Yi =

Y ×T Ui are open subschemes of Y , and the descent datum consists of isomorphisms on the

9It is even a universal morphism of effective descent, since for any S′ → S, the U ′i = Ui ×S S′ form an open
cover of S′.
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intersections, which satisfy the cocyle condition. Hence the Yi glue together to give a scheme X
over S, whose pullback to T is Y . �

Remark 8.17. π is not quasi-compact if there exists a point of S contained in infinitely many Ui’s. For
example, if k is an algebraically closed field, S = A1

k and we take the covering by the S − {λ}, for λ running
through the set of closed points of S.

Now, to illustrate the previous basic results, let us sketch the proof of the following theorem,
which complements theorem 8.4 (and is in fact used in the proof of the latter).

Theorem 8.18. Let p : S ′ → S be a faithfully flat, quasi-compact morphism. Let X ′ → S ′

be quasi-affine. Then every descent datum on X ′ relative to S ′ → S is effective.

Proof. Firstly, assume the theorem proved when S is affine. For arbitrary S, let (Ui) be a
covering of S by affine open subschemes. Consider the following cartesian diagram:

T ′ =
∐

i U
′
i

π′ //

pT
��

S ′

p

��
T =

∐
i Ui

π // S.

We have seen (Lemma 8.16) that π is a morphism of effective descent, and by assumption pT is
a morphism of descent, the descent being effective in QAff(S ′/S). Hence, using point (3) and
then points (1,2) of Lemma 8.15, we obtain that the same is true for π ◦ pT and then for p.

So, it suffices to prove the theorem when S is affine. Then, since p is quasi-compact, S ′

is covered by a finite number of affine open subsets, their sum is an affine scheme S1 and the
induced morphism S1 → S is flat and surjective, hence faithfully flat. As S1 → S factors through
p, it follows from points (1,2) of Lemma 8.15 that it suffices to prove the theorem when both S
and S ′ are affine.

So, consider a faithfully flat map of rings A → A′ and set A′′ = A′ ⊗A A′. For any A′-
module M ′, denote by p∗1(M ′) the A′′-module A′′⊗A′M ′, where A′′ is regarded as A′-algebra via
a′ 7→ a′ ⊗ 1, and define p∗2(M ′) similarly. Then, when X ′ = SpecR′ for some A′-algebra R′, the
theorem follows from the following proposition, applied to M ′ = R′.

Proposition 8.19. In the category of A′-modules, every descent datum relative to A → A′

is effective. That is, if M ′ is a A′-module endowed with an isomorphism of A′′-modules ϕ :
p∗1(M ′)

∼−→ p∗2(M ′) satisfying the cocycle condition, then M = {x ∈M ′ | ϕ(1⊗ x) = 1⊗ x} is a
A-submodule of M ′ such that A′ ⊗AM = M ′.

For the proof, we refer to [SGA1], VIII, 1.4–1.6. For the extension to the case where X ′ is
only quasi-affine over S ′, we refer to [SGA1], VIII, Cor. 7.9 or [BLR], §6, Th. 6.1. �

Let us give more criteria for effective descent, that will be used in the sequel. We start with
the following:

Definition 8.20. Let R
q2
//

q1 // X be an equivalence relation on X over S. It induces an

equivalence relation on the topological space X: two points x1, x2 of X are equivalent if there
exists a point z of R such that q1(z) = q2(z). One says that a subset V of X is saturated if it
is stable by this equivalence relation. This amounts to saying that q−1

1 (V ) = q−1
2 (V ).

For any subset U of X, one sees that V = q2(q−1
1 (U)) is the smallest saturated set containing

U (hence V = q1(q−1
2 (U)) also); one calls it the saturation of U .

Lemma 8.21. Let p : S ′ → S be faithfully flat and quasi-compact. Let X ′ be an object of
Desc(S ′/S). Assume that X ′ is covered by saturated open subsets (V ′i ) such that the descent
datum on each V ′i is effective. Then so is the descent datum on X ′.
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Proof. Recall first that if g : Y ′ → Y is a faithfully flat quasi-compact morphism, the
topology of Y is the quotient of the one of Y ′, that is, g(V ) is open in Y for every saturated
open subset V of Y ′.

Now, by hypothesis, there exist S-schemes (Vi) such that V ′i ' Vi ×S S ′ in Desc(S ′/S). For
all i, the projection V ′i → Vi is faithfully flat and quasi-compact (being a pull-back of S ′ → S)
hence has the property recalled above. For all i, j, V ′i ∩ V ′j is a saturated open subset of V ′i and
V ′j , hence its images Vij(i) in Vi and Vij(j) in Vj are open.

Since p∗ is full and faithful, the glueing data on the V ′i descend and allow us to glue the Vi by
identifying the open subsets Vij(i) and Vij(j). This gives a S-scheme X such that X ×S S ′ ' X ′

in Desc(S ′/S) (because the descent data relative to S ′ → S coincide on each V ′i ). �

The next lemma and proposition are used, in later lectures, in the proofs of Prop. 4.5 and of
Th. 11.5.

Lemma 8.22. Let S be affine and f : S ′ → S be faithfully flat and locally of finite presentation,
but not necessarily quasi-compact. Then there exist an affine scheme S ′′ and a faithfully flat
morphism of finite presentation S ′′ → S which factors through f .

Proof. Let (S ′i)i∈I be a covering of S ′ by affine open subsets; each is of finite presentation
over S. The hypothesis imply that f is open, hence the f(S ′i) form an open covering of S. As S
is affine, hence quasi-compact, there exists a finite subset J of I such that S is covered by the
f(S ′j), for j ∈ J . Then S ′′ =

∐
j∈J S

′
j is affine, of finite presentation over S, and the morphism

S ′′ → S is flat and surjective, hence faithfully flat. �

Proposition 8.23. Let S ′ → S be faithfully flat and locally of finite presentation and let X ′

be a S ′-scheme such that the morphism X ′ → S ′ is separated, locally of finite presentation and
locally quasi-finite. Then every descent datum on X ′ relative to S ′ → S is effective.

Proof. As in the proof of Th. 8.18 we may reduce to the case where S is affine. Then, by
the previous lemma we may assume that S ′ is affine, too.

Assume first that X ′ is quasi-compact. Then the morphism X ′ → S ′ is separated, of finite
presentation and quasi-finite hence, by [EGA], IV3, Th. 8.11.2 (or [SGA1], VIII, Th. 6.2 when
S ′ is notherian), X ′ → S ′ is quasi-affine, and hence the descent datum is effective by Th. 8.18.

Now, in general, let U ′ be an affine open subset of X ′ and let V ′ = q1(q−1
2 (U)) be its

saturation. Recall that q1 : X ′×S′ S ′′1 → X ′ is obtained by base change from the first projection
p1 : S ′′ → S ′. As p is faithfully flat of finite presentation and affine, so is q1; in particular q1

is open and affine, and the same is true for q2. Therefore, the open subscheme q−1
2 (U ′) of X ′′

is affine, hence quasi-compact, and therefore V ′ is open and quasi-compact. By the previous
argument, it is quasi-affine over S ′ hence the descent datum on V ′ is effective. Finally, as X ′

is covered by the various saturated open subsets V ′, the descent datum on X ′ is effective by
Lemma 8.21. �

9. Notes for this Lecture

Lemma 8.3 is proved in Exp. IV, Prop. 1.12. Then Proposition 8.7 is Exp. IV, Prop. 2.3, while Corollary
8.12 is taken in Exp. IV, Def. 2.2 as the definition of “morphism of descent”, while it is observed there that
this depends only on the isomorphism ϕ in the descent datum, and not on the cocycle condition. (This same
definition is given in many places.)

Assertion (1) and the first part of assertion (3) of Lemma 8.15 are proved in Exp. IV, Prop. 1.8 and Lemma
1.7 respectively. Part (2) is mentioned in [SGA1], Exp. VIII, proof of Th. 1.1 (top of p. 155), refering to [Gir64],
but the lecturer has been unable to locate this statement in loc. cit.

Lemma 8.16 occurs, for example, in [SGA1], VIII, first paragraph of the proof of Th. 1.1, while Lemma 8.21
is [SGA1], VIII, Prop. 7.2. Then Lemma 8.22 is contained in [SGA31], IV, Prop. 6.3.1 (iv), and Prop. 8.23 is
[SGA32], X, Lemme 5.4.





LECTURE 5

Results on MT-groups obtained by descent

10. Representability of D(G) when G is a twisted constant or MT-group

Firstly, we want to complete the proof of Propositions 4.4 and 4.5. In both cases, we have
a contravariant functor F : (Schemes/S) → (Groups) given by T 7→ HomT -Gr(GT , IT ), where
I = Gm,S and G is the given S-group scheme (either twisted constant or of multiplicative type).
More generally, let be given S-schemes X, Y and consider the functor

F = HomS(X, Y ) : (Schemes/S)→ (Sets), T 7→ HomT -Sch(XT , YT ).

We want to give conditions ensuring that F is representable by a S-scheme.

Firstly, this F has the following property. Let T be a S-scheme and (Ui) a covering of T by
open subsets; one has Ui ∩ Uj = Ui ×T Uj, denote it by Uij. To give a morphism of T -schemes
XT → YT is the same thing as giving morphisms fi : XUi → YUi which agree on the intersections
XUi ∩ XUj = X ×T Uij, i.e. such that pr∗1(fi) = pr∗2(fj) for all i, j, where pr1, pr2 denote the
projections from Ui ×T Uj to the first and second factor respectively. Thus we have an exact
diagram of sets:

(10.1) HomT -Sch(XT , YT ) //
∏

i HomUi-Sch(XUi , YUi) //
// ∏

i,j HomUij-Sch(XUij , YUij)

F (T ) //
∏

i F (Ui)
pr∗2

//
pr∗1 // ∏

i,j F (Ui ×T Uj).

Definition 10.1. Let C denote the category of S-schemes and Ĉ that of contravariant

functors C → (Sets). One says that a functor F ∈ Ĉ having the previous property is a local
functor, or a sheaf for the Zariski topology.

Remark. Setting T ′ =
∐
i Ui, the second line of (10.1) can be written as F (T ) // F (T ′)

pr∗2

//
pr∗1 //

F (T ′ ×T T ′) .

To illustrate, let us give here the following lemma (a more general result will be proved later).

Lemma 10.2. Let F be a local functor (Schemes/S) → (Sets). Suppose there exists an
open covering (Si) of S such that Fi = F ×S Si be representable by a Si-scheme Xi. Then F is
representable by a S-scheme X.

Proof. Both Xi ×S Sj and Xj ×S Si represent the restriction of F to Sij = Si ×S Sj hence,
by Yoneda lemma, there exists a unique isomorphism of Sij-schemes

ϕji : Xi ×S Sj
∼−→ Xj ×S Si.

Then one has isomorphisms of schemes over Sijk = Si ×S Sj × Sk :

Xi ×S Sj × Sk
ϕji×idSk // Xj ×S Si ×S Sk Xj ×S Sk ×S Si

ϕkj×idSi
��

Xi ×S Sk ×S Sj
ϕki×idSj // Xk ×S Si ×S Sj Xk ×S Sj ×S Si

0version of August 21, 2023

25



26 5. RESULTS ON MT-GROUPS OBTAINED BY DESCENT

and as all these objects represent the restriction of F to Sijk, this diagram commutes, i.e. the ϕji
satisfy the cocyle condition ϕkj ◦ ϕji = ϕki. Therefore the Xi glue together to give a S-scheme
X such that X ×S Si = Xi for each i. It remains to prove that X represents F .

For every scheme Y over Si, one has

(∗) F (Y ) = Fi(Y ) = HomSi(Y,X ×S Si) = HomS(Y,X) = hX(Y ).

Next, for every scheme Y over S, the Yi = Y ×S Si form an open covering of Y ; set Yij =
Yi×Y Yj = Y ×S Sij. As F (resp. hX) is a local functor then, taking (∗) into account, both F (Y )
and hX(Y ) identify with the equalizer of the double-arrow:∏

i F (Yi)
//
//
∏

i,j F (Yij)

∏
i hX(Yi)

//
//
∏

i,j hX(Yij) .

This proves that X represents F . �

Moreover, our functor F = HomS(X, Y ) has the following additional property.

Proposition 10.3. Let p : T ′ → T be faithfully flat and quasi-compact. Denoting by pr1, pr2

the two projections from T ′′ = T ′ ×T T ′ to T ′, the following diagram is exact:

(10.2) HomT -Sch(XT , YT ) // HomT ′-Sch(XT ′ , YT ′) //
// HomT ′′-Sch(XT ′′ , YT ′′)

F (T ) // F (T ′)
pr∗2

//
pr∗1 //

F (T ′ ×T T ′).

Proof. As we saw in the proof of Prop. 8.7, the first line of (10.2) identifies with the diagram:

HomS(XT , Y )
p∗ // HomS(XT ′ , Y )

pr∗2

//
pr∗1 // HomS(XT ′′ , Y )

which is exact since p is a universal effective epimorphism. �

Definition 10.4. A functor F ∈ Ĉ is called a sheaf for the fpqc topology if it is local
and satisfies the conclusion of Proposition 10.3. For the sake of brevity; we will simply say
fpqc-sheaf.

Remark 10.5. If X, Y are S-group schemes, one obtains similarly that HomS-Gr(X, Y ) is a
sheaf for the fpqc topology.

Remarks 10.6. (1) For each X ∈ C one has the functor hX ∈ Ĉ defined by hX(Y ) = HomC (Y,X). By

Yoneda lemma, for each F ∈ Ĉ and X ∈ C there is a natural isomorphism HomĈ (hX , F ) = F (X). In particular,
for X,Y ∈ C one has HomĈ (hX , hY ) = hY (X) = HomC (X,Y ). This shows that C identifies with a full

subcategory of Ĉ .

(2) Noting that HomS(S,X) = hX one obtains that each X ∈ C (identified with hX) is a sheaf for the
fpqc topology.

(3) The larger categories of sheaves for the fppf, étale, finite étale topologies consist of all local functors which
satisfy the condition of Def. 10.4 only for faithfully flat morphisms f which are of finite presentation, resp. étale,
resp. finite étale. Note that the finer the topology is (i.e. the less restrictions on f there are), the closer the
resulting sheaves get to actual schemes.

Then, one has the following important result, which is “well-known to the experts” but not
easy to find in the literature in this explicit form (see however [SGA31], IV, Prop. 3.5.2). We
have included it as Lemma 1.7.2 in Exp. VIII of the new edition of [SGA32].
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Proposition 10.7. Let F : (Sch/S) → (Sets) be a fpqc sheaf. Assume there exists S ′ → S
faithfully flat and quasi-compact such that F ′ = F ×S S ′ is representable by a S ′-scheme X ′.

(1) Then X ′ is endowed with a descent datum with respect to S ′ → S.

(2) If this descent datum is effective, that is, if X ′ comes by base change from a S-scheme
X, then X represents F .

(3) The descent datum is always effective is X ′ is quasi-affine over S ′; more generally if X ′

is covered by saturated open subsets which are quasi-affine over S ′.

Proof. (1) We use the notation S ′′i and S ′′′i introduced in 8.5. The hypotheses imply that
F ′′i = F ′ ×S′ S ′′i is represented by X ′′i = X ′ ×S′ S ′′i . But F ′′1 = F ×S S ′′ = F ′′2 . Hence, by
uniqueness of the representing scheme (Yoneda lemma), there exists a unique S ′′-isomorphism

ϕ : X ′′1
∼−→ X ′′2 .

For i < j in {1, 2, 3}, denote by prji : S ′′′ → S ′′ the projection to the factors i and j. Then,

set X ′′′i = X ′ ×S′ S ′′′i and denote by pr∗ji(ϕ) : X ′′′i
∼−→ X ′′′j the isomorphism of S ′′′-schemes

obtained from ϕ by base change. Then, one obtains a diagram of isomorphisms of S ′′′-schemes:

X ′′′1

pr∗21(ϕ)
//

pr∗31(ϕ) ##

X ′′′2

pr∗32(ϕ)

��
X ′′′3

and as these schemes represent the restriction of F to S ′′′ they are uniquely isomorphic, hence
one has the cocyle relation pr∗31(ϕ) = pr∗32(ϕ) ◦ pr∗21(ϕ), that is, ϕ is a descent datum on X ′

relative to S ′ → S.

(2) Assume further that this descent datum is effective, i.e. that there exists a S-scheme X
such that X ′ ' X ×S S ′. We prove that X represents F , as in Lemma 10.2: for every Y → S ′,
one has

(∗∗) F (Y ) = F ′(Y ) = HomS′(Y,X ×S S ′) = HomS(Y,X) = hX(Y ).

Next, for every Y → S set Y ′ = Y ×S S ′ and Y ′′ = Y ′ ×Y Y ′ ' Y ×S S ′′. Then Y ′ → Y is
faithfully flat and quasi-compact, since S ′ → S is so. As F and hX are sheaves for the fpqc
topology, one deduces from (∗∗) that F (Y ) and hX(Y ) both identify to the equalizer of the
double arrow:

F (Y ′) //
// F (Y ′′)

hX(Y ′) //
// hX(Y ′′) .

This proves that X represents F .

(3) This follows from Th. 8.18 and Lemma 8.21. �

We can now complete the proof of propositions 4.4 and 4.5. Recall the hypotheses: M is a
finitely generated abelian group and E, resp. H is a twisted constant group, resp. MT-group,
of type M over S. Further, one assumes that H is quasi-isotrivial. We have to prove that the
functors D(E) and D(H) are representable, respectively, by a MT-group and a twisted constant
group of type M .

Proof. By Lemma 10.2 and the previous proposition, we only have to prove that if S is
affine and if p : S ′ → S is a flat surjective morphism, with S ′ affine, such that the functor D(E)S′
(resp. D(H)S′) is represented by X ′ = D(M)S′ (resp. X ′ = MS′), then the descent datum on
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X ′ is effective. In the first case, this follows immediately from the previous proposition, since
D(M)S′ is affine.

In the second case, using the hypothesis that H is quasi-isotrivial, we may assume that the
above morphism p : S ′ → S is étale, hence locally of finite presentation. Further, in this case,
X ′ = MS′ is étale over S ′ hence separated, locally of finite presentation and locally quasi-finite
over S ′. So we conclude by Prop. 8.23 that the descent datum on X ′ is effective. �

Example 10.8. Illustrate this when S is the nodal cubic curve of Remark 4.10 by construct-
ing H and E over S which become trivial over the principal Z-bundle P → S, but are not
isotrivial over S. (To be done during the lecture).

11. Isotriviality over a locally noetherian normal base

We fix a base scheme S and an abelian group M . For the sake of completeness, let us record
here the following theorem ([SGA32], X, Cor. 4.5).1

Theorem 11.1. Let H be a MT-group over S of type M . If M is finitely generated, then H
is quasi-isotrivial.

From now on, we assume that M is finitely generated and that S is locally noetherian.

Lemma 11.2. Let P be a quasi-isotrivial twisted constant scheme over S. Let Z be an open
and closed subset of P .

(1) Let U be the set of those s ∈ S such that the fiber Zs is finite. Then U is open and
closed in S and the map ZU → U is finite.

(2) In particular, if S is connected and U non-empty, then Z → S is finite.

Proof. By assumption, there exists a surjective étale map f : S ′ → S such that PS′ = IS′
for some set I. We have a cartesian diagram:

Z ′ //
� _

��

Z� _

��
IS′ //

��

P

��
S ′

f // S

and, since f is étale, the inverse image f−1(U) equals the set U ′ of s′ ∈ S ′ such that the fiber Z ′s′
is finite.2 Further, since f is étale, S ′ is still locally noetherian, hence its connected components
are open and closed. If C is such a component, the Ci are the connected components of IC ,
hence Z ′C equals JC for some subset J = J(C) of I, and one sees that the points of C belong to
U ′ if and only if J(C) is finite, in which case the map Z ′C → C is finite.

Thus, U ′ is the union of those connected components C of S ′ such that J(C) is finite, hence
is open and closed in S ′, and the map Z ′U ′ → U ′ is finite. Since the topology of S is the quotient
of that of S ′, one obtains that U is open and closed in S. Further, the map Z ′U ′ → U ′ is the
pull-back via f of ZU → U and, since the former is finite, so is the later (use e.g. Lemma 8.22 and
[EGA], IV2, Prop. 2.7.1). This proves assertion (1), and assertion (2) follows immediately. �

Definition 11.3. Recall that S is supposed locally noetherian. Then one says that S
is geometrically unibranch (see [EGA] IV2, 6.15.1 and paragraph before 6.15.14) if the

normalization map S̃ → Sred is radicial (hence a universal homeomorphism).3

1This theorem is one of the reasons why we restricted to finitely generated abelian groups M .
2Setting s = f(s′), one has Z ′s′ ' Zs ⊗κ(s) κ(s′), where κ(s) denotes the residue field of s.
3For example, this is the case if S is normal or if S is a cuspidal curve.
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The important fact is that, in this case, the connected components of S are irreducible.4

Further, if a morphism P → S is étale, then P is also locally noetherian and geometrically
unibranch (see [EGA], IV4, Prop. 17.7.5).

Proposition 11.4. Suppose that S is locally noetherian and geometrically unibranch. Let
p : P → S be a quasi-isotrivial twisted constant scheme over S. Then the connected components
of P are finite over S.5

Proof. Since S and P are locally noetherian and geometrically unibranch, their connected
components are open and closed, and are irreducible. In particular, replacing S by one of its
connected components, we may assume S irreducible; let η be its generic point. Let C be a
connected component of P ; it is irreducible, denote by ξ its generic point. As p is flat, one has
p(ξ) = η. As C is the closure of ξ in P , it follows that C ∩ p−1(η) is the closure of ξ in p−1(η).
But since p is étale, hence locally quasi-finite, the fiber p−1(η) is discrete. Thus, for the open
and closed subset C of P one has Cη = {ξ}, which is finite. Hence, by the previous lemma, C
is finite over S. �

Theorem 11.5. Suppose that S is locally noetherian and geometrically unibranch. Let H be
a MT-group of type M , which is quasi-isotrivial.6 Then H is in fact isotrivial.

Proof. Set G = D(M)S and denote the functors HomS-Gr(G,H) and IsomS-Gr(G,H) by E
and I respectively.

Let S ′ → S be an étale map such that HS′ ' D(M)S′ . Since M is finitely generated we
obtain, by Prop. 7.5, that

ES′ = HomS′-Gr(D(M)S′ , D(M)S′) = HomS′-Gr(MS′ ,MS′)

is represented by the constant scheme End(M)S′ , and then that IS′ is represented by the constant
scheme Aut(M)S′ . By the effectiveness result of Prop. 8.23, I is represented by a twisted constant
scheme P over S.

Let C be a connected component of P . It is étale over S and, by the previous proposition,
finite. Hence p(C) is open and closed in S, hence p(C) = S since S is connected. Thus p : C → S
is étale, surjective and finite. Further, the diagonal map C → C ×S C produces a section over
C of PC = IsomC-Gr(GC , HC), hence HC is isomorphic with D(M)C . This proves that H is
isotrivial. �

12. Classification of isotrivial groups of multiplicative type

In this section, we assume that the base scheme S is connected.

Definition 12.1. (1) An étale covering of S is a morphism π : S ′ → S which is étale,
surjective and finite (in particular, affine). Then π∗OS′ is a locally free OS-algebra of rank n,
and n is called the degree of the covering.

(2) The group Γ of S-automorphisms of S ′ is finite, of cardinality ≤ n. If S ′ is connected
and |Γ| = n, one says that S ′ → S is a Galois covering with group Γ.

Remark 12.2. Let π : E → S be an étale covering. One knows that: 7

(1) E has finitely many connected components C1, . . . , Cr, each open and closed.

4Beware that without the locally noetherian hypothesis, there exists connected normal schemes which are
not irreducible, see [StaPr], Tag 033O or Exercise 2.4.12 in [Co14].

5Contrast this with the connected principal Z-bundle over a nodal curve of Remark 4.10.
6As we suppose that M is finitely generated, H is automatically quasi-isotrivial, by Th. 11.1.
7See e.g. [Sza09], Prop. 5.3.9.
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Then each morphism πi : Ci → S is still finite and étale; further, since S is connected and π is
open and closed (being étale and finite), each πi is surjective. So each πi : Ci → S is a connected
étale covering.

(2) Every connected étale covering p : C → S is dominated by a Galois covering, that is,
there exists a Galois covering π : S ′ → S, with Galois group Γ, and a S-morphism
q : S ′ → C such that π = p ◦ q.

Now, if H is an isotrivial S-group scheme of multiplicative type, there exists an étale covering
E → S such that HE ' D(M)E for some (finitely generated) abelian group M . By the previous
remark, we may replace E by a Galois covering S ′ → S with Galois group Γ. For the sake of
simplicity, let us further assume that S = SpecR is affine. Then S ′ = SpecR′ for some Galois
covering R→ R′ with group Γ.

Consider now the category MT(S ′/S) of all S-groups H of multiplicative type which become
diagonalisable over S ′. It is anti-equivalent to the category of R-Hopf algebras A such that
A ⊗R R′ is isomorphic with R′[M ], for some finitely generated abelian group M . In this case,
we have an action of Γ on B = R′[M ] by semi-linear automorphisms of R-Hopf algebra. This
induces an action of Γ on M by group automorphisms because, by the proof of the biduality
theorem 3.4 and the fact that S ′ is connected, we have: 8

D(MS′)(S
′) = HomR′-Hopf(R

′[X,X−1], R′[M ]) = Loc(S ′,M) = M.

Thus, base change from S to S ′ is a contravariant functor from MT(S ′/S) to the category of
finitely generated Γ-modules. Now, the gist of Galois descent theory is contained in Example
1.5 above, namely that a quasi-inverse is given by the functor taking such a Γ-module M to
H = SpecR′[M ]Γ.

So far, we have assumed S = SpecR for simplicity, so that HS′ = SpecB, where B = R′[M ],
in which case we know that the quotient of HS′ by Γ exists and is SpecBΓ. But it is known
in general (see [SGA1], V, Cor. 1.8) that if π : X → S is affine and Γ is a finite group of
S-automorphisms of X, then the quotient Y = X/Γ exists, and over any open affine subset
U = SpecR of S one has YU = SpecBΓ, if one denotes by SpecB the affine scheme π−1(U). So
we have obtained the:

Theorem 12.3. Let S be a connected base scheme and S ′ → S a Galois covering with group
Γ. The category MT(S ′/S) of S-groups of multiplicative type which split over S ′ is anti-equivalent
to the category of finitely generated Γ-modules.

Remarks 12.4. Let H ∈ MT(S ′/S) correspond to a Γ-module M . Denote by MΓ and MΓ

the sets of invariants and coinvariants, that is, the largest submodule (resp. quotient module)
on which the action of Γ is trivial; one has MΓ = M/N , where N is the submodule generated
by the elements m− γ(m), for m ∈M and γ ∈ Γ. Then:

(1) H is diagonalisable if and only if the action of Γ on M is trivial.
(2) Regarding by Z as a Γ-module with trivial Γ-action, one has:

HomS-Gr(H,Gm,S) = HomΓ(Z,M) = MΓ,(12.1)

HomS-Gr(Gm,S, H) = HomΓ(M,Z) = Hom(MΓ,Z).(12.2)

(3) The natural pairing MΓ×HomΓ(M,Z)→ Z is not necessarily perfect, even if M is a free Z-module: if

M is the permutation representation Z[Γ] one has MΓ = Zv, where v =
∑
γ∈Γ eγ , whilst M →MΓ = Z

is given by
∑
γ∈Γ nγeγ 7→

∑
γ∈Γ nγ . Thus the image of the pairing is dZ, where d = |G|.

Remark 12.5. To illustrate Remark (3) above, consider the Deligne torus H = ResCR Gm,C, which corresponds
to the permutation module M = Ze0 ⊕ Ze1, where τ swaps e0 and e1. One has MΓ = Z(e0 + e1), whereas the

8A purely algebraic formulation is that the set of group-like elements in R′[M ] is exactly M .
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kernel of M → MΓ is Z(e0 − e1). The exact sequence 0 // MΓ // M // M/MΓ // 0 corresponds

to the exact sequence

(12.3) 1 // S1 // H
N // Gm,R // 1

where N is the norm homorphism. It has no section; indeed D(MΓ) is the largest split subtorus of H and the
cokernel of MΓ →MΓ is Z/2Z. However, the group of R-points H(R) splits as S1(R)× R×+.

Proposition 12.6. Let k be a field and M a finitely generated abelian group. Then any k-
group H of multiplicative type of type M is isotrivial, i.e. there exists a finite separable extension
k′ of k such that Hk′ ' D(M)k′.

Proof. Set H = Spec Λ. By hypothesis, there exists a k-algebra A and an isomorphism of
Hopf algebras φ : A[M ]

∼−→ A⊗k Λ. We reduce first to the case where A is a finitely generated
k-algebra.

Let m1, . . . ,ms be a set of generators of M , write firstly φ(mi) =
∑

j aij ⊗ rij and then

φ−1(rij) =
∑

m∈M αijmm (all sums being finite), and let Λ1 (resp. B) be the k-subalgebra of Λ
(resp. of A) generated by the rij’s (resp. the aij and αijm’s). Using that k is a field, one obtains
firstly that Λ1 = Λ (because A ⊗k (Λ/Λ1) = 0) and secondly that B ⊗k Λ is a subalgebra of
A ⊗k Λ. Clearly, φ maps B[M ] into B ⊗k Λ and φ−1 maps B ⊗k Λ = B ⊗k Λ1 into B[M ]. It

follows that φ induces an isomorphism B[M ]
∼−→ B ⊗k Λ.

Next, let m be a maximal ideal of B and K = B/m. On the one hand, K[M ]
∼−→ K ⊗k Λ.

On the other hand, by the Nullstellensatz, K is a finite extension of k. Let k′ be the separable
closure of k in K and set S = Spec k and S ′ = Spec k′. Set also R = SpecK.

Now, consider the twisted constant group E = D(H)S, it is étale over S. Denote by E ′ and
ER its pull-backs over S ′ and R. To emphasize the idea, we can now invoke the general result
that since R→ S ′ is radicial, the base change from étale S ′-schemes to étale R-schemes is fully
faithful (and even an equivalence of categories), see e.g. [SGA1], IX, Cor. 3.4 (and Th. 4.10).
Since ER 'MR, one has E ′ 'MS′ and hence, by Proposition 4.4, HS′ ' DS′(E

′) = D(M)S′ .

In our simple case we can give a direct proof of the key step. Let C be a connected component of E′. Then

C = SpecL for a field L finite and separable over k′, hence CR = Spec(L⊗kK) is a sum of finitely many Spec(Ki),

where each Ki is a field separable over K. Further, each Ki equals K, since each connected components of ER is

equal to R = SpecK. On the other hand, as K/k′ is purely inseparable, CR is irreducible (see e.g. [EGA] IV2,

Prop. 4.3.2). It follows that L⊗k K = K and hence L = k. This proves that E′ is trivial over S′. �

Notes for this Lecture

The representability of D(R) (resp. D(H)) is proved in Exp. X, Prop. 5.3 (resp. Cor. 5.7).

Theorem 11.5 is proved in Exp. X, Th. 5.16.

The classification of isotrivial groups of multiplicative type is given in Exp. X, Prop. 1.1.
The fact that a group of multiplicative type over a field is isotrivial is proved in Exp. X, Prop. 1.4, but the

proof there uses radicial descent for groups of multiplicative type, proved using cohomology in a much more
general setting in Exp. IX, Cor. 5.4. That proof has been much simplified by Oesterlé ([Oes14], §§12–13).

Theorem 11.1, that we gave without proof, is proved in Exp. X, Cor. 4.5 as a corollary of the spreading
theorem Th. 4.4. It also uses in an essential manner the algebrisation theorem IX, Th. 7.1.
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A first look at maximal tori and Lie algebras

13. Motivation: tori in reductive group schemes

Definition 13.1. Let k be an algebraically closed field an G a connected affine algebraic
group over k, that is, a connected affine smooth group scheme over k.

One knows that all maximal tori T of G have the same dimension; in fact they are all
conjugate under G(k). Their common dimension is called the reductive rank of G and denoted
by rkred(G).

One also knows that there exists a largest normal smooth connected solvable (resp. unipotent)
subgroup of G, it is called the radical (resp. unipotent radical) of G and is denoted by rad(G)
(resp. radu(G)).

One says that G is reductive (resp. semi-simple) if radu(G) = {e} (resp. rad(G) = {e}). In
this case, if K is a larger algebraically closed field, GK is reductive (resp. semi-simple).

Definition 13.2. Let S be a base scheme. One says that a S-group scheme G is reductive
(resp. semi-simple) if:

(1) G is affine and smooth, with connected fibers.

(2) Its geometric fibers are reductive (resp. semi-simple), that is, for every s ∈ S, denoting
by s the spectrum of an algebraic closure κ(s) of the residue field κ(s), the κ(s)-group
Gs is reductive (resp. semi-simple).

Definition 13.3. Let G be a smooth affine S-group scheme. A maximal torus of G is a
closed subgroup scheme1 T such that:

(1) T is a torus (in the sense of Def. 1.3).
(2) For every geometric point s of S, the subgroup Ts is a maximal torus of Gs

Remark 13.4. (1) In particular, one will obtain that a smooth affine S-group scheme H
such that all its fibers are tori, is itself a torus. This is far from obvious!

(2) Let k be an algebraically closed field of characteristic 6= 2 and let S = A1
k. The constant

S-group {±1}S is smooth and isomorphic with µ2,S. Let H be the open subgroup obtained by
removing the non-neutral point over s = 0. Then H is a smooth affine S-group scheme and
all its fibers are MT-groups, but H is not a MT-group. This shows that the assumption that
the fibers are connected is important. (However, Cor. 4.8 of Exp. X proves that if H is a flat
S-group scheme of finite presentation, such that all fibers Hs are MT-groups and their type
(i.e. the corresponding abelian group) is locally constant function of s, then H is a MT-group
over S.)

A fundamental point in the study of reductive group schemes is to prove that maximal tori
exist locally in the étale topology. The proof consists in showing that certain functors F are
representable and formally smooth, so that for every s ∈ S there exists some étale neighbourhood
S ′ of s such that F (S ′) 6= ∅ (Hensel Lemma).

0corrected version of Nov. 4, 2023
1If H is a MT-group over S, every monomorphism of S-groups H → G is closed immersion, see Cor. 21.2 in

Lect. 9.
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Definition 13.5. One says that a contravariant functor F : (Sch) → (Sets) is formally
smooth if for every nilpotent ideal I in a ring A, the map F (SpecA) → F (Spec(A/I)) is
surjective.

14. A first glimpse of Lie algebras

In this section and later ones, we consider a square-zero ideal I in a ring Λ and denote by
S ⊃ S0 the spectra of Λ and Λ/I; they have the same underlying topological space. For every
S-scheme X we denote by X0 its pullback over S0.

Definition 14.1. (1) Let S ′ → S be a morphism of schemes and let X ′ be a S ′-scheme.
One denotes by

∏
S′/S X

′ the functor sending each S-scheme T to X ′(T ×S S ′). It is called the

Weil restriction of X ′ from S ′ to S.
When X ′ = X ×S S ′ for some S-scheme X, one has for every S-scheme T :(∏

S′/S
XS′

)
(T ) = HomS′(TS′ , XS′) = HomS(TS′ , X) = X(T ×S S ′).

(2) Now, let G be a smooth affine S-group scheme. We denote by G+ the functor
∏

S0/S
G0;

that is, for any T → S a T -point of G+ is a morphism of S-schemes φ : T0 → G. Clearly, G+

is a group functor and there is a canonical morphism of group functors G → G+, which sends
an arbitrary point T → G to the point T0 → G of G+. Denote by2 L′G its kernel. Note that
since G is smooth and I nilpotent, any morphism of schemes f0 : T0 → G lifts to a morphism of
S-schemes f : T → G, so we have an exact sequence of group functors:

(14.1) 1 // L′G
// G

π // G+ // 1.

If Y is a MT-group over S and u0 : Y0 → G is a morphism of S0-group schemes, an important
result in the sequel is that u0 can be lifted to a morphism of S-group schemes u : Y → G. We
are going to describe the functor L′G in order to prove this result.

Before going into this, let us illustrate some results with the following example.

Example 14.2. Let k be a ring (if one wants, an algebraically closed fied) and consider the
group scheme G = GLn,k over Spec k. Its Lie algebra Lie(G) is the free k-module Mn(k); we
define the functor W (Lie(G)) on the category of k-algebras by W (Lie(G))(R) = Lie(G) ⊗k R.
Denoting the dual k-module Lie(G)∗ by ωG/S, one can also say that W (Lie(G)) is represented
by the spectrum V(ωG/S) of the symmetric algebra over k of ωG/S. .

Now, let ε be a square-zero variable and set TG =
∏

k[ε]/kGk[ε]. The projection k[ε] → k
sending ε to 0 induces a short exact sequence of group functors:

(14.2) 1 // W (Lie(G)) // TG
π // G // 1

that is, for every k-algebra R, one has an exact sequence of groups:

1 // Lie(G)⊗k R // G(R[ε])
π // G(R) // 1.

Here, the inclusion k ↪→ k[ε] is a section of k[ε]→ k hence induces a morphism of group functors
G→ TG which is a section of π. Hence TG (which is the tangent bundle to G) is the semi-direct
product of V(ωG/S) by G, where G acts on ωG/S via the so-called coadjoint action; in particular,
TG is representable.

The point of this example is two-fold:

(1) The additive group law on Lie(G) coming from its structure of k-module coincides with
the group law on the kernel H of the morphism TG→ G.

2We use the notation L′G as in Exp. III, where LG denotes another functor.



NOTES FOR THIS LECTURE 35

(2) The action of G on H by conjugation coincides, under the previous identification, with
the adjoint action of G on Lie(G).

Indeed, these assertions are easily verified in this case: a R-point of H is a matrix of the form
In + εA, for some A ∈Mn(R). The product of two such elements is:

(In + εA1)(In + εA2) = In + ε(A1 + A2).

Further, for any B ∈ G(R) = GLn(R), one has B(In + εA)B−1 = In + εBAB−1. These facts
will remain true in the more general case consider below.

Notes for this Lecture

Reductive (or semi-simple) groups over an algebraically closed field and reductive (or semi-simple) group
schemes are defined in Exp. XIX, 1.6.1 and 2.7.

Maximal tori are defined in Exp. XII, Def. 1.3 and studied in Exp. XII–XIV.
Weil restriction of scalars is defined in Exp. II, §1.

The functors G+ and L′G are defined in Exp. III, under more general hypotheses in Def. 0.1.1 and remarks

0.4–0.5, and then put together, in the simpler case where G is a S-group scheme, in Cor. 0.9
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Infinitesimal liftings and Hochschild cohomology: the beauty of
SGA3, Exp. III

15. Group cohomology and extensions

Remark 15.1. For simplicity, we have written this section in the category C = (Sets), so
that a C -group G is just a usual group. However, the results remain valid if we replace (Sets) by
an arbitrary category C with fiber products, G by a group-object in C , and the abelian group
V by a contravariant functor F : C → (Abelian groups) on which G acts linearly, provided
that the set-theoretic sections considered in the proof of Lemma 15.4 exist as morphisms in C ;
see [SGA31], Exp. III, Section 1.

Definition 15.2. Firstly, let G be an abstract group and V a G-module. The cohomology
groups H i(G, V ) are the cohomology groups of the following complex, where Hom denotes maps
of sets:

(15.1) 0 // V
d0 // Hom(G, V )

d1 // Hom(G2, V )
d2 // Hom(G3, V )

d3 // · · ·

where d0(v) is the map g 7→ gv − v, then, given f : G → V , d1(f) is the map (g1, g2) 7→
g1f(g2)− f(g1g2) + f(g1), then, given f : G2 → V , d2f is the map

(g1, g2, g3) 7→ g1f(g2, g3)− f(g1g2, g3) + f(g1, g2g3)− f(g1, g2).

More generally, for n ≥ 2 and f : Gn−1 → V , dn−1(f) is the map

(15.2) dn−1f(g1, . . . , gn) = g1f(g2, . . . , gn) +
n−1∑
i=1

(−1)if(g1, . . . , gigi+1, . . . , gn)

+ (−1)nf(g1, . . . , gn−1).

Clearly, H0(G, V ) = V G is the submodule of invariants. Then H1(G, V ) is the quotient
of the Z-module Z1(G,M) = {f : G → V | f(g1g2) = g1f(g2) + f(g1)} of 1-cocycles by the
submodule B1(G, V ) = {d0(v) | v ∈ V } of 1-coboundaries. Consider the semi-direct product
E0 = V o G and, for each f ∈ Z1(G, V ), denote by σf the automorphism of E0 defined by
σf (u, g) = (u− f(g), g).

Lemma 15.3. Then f 7→ σf is a group isomorphism between Z1(G, V ) and the group of
automorphisms of E0 which restrict to the identity on V and on the quotient E/V ; and for each
v ∈ V the coboundary d0(v) corresponds under this isomorphism to the inner automorphism
(u, g) 7→ v(u, g)v−1 = (u+ v − gv, g).

Proof. The proof is easy and left to the reader. �

In the next lemma, V is just an abelian group, without a given structure of G-module.

Lemma 15.4. Each exact sequence of groups:

(15.3) 1 // V // E
π // G // 1

0version of August 30: four typos corrected.
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makes V into a G-module and defines a class c(E) ∈ H2(G, V ).
This class is zero if and only if there exists a morphism of groups τ : G → E such that

π ◦ τ = idG, that is, if and only if E is a semi-direct product of G and V .
In this case, the set of all such τ ′ is τ +Z1(G, V ), and the set of all such τ ′ up to conjugacy

by the elements of V is τ +H1(G, V ).

Proof. Let s be a set-theoretic section of π. For each g ∈ G, consider the automorphism
c(g) of V defined c(g)(v) = s(g) v s(g)−1. Since V is abelian, one sees that:

(1) Any other section s′ of π defines, for each g ∈ G, the same automorphism c(g) of V .

(2) The resulting map c : G → Aut(V ) is a morphism of group. Indeed, for g1, g2 ∈ G, one
has π(s(g1g2)) = g1g2 = π(s(g1)s(g2)) hence the element

(15.4) s̃(g1, g2) = s(g1g2)s(g2)−1s(g1)−1

is in V and hence for any v ∈ V one has c(g1g2)(v) = c(g1)
(
c(g2)(v)

)
. Thus, setting gv = c(g)(v),

one obtains that V is a G-module.

Now, to any set-theoretic section s of π one associates the function s̃ : G2 → V defined in
(15.4) above. One checks easily that s̃ is a 2-cocycle, i.e. it belongs to the Z-module:

Z2(G,M) = {f : G2 → V | g1f(g2, g3) + f(g1, g2g3)− f(g1, g2) = 0}.
Indeed, in E one has the equality:

d2s̃(x, y, z) = (x · s̃(y, z)) s̃(x, y)−1 s̃(xy, z)−1 s̃(x, yz)

= s(x)s(yz)s(z−1)s(y−1)s(x−1)s(x)s(y)s(xy)−1s(xy)s(z)s(xyz)−1s(xyz)s(yz)−1s(x−1) = e.

Next, denote by B2(G, V ) = Im(d1) the submodule of 2-coboundaries. If s, s′ are two set-
theoretic sections of π, there exists f : G → V such that s′(g) = f(g)−1s(g) for all g, and one
has in E the equalities:

s̃′(x, y) = s′(xy)s′(y−1)s′(x−1) = f(xy)−1s(xy)s(y−1)f(y)s(x−1)f(x)

= f(xy)−1s̃(x, y)s(x)f(y)s(x−1)f(x) = s̃(x, y)f(xy)−1(x · f(y))f(x),

where in the last equality we used that V is a normal abelian subgroup of E. Writing additively
the group law of V , one has f(xy)−1(x · f(y))f(x) = xf(y) − f(y) + f(x) = d1f(x, y). This

shows that s̃′ = s̃+ d1f . This proves two things:

(1) The image of s̃ in H2(G, V ) = Z2(G, V )/B2(G, V ) does not depend on the choice of the
set-theoretic section s; it it the class c(E) of the extension.

(2) A section s′ is a group homomorphism if and only if s̃′ = 0. Since, with the notation

above, s̃′ = s̃+ d1f for some f , this is the case if and only if c(E) = 0.

Now, assume c(E) = 0 and let τ be a section of π which is a group homomorphism. By the
above, any other such τ ′ has the form fτ , with f ∈ Z1(G, V ). Further, for any v ∈ V one has:

v−1τ ′(g)v = v−1
(
τ ′(g)vτ ′(g)−1

)
τ ′(g) = (d0v)(g)τ ′(g).

Thus the set of τ ′ up to conjugacy by the elements of V identifies with τ +H1(G, V ). �

Now, let φ : Y → G be a morphism of groups. Using φ we can form the group Eφ = E ×G Y
and pull-back the exact sequence (15.3) to obtain the following exact sequence of groups:

(15.5) 1 // V // Eφ
πφ // Y // 1

where V is sent into Eφ via the inclusion into E and via the unit morphism to Y . Note that
the resulting action of Y on V is the same as the one derived from the G-action through the
morphism φ : Y → G.
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Further, any map of sets ψ : Y → E lifting φ defines a set-theoretic section of πφ. Denoting
by pr1 the first projection Eφ → E, one sees easily that the map τ 7→ pr1 ◦ τ is a bijection from
the set of sections of πφ to the set of liftings of φ; further, under this bijection the sections and
liftings which are group homomorphisms correspond to each other.

Therefore, the question of lifting φ to a group homomorphism ψ : Y → E is reduced to the
question of finding a splitting of (15.5). By the previous discussion with G replaced by Y , we
obtain the:

Corollary 15.5. Consider the exact sequence (15.3) and let φ : Y → G be a morphism of
groups.

(1) Suppose that H2(Y, V ) = 0. Then φ lifts to a morphism of groups ψ : Y → E.

(2) Suppose further that H1(Y, V ) = 0. Then any two such lifting are conjugate by an
element of V , that is, by an element of E whose image in G is the identity.

The following lemma will be useful in the next section.

Lemma 15.6. Let N be an abelian group. Let Ind(N) = Hom(G,N) be the induced G-
module, where G acts on a function φ : G → N by (gφ)(g′) = φ(g′g) for all g, g′ ∈ G. Then
Ind(N) is acyclic, i.e. H i(G, Ind(N)) = 0 for all i > 0.

Proof. Set P = Ind(N). For n > 0 let sn : Hom(Gn+1, P )→ Hom(Gn, P ) be given by

sn(f)(g1, . . . , gn)(g) = f(g, g1, . . . , gn)(e).

Then, for f ∈ Hom(Gn, P ) one has

sndnf(g1, . . . , gn)(g) = dnf(g, g1, . . . , gn)(e) = f(g1, . . . , gn)(g)− f(gg1, g2, . . . , gn)(e)

+
n−1∑
i=1

(−1)i+1f(g, . . . , gigi+1, . . . , gn)(e) + (−1)n+1f(g, g1, . . . , gn−1)(e),

dn−1sn−1f(g1, . . . , gn)(g) = f(gg1, g2, . . . , gn)(e) +
n−1∑
i=1

(−1)if(g, . . . , gigi+1, . . . , gn)(e)

+ (−1)nf(g, g1, . . . , gn−1)(e)

and hence f = sndnf + dn−1sn−1f . Thus, if dnf = 0 then f = dn−1sn−1f , hence Hn(G,P ) = 0
for n > 0. �

Remark 15.7. For simplicity, we have worked with G-modules, i.e. modules over the group
ring Z[G]. If Λ is any commutative ring, the same discussion applies to Λ[G]-modules V , and
then the cohomology groups H i(G, V ) are Λ-modules.

16. Hochschild cohomology

In this section, Λ is a ring and G is a flat1 affine group scheme over S = Spec Λ, given by the
Λ-Hopf algebra A. Denote by c : A → A ⊗ A its comultiplication (we write ⊗ instead of ⊗Λ)
and by ε it counit. Let L be a Λ-module endowed with a structure of G-module, that is, we are
given a Λ-linear coaction µL : L→ L⊗ A satisfying the conditions seen in Def. 2.1.

Definition 16.1. The Hochschild complex of L is

(16.1) 0 // L
d0 // L⊗ A d1 // L⊗ A⊗ A d2 // L⊗ A⊗ A⊗ A d3 // · · ·

1Flatness ensures that the category of A-comodules is abelian, see e.g. [SGA31], Exp. I, Cor. 4.7.2.1.
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where d0(v) = µL(v)− v ⊗ 1 and, for n ≥ 1:

(16.2) dn(v ⊗ a1 ⊗ · · · ⊗ an) = µL(v)⊗ a1 ⊗ · · · ⊗n +
n∑
i=1

(−1)iv ⊗ a1 ⊗ · · · c(ai)⊗ · · · ⊗ an

+ (−1)n+1v ⊗ a1 ⊗ · · · ⊗ an ⊗ 1.

Its cohomology groups are denoted by H i(G,L).

Remark 16.2. Let C denote the category of affine schemes over S and let W (L) be the
functor such that W (L)(T ) = L ⊗ O(T ) for any object T of C . Then G(T ) acts linearly on
W (L)(T ): for any g ∈ G(T ), i.e. any Λ-algebra morphism g : A→ O(T ) and x⊗ 1 ∈ L⊗O(T ),
one has g(x⊗ 1) = (idL ⊗ g)µL(x).

Further, one has HomC (Gn,W (L)) = L ⊗ A⊗n. Thus we see that Hochschild cohomology
can be viewed as the cohomology of groups in C . The results of Section 15 about lifting of
homomorphims remain valid, provided that there exist morphisms of schemes that replace the
set-theoretic sections used in Section 15. This will be ensured by the hypothesis that the group-
scheme G is smooth and that we are concerned with infinitesimal liftings.

Analogously to Lemma 15.6, one has:

Lemma 16.3. For a Λ-module N , let Ind(N) = N ⊗A regarded as A-comodule via idN ⊗ c :
N ⊗ A→ N ⊗ A⊗ A. Then H i(G, Ind(N)) = 0 for all i > 0.

Proposition 16.4. Suppose that G = D(M)S is a diagonalisable group. Then H i(G,L) = 0
for i > 0 and any G-Λ-module L.

Proof. 2 Let L a G-module. Recall that L =
⊕

m∈M Lm, where Lm = {x ∈ L | µL(x) =
x ⊗m}. Let (pm)m∈M denote the corresponding family of projectors. Note first that the map
µL : L → Ind(L) is a morphism of A-comodules: indeed, by one of the defining properties of
comodules, the diagram below is commutative:

L
µL //

µL

��

Ind(L)

idL⊗c
��

L⊗ A µL⊗idA // Ind(L)⊗ A.

Now the map r : Ind(L)→ L sending each finite sum
∑

m xm⊗m to
∑

m pm(xm) is a retraction
of µL, because writing x =

∑
m pm(x) we have µL(x) =

∑
m pm(x)⊗m and hence r(µL(x)) = x.

Further, r is a morphism of A-comodules, that is the diagram below is commutative:

Ind(L)
r //

idV ⊗c
��

L

µL

��
Ind(L)⊗ A r⊗idA // L⊗ A.

Indeed, an element y =
∑

m xm⊗m of Ind(L) is sent by idV ⊗ c to
∑

m xm⊗m⊗m which goes
by r ⊗ idA to

∑
m pm(xm)⊗m, which is also µL(r(y)). Thus L is a G-module direct summand

of Ind(L) and since the latter is acyclic, so is L. �

Remark 16.5. Let Λ→ Λ′ be a flat map, set L′ = L⊗Λ′ and let S ′ = Spec Λ′ and G′ = GS′ .
Let C•(G,L) denote the Hochschild complex of L. Then C•(G,L) ⊗ Λ′ identifies with the
Hochschild complex C•(G′, L′) hence, since Λ → Λ′ is flat, one has H i(G,L) ⊗ Λ′ ' H i(G′, L′)
for all i ≥ 0.

2This neat proof is taken from [DG70], §II.3, Prop. 4.2.
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Corollary 16.6. Let G be a MT-group of type M over S and L a G-Λ-module. Then
H i(G,L) = 0 for i > 0.

Proof. By hypothesis, there exist faithfully flat morphisms U ′i → Ui, where the Ui and U ′i
are affine and the Ui form an open covering of S = Spec Λ, such that GU ′i

' D(M)U ′i . Since S is
affine, hence quasi-compact, it is covered by finitely many of the Ui. Then the disjoint sum S ′ of
the corresponding U ′i is affine and faithfully flat over S, and GS′ ' D(M)S′ . Set Λ′ = O(S ′) and
L′ = L⊗Λ′. By the previous remark and proposition, one has 0 = H i(GS′ , L

′) ' H i(G,L)⊗Λ′.
Since Λ′ is faithfully flat over Λ, it follows that H i(G,L) = 0 for i > 0. �

17. Infinitesimal liftings and Hochschild cohomology

In this section, we fix a nilpotent ideal I in a ring Λ and denote by S ⊃ S0 the spectra of Λ
and Λ/I; they have the same underlying topological space. For every S-scheme X we denote by
X0 its pullback over S0.

Further, we fix affine S-group schemes G and Y , with G smooth and Y flat and such
that Y0 is of multiplicative type. The goal of this section is to prove the following theorem,
where int(g) denote the automorphism of conjugation by g.

Theorem 17.1. Let u0 : Y0 → G0 be a morphism of S0-group schemes. Then:

(1) There exists a morphism of S-group schemes u : Y → G that lifts u0.

(2) If v is another such morphism, there exists g ∈ Ker(G(S) → G(S0)) such that v =
int(g) ◦ u.

(3) More generally, if v : Y → G is a morphism of S-group schemes and g0 ∈ G(S0) is such
that v0 = int(g0) ◦ u0, there exists a lifting g of g0 such that v = int(g) ◦ u.

Let n be the smallest positive integer such that In = 0. Assume first that n = 2 and that
assertions (1) and (2) are proved for n = 2. Let v : Y → G be a morphism of S-group schemes
and g0 ∈ G(S0) such that v0 = int(g0) ◦ u0. Since G is smooth, g0 lifts to an element g′ ∈ G(S);
set u′ = int(g′) ◦ u. Then v0 = u′0 hence, by (2), there exists g′′ ∈ Ker(G(S)→ G(S0)) such that
v = int(g′′) ◦ u′. Then v = int(g′′g′) ◦ u, and g′′g′ is a lifting of g0. This proves (3) for n = 2.

Now, let n ≥ 2, assume the theorem proved for all ideals J such that Jn = 0 and let I be
such that In+1 = 0. Set J = I2 and SJ = Spec(Λ/J), then Jn = 0 and the image I of I in

Λ/J satisfies I
2

= 0. By the case n = 2 and the induction hypothesis, u0 lifts to a morphism
of SJ -group schemes uJ : YJ → GJ and uJ lifts to a morphism of S-group schemes u : Y → G.
This proves (1).

Further, let v : Y → G be a morphism of S-group schemes and g0 ∈ G(S0) such that
v0 = int(g0) ◦ u0. By the case n = 2 and the induction hypothesis, g0 lifts to an element
gJ ∈ G(SJ) such that vJ = int(gJ)◦uJ and gJ lifts to an element g ∈ G(S) such that v = int(g)◦u.
This proves (3), and of course (2) is the special case g0 = e. Thus, it suffices to prove the following
proposition. From now on we assume that I2 = 0.

Proposition 17.2. Suppose that I2 = 0 and let u0 : Y0 → G0 be a morphism of S0-group
schemes. Then:

(1) There exists a morphism of S-group schemes u : Y → G that lifts u0.

(2) If v is another such morphism, there exists g ∈ Ker(G(S) → G(S0)) such that v =
int(g) ◦ u.

Recall now the notation introduced in Definition 14.1. In particular, we have an exact
sequence of group functors:

(17.1) 1 // L′G
// G

π // G+ // 1.
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We are going to describe the functor L′G in order to prove Proposition 17.2.

We have the smooth affine group-scheme G = Spec(A), where A is a Λ-Hopf algebra. Let
c : A→ A⊗A and ε : A→ Λ be the comultiplication and augmentation (or counit) maps, which
correspond to the multiplication of G and to the unit section S → G. Recall that Λ0 = Λ/I and
that the pull-back of a S-scheme X to S0 = Spec Λ0 is denoted by X0.

Definition 17.3. Let m = Ker ε; sinceG is smooth over S, m/m2 is a locally free Λ-module of
finite rank (equal to the relative dimension d ofG over S). Further, one has (m/m2)⊗Λ0 ' m0/m

2
0

with obvious notation.
By definition, Lie(G/S) is the Zariski tangent space to G along the unit section, i.e. it is the

Λ-module Lie(G/S) = HomΛ(m/m2,Λ). It is locally free of rank d. Similarly for Lie(G0/S0)
over Λ0.

Definition 17.4. The left action of G on itself by inner automorphisms, that is, int(g)(g′) =
gg′g−1, induces a structure of left A-comodule µ : V → A⊗ V on V = A, which corresponds to
the linear right action of G on A given (φ · g)(g′) = φ(gg′g−1) for φ ∈ A and arbitrary R-points
g, g′ ∈ G(R). Clearly, m = Ker ε is stable by this G-action, as well as m2, hence there is a
natural right action of G on the cotangent space m/m2 which is called the coadjoint action. The
induced action on the dual space Lie(G/S) is called the adjoint action.3

Lemma 17.5. Let T = SpecB for some Λ-algebra B. Consider the B0-module F (T ) =
HomΛ0(m0/m

2
0, IB).

(1) L′G(T ) is the set of Λ-algebras morphisms of the form φ = ε+D, with D ∈ F (T ).

(2) The resulting identification L′G(T ) = F (T ) respects the group laws and the conjugation
action of G on L′G(T ) corresponds to the action on F (T ) induced by the coadjoint action
on m/m2.

(3) If T is flat over S, setting L0 = HomΛ0(m0/m
2
0, I) one has F (T ) = L0 ⊗Λ0 B0.

Proof. (1) By definition, L′G(T ) is the set of algebra morphisms φ : A → B which reduce
to ε modulo I. Thus, for any a ∈ A, we can write φ(a) = ε(a) + D(a), with D(a) ∈ IB. One
has A = Λ1⊕m and φ(1) = 1 = ε(1), so we may consider D as a Λ-linear map m→ IB. Since
(IB)2 = 0, the condition that φ be a morphim of algebras becomes:

ε(a1a2) +D(a1a2) = φ(a1a2) = φ(a1)φ(a2) = ε(a1a2) + ε(a1)D(a2) + ε(a2)D(a1),

which is equivalent to

(17.2) D(a1a2) = ε(a1)D(a2) + ε(a2)D(a1).

One expresses this equality by saying that D is an ε-derivation A → IB. This implies that D
vanishes on m2. Conversely, one sees that any Λ-linear map m/m2 → IB defines a map D as
above. This proves the first equality below, and the second follows since IB is annihilated by I:

L′G(T ) = HomΛ(m/m2, IB) = HomΛ0

(
(m/m2)⊗ Λ0, IB

)
.

Finally, since (m/m2)⊗ Λ0 ' m0/m
2
0, one obtains assertion (1).

(2) Let φ ∈ m. Since A = Λ1⊕m one can write uniquely:

(17.3) c(φ) = λ1⊗ 1 + φ1 ⊗ 1 + 1⊗ φ2 +
∑
i

ψi ⊗ θi

with φ1, φ2 and the ψi, θi in m. Since φ = (id⊗ ε)c(φ) = (ε⊗ id)c(φ), and ε(φ) = 0, one obtains
successively that λ = 0 and φ1 = φ = φ2.

3Over a base field, the adjoint action is considered as the primary object and the coadjoint action is its dual,
but over an arbitrary base one has to note that the action on m/m2 (which is ε∗(ΩG/S)) comes first.
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Now, let g1, g2 ∈ L′G(T ) and write gi = ε + Di for i = 1, 2. Recall that the product g1g2 is
mB ◦ (g1⊗g2)⊗ c, where mB is the multiplication of B. It follows from (17.3) that for any φ ∈ m
one has

(g1g2)(φ) = D1(φ) +D2(φ) +
∑
i

D1(ψi)D2(θi) = (D1 +D2)(φ)

where in the second equality we have used that (IB)2 = 0. This proves the first part of (2),
i.e. that under the identification gi ↔ Di the group law of L′G(T ) transforms into the addition
law of the B0-module F (T ).

Next, let g ∈ G(T ) and g1 = ε + D1 ∈ L′G(T ). For any φ ∈ m, let φ denote its image in
m/m2. Then int(g)(g1) sends φ to

φ
(
c(g)(g1)

)
= (φ · g)(g1) = g1(φ · g) = (ε+D1)(φ · g) = D1(φ · g)

and on the right-hand side this is the action of G on F (T ) induced by the coadjoint action on
m/m2. This completes the proof of (2).

(3) Suppose that B is flat over Λ. Then we have isomorphims I ⊗ B0 = I ⊗ B ∼−→ IB and
hence, since B0 is flat over Λ0 and m0/m

2
0 is locally free of finite rank, one obtains

F (T ) ' HomΛ0(m0/m
2
0, I)⊗Λ0 B0 ' Lie(G0/S0)⊗Λ0 I ⊗Λ0 B0.

Thus, setting L0 = HomΛ0(m0/m
2
0, I) ' Lie(G0/S0)⊗Λ0 I, one has F (T ) = L0 ⊗Λ0 B0. �

We can now prove Proposition 17.2

Proof of proposition 17.2. Let Y = SpecB be a flat affine group scheme over S, with
Y0 of multiplicative type and suppose given a morphism of S-group functors φ : Y → G+,
i.e. a morphism of S0-groups u0 : Y0 → G0. Since G is smooth and I nilpotent, there exists a
morphism of S-schemes s : Y → G lifting u0.

As in Section 15, we can use φ to form the S-group functor E = G×G+ Y and pull-back the
short exact sequence (17.1) to obtain the following short exact sequence of S-group functors:

(17.4) 1 // L′G
// E

π // Y // 1.

The morphism of S-schemes s : Y → G is a section of π. Proceeding as in Section 15, we obtain
a morphism s̃ : Y 2 → L′G defined for arbitrary points y1, y2 ∈ Y (T ) by

s̃(T )(y1, y2) = s(y1y2)s(y1)−1s(y2)−1.

This is an element of L′G(Y 2), which equals L0 ⊗ B0 ⊗ B0 since B is flat over Λ. By Yoneda
lemma, the fact that s̃(T ) is a cocycle for group cohomology, for any T , translates into the fact
that s̃ defines a class in the Hochschild cohomology group H2(Y0, L0). But the latter is 0 by
Cor. 16.6 since Y0 is of multiplicative type. Therefore, u0 can be lifted to a morphism of S-group
schemes u : Y → G.

Then, as in Section 15, any other such morphism v has the form v = fu, where f is a
morphism Y → L′G, i.e. an element of L′G(Y ) = L0⊗B0, which is a 1-cocyle. Since H1(Y0, L0) =
0, one obtains by Corollary 15.5 that v = int(g) ◦ u for some g ∈ Ker(G(S) → G(S0)). This
completes the proof of Proposition 17.2. �

Notes for this Lecture

The cohomology of groups in a category is defined in Exp. I, §5.1. Then Lemma 15.4 and Corollary 15.5 are
proved in Exp. III, Prop. 1.2.4 but are standard results in group cohomology, as well as Lemma 15.6.

Hochschild homology is defined in Exp. I, §5.3, where Prop. 16.4 is proved as Th. 5.3.3 (whereas Lemma 16.3
is contained in the proof of 5.3.1.1). The extension to groups of multiplicative type (Cor. 16.6) is Exp. IX, Th. 3.1.

Theorem 17.1 corresponds to Theorems 3.2 and 3.6 of Exp. IX, whose proofs rely on Exp. III, Th. 2.1 and

Cor. 2.5.
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MT-groups over a complete noetherian ring

18. MT-groups over infinitesimal thickenings

Remark 18.0. Beware that assertion (1) of the proposition below cannot be derived from Th. 17.1 because
in that theorem there is a smoothness assumption on the target group, whereas a MT-group is not necessarily
smooth: µn is not smooth over S is some residual characteristic of S divides n.

Proposition 18.1. Let S be a scheme and S0 a closed subscheme having the same underlying
topological space. Then:

(1) The functor H 7−→ H0 = H ×S S0 from the category of MT-groups over S to the
analogous one over S0 is fully faithful.

(2) It induces an equivalence between the subcategory of quasi-isotrivial, resp. isotrivial,
MT-groups over S and the analogous one over S0

Proof. (1) Let H,G be MT-groups over S. Let us prove that the map

u : HomS-Gr(H,G) −→ HomS0-Gr(H0, G0)

is bijective. As this question is local over S, we may assume S affine. Then there exists a faithfully
flat morphism S ′ → S, with S ′ affine, such that the pullbacks H ′ and G′ are diagonalisable. Let
H ′′ and G′′ denote the pullbacks over S ′′ = S ′×S S ′. Let S ′0 = S ×S S0 and define similarly
H ′0, G

′
0, etc. One has then a commutative diagram with exact rows:

HomS-Gr(H,G) //

u

��

HomS′-Gr(H
′, G′)

//
//

u′

��

HomS′′-Gr(H
′′, G′′)

u′′

��
HomS0-Gr(H0, G0) // HomS′0-Gr(H

′
0, G

′
0)

//
// HomS′′0 -Gr(H

′′
0 , G

′′
0),

hence to prove that u is bijective, it suffices to do so for u′ and u′′. We are therefore reduced to the
case where H and G are diagonalisable, say G = D(M)S and H = D(N)S. Then G0 = D(M)S0

and H0 = D(M)S0 . By Cor. 6.3 and the proof of Prop. 7.5 in Lecture 3, we obtain a commutative
diagram:

HomS-Gr(D(N)S, D(M)S)
u // HomS0-Gr(D(N)S0 , D(M)S0)

Locgrp(M × S,N)
D(u)

// Locgrp(M × S0, N)

where Locgrp(M × S,N) is the set of maps M × S → N which are additive in the first variable
and locally constant in the second, and where D(u) is the map induced by the inclusion S0 → S.
Since S0 and S have the same underlying topological space, D(u) is bijective, hence so is u. This
proves (1).

(2) Let H0 be a quasi-isotrivial (resp. isotrivial) MT-group over S0. We have to prove that
there exists a quasi-isotrivial (resp. isotrivial) MT-group H over S such that H ×S S0 ' H0.

0Version of Sep. 1, 2023. This is the original version prepared for the lecture. The shortcuts discussed during
the lecture were not legitimate, see Remark 18.0, so we revert to the original text.
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By hypothesis, there exists a surjective étale (resp. finite étale) morphism S ′0 → S0 such that
the pullback H ′0 is a diagonalisable group D(M)S′0 . Now, recall that the functor X 7−→ X0 =
X ×S S0 is an equivalence between the category of schemes étale over S and that of schemes
étale over S0; see [SGA1], Exp. I, 8.3 when S is locally noetherian, and EGA IV4, 18.1.2 in
general. Thus, there exists a surjective (resp. finite étale) étale morphism S ′ → S such that
S ′0 = S ′ ×S S0.

Then H ′ = D(M)S′ is such that H ′×S′ S ′0 = H ′0. Define as usual S ′′, S ′′′ and note S ′′×S S0 '
S ′0 ×S0 S

′
0 and similarly for S ′′′0 . As H ′0 = H0 ×S0 S

′
0, it is endowed by with a descent datum

relative to S ′0 → S0. Applying the result of (1) to the pairs (S ′′, S ′′0 ) and (S ′′′, S ′′′0 ), one obtains
that this descent datum comes from a descent datum on H ′ relative to S ′ → S. Since H ′ is
affine over S ′, this descent datum is effective, by Theorem 8.18 of Lecture 4. Thus there exists
a S-group scheme H such that H ×S S ′ = H ′ = DS′(M), and hence H is a quasi-isotrivial
(resp. isotrivial) MT-group over S.

Further, the pullbacks of H ×S S0 and H0 by S ′0 → S0 are isomorphic. Since S ′0 → S0

is surjective and étale, it is a morphism of descent (see e.g. Lemme 8.22), hence the previous
isomorphism comes from an isomorphism H ×S S0 ' H0. This completes the proof of (2). �

Remark 18.2. Suppose for simplicity that S = Spec Λ is affine. Then a closed subscheme S0 = Spec(Λ/I)
has the same underlying space topological space if and only if I is a nilideal, i.e. for every a ∈ I there exists an
integer n such that an = 0. If Λ is not noetherian, I need not be nilpotent: for example, let k be a field, A the
polynomial ring over k in infinitely many variables (Xi)i∈N∗ and Λ the quotient of A by the relations Xi+1

i = 0.
Then the maximal ideal of Λ is a nilideal which is is not nilpotent.

For simplicity, assume now that S = Spec Λ and S0 = Spec(Λ/I). Under the additional
assumption that I be nilpotent, one obtains the following stronger result.

Theorem 18.3. Suppose that S = Spec Λ and S0 = Spec(Λ/I), with I nilpotent. Let H be a
flat S-group scheme such that H0 is a quasi-isotrivial, resp. isotrivial, MT-group over S0. Then
H is a quasi-isotrivial, resp. isotrivial, MT-group over S.

Proof. Suppose that H0 is a quasi-isotrivial (resp. isotrivial) MT-group over S0. Proceeding
as in the previous proof, we obtain a surjective étale (resp. finite étale) morphism S ′ → S such
that H ′0 ' D(M)S′0 . We want to prove that H ' D(M)S′ . So, replacing S by S ′, we are reduced
to the case where H0 = D(M)S0 .

Set G = D(M)S. Then we have an isomorphism u0 : H0
∼−→ G0. Let us show1 that u0 lifts

uniquely to a morphism of S-group schemes u : H → G. By Cor. 6.3 one has

(18.1) HomS-Gr(H,G) = HomS-Gr(MS,HomS-Gr(H,Gm,S)) = Homgrp(M,HomS-Gr(H,Gm,S))

the second equality coming from HomS-Gr(MS, Y ) = Homgrp(M,Y (S)) for any S-group scheme
Y . Then, we have a commutative diagram:

HomS-Gr(H,G)

��

Homgrp(M,HomS-Gr(H,Gm,S))

��
HomS0-Gr(H0, G0) Homgrp(M,HomS0-Gr(H0,Gm,S0))

where the vertical maps are induced by the base change S0 → S. Since H is flat over S and H0 of
multiplicative type and G = Gm,S is smooth and commutative (so that the inner automorphisms
are trivial), Theorem 17.1 ensures that the map

HomS-Gr(H,Gm,S)→ HomS0-Gr(H0,Gm,S0)

is bijective. Therefore u0 : H0 → G0 lifs to a unique morphism of S-group schemes u : H → G.

1Again, we cannot invoke directly Th. 17.1 because H is not necessarily smooth. This is why the duality
functor D is used, in order to be in a situation where the target group is Gm, which is smooth (and commutative).
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Moreover, u is an isomorphism. Indeed, since u0 is an isomorphism, it suffices to see that
for each h ∈ H, the ring homomorphism φ : OG,u(h) → OH,h is bijective. Let C and K denote
its cokernel and kernel. By assumption, φI = φ ⊗ (Λ/I) is bijective. It follows that C satisfies
C = IC, hence C = 0 since I is nilpotent. Then, since OH,h is flat over Λ, the kernel of φI is
K/IK. It follows, as above, that K = IK and hence K = 0. This completes the proof. �

Notes for this Lecture

Prop. 18.1 and Th. 18.3 are respectively Prop. 2.1 and Cor. 2.3 of Exp. X.
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MT-groups over a complete noetherian ring

19. Projective limits of homomorphisms: the algebrisation theorem

Definition 19.1. Let I be an ideal in a ring A. One says that A is separated and complete
for the I-adic topology if the natural ring homomorphism A → lim←−

n

A/In is bijective. In other

words,
⋂
n∈N I

n = {0} and every sequence (an)n∈N of elements of A such that an+1 − an ∈ In+1

converges to an element a of A (equivalently, every series
∑

n≥0 bn with bn ∈ In converges to an
element b of A).

Theorem 19.2. Let A be a noetherian ring, with an ideal I such that A is separated and
complete for the I-adic topology. Set S = Spec(A) and Sn = Spec(A/In+1) for n ≥ 0.

Let G be an affine S-group scheme and H an isotrivial MT-group over S. For each n, we
denote by Gn, Hn their pullbacks to Sn.

(1) The canonical map θ : HomS-Gr(H,G) −→ lim←−
n

HomSn-Gr(Hn, Gn) is bijective.

(2) Suppose further that G is flat over S at each point of G0 and G0 is an isotrivial MT-group
over S0. Then the map HomS-Gr(H,G) −→ HomS0-Gr(H0, G0) is bijective.

Proof. (1) Suppose first the result proved when H is diagonalisable. In the general case,
there exists by hypothesis a surjective finite étale morphism A → A′ such that the pull-back
H ′ of H to S ′ = SpecA′ is diagonalisable. Then so are H ′′ and H ′n, H

′′
n, with obvious notation.

Moreover, since A′ and A′′ are finite over A, they are separated and complete for the topology
defined by the ideals IA′ and IA′′. Thus, assuming the result proved in the diagonalisable case,
the second and third vertical maps in the commutative diagram below are bijective:

HomS-Gr(H,G)

u

��

// HomS′-Gr(H
′, G′)

u′

��

//
// HomS′′-Gr(H

′′, G′′)

u′′

��
lim←−
n

HomSn-Gr(Hn, Gn) // lim←−
n

HomS′n-Gr(H
′
n, G

′
n)

//
// lim←−
n

HomS′′n-Gr(H
′′
n, G

′′
n).

Further, A → A′ is a morphism of descent (being faithfully flat and quasi-compact) hence the
first row is exact, as well as the analogous row for a given n. Since projective limits are left
exact, the bottom row is also exact. It follows that the first vertical map is bijective.

Thus, it suffices to prove the theorem when H is diagonalisable, say H = D(M)S. Set
B = A[M ] and let C be the A-Hopf algebra of the affine group scheme G. Denote by ∆B and
∆C their comultiplication maps. Denoting by (em)m∈M the canonical basis of A[M ], recall that
∆B(em) = em ⊗ em.

For n ∈ N, set An = A/In+1 and let Bn and Cn be obtained by base change. Note that
Bn = An[M ]. The morphisms of S-group schemes H → G, resp. Hn → Gn, correspond to the

morphisms of A-Hopf algebras ϕ : C → B, resp. ϕn : Cn → Bn. Set B̂ = lim←−
n

Bn and Ĉ = lim←−
n

Cn

and let τB : B → B̂ and τC : C → Ĉ be the canonical maps.

0version of Sept. 2, 2023, after the lecture.
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Note first that one has InB =
⊕

m I
nem for each n, hence

⋂
n∈N I

nB = {0}. That is, τB is
injective.1 Since B ⊗A B = A[M ×M ], the same argument shows that τB⊗AB is injective too.
The injectivity of τB immediately gives that the map θ is injective. Indeed, for any morphism of
Hopf algebras ϕ : C → B, the projective system θ(ϕ) = (ϕn)n≥0 of morphisms of Hopf algebras

induces a morphism of algebras ϕ̂ : Ĉ → B̂ such that the diagram

C
ϕ //

τC
��

B

τB
��

Ĉ
ϕ̂ // B̂

is commutative. Since τB is injective, this shows that the map θ : ϕ 7→ (ϕn)n≥0 is injective.

Let us prove that θ is surjective. Let (ϕn)n≥0 be a projective system of Hopf algebra mor-

phisms Cn → Bn. It induces a morphism of algebras ϕ̂ : Ĉ → B̂.
What we want is a morphism of Hopf algebras C → B, but a difficulty is that taking the

projective limit of the comultiplication maps

∆Bn : Bn = An[M ]→ Bn ⊗Bn = An[M ×M ]

gives a map ∆̂B : B̂ → B̂ ⊗B. As noted in footnote (1) the latter algebra is the A-submodule
of the product AM×M consisting of families (am,m′) which tend to zero. Further, the projective

system of morphisms B̂ ⊗ B̂ → Bn ⊗ Bn gives a morphism of algebras η : B̂ ⊗ B̂ → B̂ ⊗B
but this morphism is not surjective in general. However, we have the following commutative
diagram:

Cn
ϕn //

∆Cn

��

Bn

∆Bn

��

C

gg

τC //

∆C

��

Ψ

**

Ĉ
ϕ̂ // B̂

∆̂B

��

77

C ⊗ C

ww

τC⊗τC // Ĉ ⊗ Ĉ ϕ̂⊗ϕ̂ // B̂ ⊗ B̂ η
// B̂ ⊗B

''
Cn ⊗ Cn

ϕn⊗ϕn // Bn ⊗Bn

Set Φ = ϕ̂ ◦ τC and let Ψ be the composed map indicated in the diagram:

C
∆C // C ⊗ C Φ⊗Φ // B̂ ⊗ B̂ η // B̂ ⊗B.

For each f ∈ C, Φ(f) is a family (am) of B̂ whose image by ∆̂B is a family (am,m′) of B̂ ⊗B
which satisfies the hypotheses of Lemma 19.3 below. Hence the support of the families (am) and
(am,m′) are finite. Therefore Φ(C) ⊂ B and Ψ(C) ⊂ B ⊗ B (recall that τB⊗B is injective) and
we obtain the commutative diagram below:

C
Φ //

∆C

��

B

∆B

��
C ⊗A C

Φ⊗Φ // B ⊗B.

1 Moreover B̂ identifies with the A-submodule of the product AM consisting of families (am)m∈M which tend
to zero in the sense such that for each n ∈ N, all but a finite number of the am belong to In.
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This proves that Φ is a morphism of Hopf algebras C → B, which reduces modulo In+1 to the
given ϕn. This completes the proof of assertion (1).

(2) By assertion (1), the map HomS-Gr(H,G) −→ lim←−n HomSn-Gr(Hn, Gn) is bijective. Fur-

ther, by Th. 18.3, each Gn is an isotrivial MT-group over Sn and hence, by assertion (1) of
Prop. 18.1, each map HomSn-Gr(Hn, Gn)→ HomS0-Gr(H0, G0) is bijective. This proves assertion
(2). �

Lemma 19.3. Let A be a noetherian ring, M a set, (am,m′) a family of elements of A indexed
by M ×M such that:

(1) am,m′ = 0 if m 6= m′ (i.e. the support of the family is contained in the diagonal of M×M).

(2)There exist a finite number of elements bi, ci ∈ AM such that am,m′ =
∑

i b
i
mc

i
m′ for every

m,m′. (This means that the element (am,m′) of AM×M is the image of the element
∑

i b
i ⊗ ci

under the canonical morphism AM ⊗A AM → AM×M).

Then the support of the family (am,m′) is finite.

Proof. By (1), the family (am,m′) is determined by the am = am,m. Define a homomorphism
u : A(M) → AM as follows: for every x = (xm)m∈M ∈ A(M),

u(x)m′ =
∑
m

am′,m xm.

Denote by (em) the canonical basis of A(M). By (1), one has simply u(em) = amem. On the
other hand, by (2) one has

u(em)m′ =
∑
i

cimb
i
m′

hence the u(em) = amem are contained in the finitely generated A-module
∑

iAb
i. Since A is

noetherian, they generate a finitely generated A-module. Since the em are linearly independent,
it follows that am = 0 for all but a finite number of m. �

Corollary 19.4. Let A, I, S, S0 and H be as in Th. 19.2, suppose that G is a smooth affine
S-group scheme and let u0 : H0 → G0 be a morphism of S0-group schemes. Then:

(1) There exists a morphism of S-group schemes u : H → G that lifts u0.

(2) If v is another such lifting, there exists g ∈ Ker
(
G(S)→ G(S0)

)
such that v = int(g)◦u.

Proof. (1) Using Theorem 17.1, one can lift u0 to a projective system of morphisms (un).
Then assertion (1) of theorem 19.2 gives a morphism u : H → G lifting u0.

(2) Let u, v be two liftings of u0. By Theorem 17.1, one obtains a projective system of
elements gn ∈ Ker

(
G(Sn) → G(S0)

)
such that vn = int(gn) ◦ un for all n. That is, we have

a projective system of morphisms of algebras gn : C → A/In+1. Since A is separated and
complete the sequence gn(c) converges, for each c ∈ C, to an element g(c). This gives an
element g ∈ Ker

(
G(S) → G(S0)

)
such that vn = (int(g) ◦ u)n for all n. Since the morphism θ

of Theorem 19.2 is injective, it follows that v = int(g) ◦ u. �

20. The density theorem

Recall that we have always assumed that MT-groups be of finite type, i.e. that the corre-
sponding abelian group M be finitely generated. As this is important in the next theorem, we
write this hypothesis explicitly.
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Remark 20.1. Let G be a commutative affine group scheme over S. For each n ≥ 1, let nG
be the kernel of the n-th power map rn. As we have a cartesian diagram

G
rn // G

nG //

OO

S

ε

OO

and the unit section ε : S → G is a closed immersion (G being affine hence separated over S),
one obtains that nG is a closed sugbgroup of G, hence is defined by a sheaf of ideals that we will
denote by In.

Theorem 20.2. Let G be a MT-group of finite type over S. For each n ≥ 1, let nG be the
kernel of the n-th power map and In the corresponding sheaf of ideals.

(1) Let Z be a closed subscheme of G containing all nG in the schematic sense, i.e. if J
is the sheaf of ideals of OG defining Z, the assumption is that J ⊂ In for all n. Then
Z = G, i.e. J = 0.

(2) Let H be a subgroup scheme of G such that each nG is a closed subscheme of H. Then
H = G.

Proof. 2 (1) Taking a covering of S by affine subsets, we may suppose that S = SpecA is
affine. Denote then by In the ideal of O(G) corresponding to nG. Let A→ A′ be a faithfully flat
morphism such that the pullback G′ of G to S ′ = Spec(A′) is isomorphic to D(M)S′ for some
finitely generated abelian group M . Since the formation of kernels commutes with base change,
we have nG

′ = (nG)×S S ′ and hence, with obvious notation, I ′n = In ⊗A A′.
We have to prove that any f ∈ O(G) belonging to all In is zero. Since the map O(G) →

O(G) ⊗A A′ = O(G′) is injective, it suffices to prove the corresponding result over S ′. Thus,
replacing S by S ′ we may assume that G = D(M)S, i.e. O(G) = A[M ].

One has M ' Zr ×Q for some finite abelian group Q of order q. Denote by B the Laurent
polynomial ring A[T±1

1 , . . . , T±1
r ], then A[M ] ' B[Q]. Let f =

∑
x∈Q bx x ∈ A[M ] and suppose

that f is zero in each quotient O(nG) = A[M/nM ]. Let m be the supremum of the absolute
values of the exponents of the Ti’s in the various bx. Let n be a multiple of q which is > 2m.
Then

A[M/nM ] '
(
A[T1, . . . , Tr]/(T

n
1 − 1, . . . , T nr − 1)

)
[Q]

and hence in A[M/nM ] the elements T d11 · · ·T drr bx, with −m ≤ di ≤ m and x ∈ Q are linearly
independent over A. It follows that every coefficient of f is zero, hence f = 0. This proves (1).

(2) When S is the spectrum of a field k, one knows that every subgroup scheme is closed,
hence (2) follows from (1) in that case. In the general case, let H be a subgroup scheme of
G containing all the nG. Being a subscheme means that H is a closed subscheme of an open
subscheme U of G.

Then, on each fiber one has Hs = Gs. Thus H has the same underlying space as G, hence
U = G and H is a closed subscheme of G, and we conclude by (1) that H = G. �

Remark 20.3. (1) Note that the assumptions and conclusions in the previous theorem are
schematic and not purely topological. Let us illustrate this in the case where S = Spec(k) for
an algebraically closed field of characteristic p > 0.

a) Let G = µp,S; then O(G) = k[T ]/(T p − 1) ' k[T ]/(T − 1)p. Here the reduced scheme
Gred = S has the same topological space as G, but is not equal to G.

2This neat proof is due to Joseph Oesterlé, see [Oes14], §8. In [SGA32], IX, Th. 4.7, Grothendieck proves
the stronger result that the family of subschemes (nG)n≥1 is schematically dense in G.



NOTES FOR THIS LECTURE 53

b) On the other hand, let G = Gm,S ×S µp,S = D(M)S, where M = Z × Z/pZ. The
above proof shows that it suffices to consider the niG for a sequence of integers (ni)i∈N∗
divisible by the order of the torsion group of M such that limi→∞ ni = +∞. Here we can
take ni = pi; then the subgroup schemes piG ' µpi,S ×S µp,S have the same topological
space as S, but any subgroup scheme of G containing them must equal G.

(2) One could be tempted to call “schematic density” the notion considered in the theorem.
In fact, this terminology is used for a stronger property: one says that a family (Yi)i∈I of
subschemes of a scheme X is schematically dense if for every open subset U of X, every closed
subscheme Z of U which contains all Zi ∩ U must equal U . In [SGA32], Th. 4.5, Grothendieck
proves a stronger version of Th. 20.2: the family (nG)n∈N∗ is schematically dense in G.

Remark 20.4. The theorem does not hold for the (non-finitely generated) abelian group Q. Indeed, setting
G = D(Q)S , one has nG = {1} for all n ≥ 1.

21. Free actions of MT-groups on schemes affine over S

This section was meant to be given in Lecture 6, after the results on faithfully flat descent of Section 9 and

their applications in Section 10. In order to go quickly into deformation theory, we postponed it till now and

perhaps, due to lack of time, this material will not be covered in an actual lecture. In a later reorganisation of

this notes, this section will probably be moved to an earlier place.

Theorem 21.1. Let H be a MT-group scheme over S acting freely, say on the right, on a
scheme X affine over S. Then there exists a scheme Y affine over S, together with a faithfully
flat, H-invariant, morphism p : X → Y , which represents the quotient X/H.

In particular, p makes X into a HY -torsor over Y , where HY = H ×S Y .

Proof. See [SGA32], VIII Th. 5.1 together with IX, Prop. 2.3, or [Oes14], §10. �

Corollary 21.2. Let u : H → G be a monomorphism of S-group schemes, where is H is a
MT-group and G is affine over S. Then:

(1) u is a closed immersion.

(2) There exists a scheme Y affine over S, together with a faithfully flat morphism p : G→
Y , which represents the quotient G/H.

(3) Further, if H is a normal subgroup of G then Y has a structure of S-group scheme such
that p is a morphism of group schemes.

Proof. Assertions (1,2) are in Exp. IX, Cor 2.5, whereas assertion (3) follows from Exp. IV,
Prop. 5.2.3. �

Notes for this Lecture

Lemma 19.3 is Lemma 7.2 of Exp. IX.
Assertion (1) of Th. 19.2 is Th. 7.1 of Exp. IX, while assertion (2) is Lemma 3.1 of Exp. X.
The proof of Th. 20.2 is that given by Oesterlé in [Oes14], §8. In [SGA32], IX, Th. 4.7, a stronger result is

proved (with a much longer proof).
The references for the results of Section 21 are given in the text.
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Quasi-isotriviality of MT-groups of finite type

22. The spreading theorem over a complete noetherian local ring

Lemma 22.1. Let A be a noetherian ring, with an ideal I such that A is separated and
complete for the I-adic topology. Set S = Spec(A) and S0 = Spec(A/I).

(1) Every maximal ideal of A contains I.

(2) Therefore, if U is an open subset of S containing S0, then U = S.

Proof. (1) Let x ∈ I. For every a ∈ A the element 1 − ax is invertible, its inverse being
1+
∑

n≥1(ax)n (this sum converges since (ax)n ∈ In and A is I-adically complete). Now suppose
that there exists a maximal ideal m such that x 6∈ m, then there exists y ∈ A and z ∈ m such
that yx = 1− z, hence 1− yx = z belongs to m, contradicting the fact that 1− yx is invertible.
This proves (1).

(2) The complement of U is a closed set V (J) = {P ∈ Spec(A) | P ⊃ J}. If it is not empty
(i.e. if J is a proper ideal), it contains a maximal ideal m, which is impossible since all maximal
ideals belong to V (I) = S0. Thus U = S. �

Theorem 22.2. Let A be a noetherian ring, with an ideal I such that A is separated and
complete for the I-adic topology. Set S = Spec(A) and S0 = Spec(A/I)

(1) The functor H 7→ H0 = H ×S S0 is an equivalence of categories:{
isotrivial MT-groups

over S

}
∼ //

{
isotrivial MT-groups

over S0

}
Now, let G be a finite type affine S-group, flat over S at each point of G0, and such that G0 is
an isotrivial MT-group over S0.

(2) There exists a finite type isotrivial MT-group H over S and a morphism of S-groups
u : H → G such that u0 : H0 → G0 is an isomorphism.

(3) If one assumes further that G is a MT-group over S then u is an isomorphism; hence
the hypothesis that G0 be isotrivial implies that G is so.

(4) In general, u is an open and closed immersion.

Proof. (1)1 By assertion (2) of Th. 19.2 we know already that this functor is fully faithful.
Now, let H0 be an isotrivial MT-group over S0. The proof that there exists an isotrivial MT-
group H over S such that H ×S S0 ' H0 is similar to that of assertion (2) of Prop. 18.1.
Namely, there exists a surjective finite étale morphism S ′0 → S0 such that the pullback H ′0 is a
diagonalisable group D(M)S′0 . By [EGA] IV4, Prop. 18.3.2, the functor X 7−→ X0 = X ×S S0 is
an equivalence between the category of schemes finite and étale over S and the corresponding
one over S0. Thus, there exists a surjective finite étale morphism S ′ → S such that S ′0 = S ′×SS0.
Then H ′ = D(M)S′ is such that H ′ ×S′ S ′0 = H ′0.

Next, one obtains as in the proof of assertion (2) of Th. 18.1 that the descent datum on
H ′0 relative to S ′0 → S0 comes from a descent datum on H ′ relative to S ′ → S. Since H ′ is

0version of Sept. 4, 2023.
1A shorter proof of assertion (1) is given in Lemma 23.10below.
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affine over S ′, this descent datum is effective, hence there exists a S-group scheme H such that
H ×S S ′ = H ′ = DS′(M), and hence H is an isotrivial MT-group over S. Further, H ×S S0 and
H0 become isomorphic over S ′0, hence they are isomorphic because S ′0 → S0 is a morphism of
descent. This completes the proof of assertion (1).

Now, let G be a finite type affine S-group, flat over S at each point of G0, and such that G0 is
an isotrivial MT-group over S0. Let M be the abelian group corresponding to G0; it is finitely
generated since G, hence G0, is of finite type.

By assertion (1), there exists an isotrivial MT-group H over S and an isomorphism of S0-

groups u0 : H0
∼−→ G0. By assertion (2) of Th. 19.2 we know that u0 lifts uniquely to a morphism

of S-groups u : H −→ G.
On the other hand, since the type of the fibers Hs is a locally constant function of s, there

exists an open subset U of S containing S0 such that HU is of type M . By Lemma 22.1, the
only open subset of S containing S0 is S itself. Thus, H is of type M over S, in particular it is
of finite type. This proves (2).

(3) Assume further that G is a MT-group over S. The same reasoning as above, applied to
G instead of H, shows that G is of type M over S, in particular it is of finite type. Then, by
Prop. 7.10 of Lecture 3, K = Ker(u) and C = Coker(u) are MT-groups over S, hence the type
of their fibers is again a locally constant function of s. Since u0 is an isomorphism, the type of
K and of C is the trivial abelian group {0} over S0 and hence over S. Thus K and C are trivial
and hence u is an isomorphism. This proves (3)

Let us prove (4). Let S ′ → S be a finite étale map such that H ′ ' D(M)S′ . It suffices to prove
that u′ is an open and closed immersion, because then u will be so ([EGA] IV2, Prop. 2.7.1).
So, replacing S by S ′, we may assume that H = D(M)S.

Let us denote by un the pullback over Sn of the morphism u : H → G. By assumption, un is
an isomorphism; in particular it is flat. By the local criterion of flatness (see e.g. [EGA], IV3,
Lemma 11.3.10.2 or [Mat86], Th. 22.3) it follows that u is flat at any point of H0, in particular
at any point of the unit section of H0. Now, one knows that the locus V of points of H where u
is flat is open ([EGA] IV3, Th. 11.1.1), hence its inverse image by the unit section ε : S → H is
an open subset U of S containing S0. By Lemma 22.1 one has U = S, hence u : H → S is flat
near every point of the unit section. For every s ∈ S it follows that us is flat, because over a field
one can show, going to an algebraic closure and using translations, that a morphism between
finite type groups is flat as soon as it is flat near the identity (see [SGA31], VIB, Prop. 1.3 and
also VIA, Lemma 2.5.3 for the stronger result without finiteness hypotheses). Thus, by the fibral
criterion of flatness (see [EGA] IV3, Cor. 11.3.11), u : H → G is flat.

Let K = Ker(u). As we have a cartesian diagram

H
u // G

K //

OO

S

ε

OO

and the unit section ε : S → G is a closed immersion (G being affine hence separated over S),
one obtains that K is a closed sugbgroup of H, flat over S, and such that K0 is trivial. Let us
prove that K is trivial.

For each n ∈ N∗ the n-torsion subgroup nG = D(M/nM)S is finite over S, hence so is its
closed subgroup nK. Its pullback nK0 over S0 is trivial, hence by Nakayama’s lemma nK is
trivial. In particular, for each s ∈ S we have that n(Ks) = (nK)s is trivial. One knows that
over a field every closed subgroup of a diagonalisable group is diagonalisable (see [SGA32] IX,
Prop. 8.1 or [Oes14], §5.4). Thus each fiber Ks is a diagonalisable group over κ(s), and since

n(Ks) is trivial for each n it follows from the density theorem 20.2 that Ks is trivial. Therefore,
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the unit section ε : S → K is an isomorphism on each fiber and hence, by Lemma 22.3 below,
K is the trivial group. This proves that u : H → G is a monomorphism.

Since H is diagonalisable, Cor. 21.2 tells us that u is in fact a closed immersion. On the
other hand, as it is flat and of finite presentation (because H and G are of finite type over the
noetherian base S) it is open, and is therefore an isomorphism from H to an open and closed
subgroup of G. This completes the proof of assertion (4). �

In the proof of assertion (4), we have used the lemma below, which is [EGA] IV4, Cor. 17.9.5.

Lemma 22.3. Let f : X → Y be a morphism of S-schemes, where X, Y are locally of finite
presentation over S and X is flat over S. If for each s ∈ S the morphism fs : Xs → Ys is an
open immersion, resp. an isomorphism, so is f .

23. MT-groups of finite type over a henselian local ring

In this section, (A,m) denotes a local ring, S = SpecA, s the closed point of S and S0 = {s}.
Definition 23.1. One says that (A,m) is henselian if it satisfies the following equivalent

conditions:

(1) Every finite A-algebra B decomposes as a product of local rings.

(2) For every morphisms X → S finite and Y → S étale and separated, the natural map
HomS(X, Y )→ HomS0(X0, Y0) is bijective.

(3) For every smooth morphism f : X → S and every point x ∈ X over s such that
κ(x) = κ(s), there exists a section u : S → X of f such that u(s) = x.

Remark 23.2. Of course, the equivalence of the conditions is far from trivial. The first one is usually taken
as the definition, see [SGA32], Exp. X, §4 and [EGA] IV4, Def. 18.5.8 and Prop. 18.5.9 (ii). The equivalence
with (2) is proved in [EGA] IV4, Cor. 18.5.12 and that with (3) in loc. cit. Th. 18.5.17.

Notation 23.3. A morphism of local rings f : (A,m)→ (B, n) is local if f−1(n) = m. In this
case2 it induces an extension of residue fields A/m ↪→ B/n; if further this extension is trivial, we
will say for brevity that f is tlocal. Beware that this is not standard terminology!

Remark 23.4. Recall that a flat local morphism (A,m)→ (B, n) is faithfully flat.

For what follows, we refer to [EGA] IV4, Th. 18.6.6 or [StaPr], Algebra, §155 (Tag 0BSK).
One can prove that the set of tlocal étale morphims f1 : (A,m) → (A1,m1) is filtered, that is,
if f2 is another such morphism, there exists a third one f3 which dominates f1 and f2, i.e. such
that f3 factors through f1 and f2:

(A,m)
f1

xx

f2

&&
f3

��

(A1,m1)

&&

(A2,m2)

xx
(A3,m3).

Definition 23.5. Using this, one can construct the filtered inductive limit of these mor-

phisms. One obtains a flat tlocal morphism A → Ã, where Ã is a local henselian ring with

maximal ideal Ãm, which is determined up to unique isomorphism by the universal property
that, for every local henselian ring B,

(23.1) Loc.Hom(Ã, B) = Loc.Hom(A,B).

2Note that, for example, the inclusion A ↪→ K of a DVR in its field of fractions is not a local morphism.
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One says that Ã is the henselisation of A.

From now on, suppose that A is noetherian and denote its m-adic completion by Â. Then

one knows that A −→ Â is faithfully flat (in particular, injective). Further, in this case one has
the following proposition.

Proposition 23.6. Let (A,m) be a noetherian local ring. Then:

(1) Ã is noetherian and has the same m-adic completion than A.

(2) Thus, one has tlocal, flat morphisms A −→ Ã −→ Â of local noetherian rings.

Remark 23.7. Under the assumption that A be noetherian, one can define informally Ã as follows. Set k =

A/m and Ŝ = Spec Â. We know already that Â is henselian. Let (A,m)→ (A′,m′) be an étale tlocal morphism,
corresponding to an étale map f : S′ → S sending s′ to s (with obvious notation). Since κ(ŝ) ⊗k κ(s′) = k,

there is a unique point x of Ŝ ×S S′ mapping to ŝ and to s′ and, by condition (2) of Def. 23.1, the morphism

Ŝ ×S S′ → Ŝ admits a section sending s to x, which is necessarily étale (see [EGA] IV4, Prop. 17.3.4). In other

words, the morphism Â → Â⊗A A′ admits a retraction τ which is a tlocal étale morphism and this gives a flat

tlocal morphism A′ → Â. Then Ã is the union of the images of these morphisms (since they form a filtered set,
the union of their images is a subring).

Notation 23.8. For the rest of this section, we fix a noetherian local henselian ring (A,m),
denote by A′ its completion, by S, S ′ their spectra, and we set S0 = Spec(k), where k = A/m.

Remark 23.9. Consider the following diagram of categories and base-change functors:{
Schemes finite and

étale over S

}
X 7→X×SS′ //

X 7→X×SS0

'

))

{
Schemes finite and

étale over S ′

}
X′ 7→X′×S′S0

'

uu{
Schemes finite and

étale over S0

}
.

The two oblique arrows are equivalence of categories, hence so is the horizontal one.

Note that S, S ′ and S0 are connected. So, choosing a geometric point s over s, the observations
above imply that fundamental (profinite) groups are isomorphic:

(23.2) π1(S, s) π1(S0, s)
∼oo ∼ // π1(S ′, s).

Lemma 23.10. The functor H 7→ H0 = H ×S S0 is an equivalence between the category of
isotrivial MT-groups over S, resp. S ′, and the corresponding one over S0.

Proof. Since S, S ′ and S0 are connected, it follows from Th. 12.3 of Lecture 5 that the
category of isotrivial MT-groups over S is anti-equivalent to the category of π1(S0, s)-modules
M such that the kernel of π1(S, s)→ Aut(M) is an open subgroup, and similarly for S0 and S ′.
Since the three fundamental groups are the same, the result follows.

Note that this argument also proves assertion (1) of Th. 22.2. �

Proposition 23.11. In the following diagram of categories and base-change functors, all
arrows are equivalence of categories:{

MT-groups
finite over S

}
X 7→X×SS′ //

X 7→X×SS0

'

''

{
MT-groups

finite over S ′

}
X′ 7→X′×S′S0

'

vv{
MT-groups

finite over S0

}
.
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Proof. Any MT-group H0 finite over S0 is, in particular, of finite type, hence isotrivial by
Prop. 12.6 of Lecture 5, so it comes by change from a MT-group H over S, of the same type as
H0, hence finite over S.

Let H,G be finite MT-groups over S. We have a commutative diagram

HomS-Gr(H,G) // HomS0-Gr(H0, G0)

HomS-Gr(D(G), D(H)) // HomS0-Gr(D(G0), D(H0))

and, since D(G), D(H) are finite étale group schemes, the bottom horizontal map is bijective
(the unique lift u of a group morphism u0 : D(G0) → D(H0) is a group morphism, as one sees
by considering the diagram involving the group laws of D(G0) and D(H)). Therefore, the top
horizontal map is bijective too.

This proves that the base-change from S to S0 is fully faithful. The same argument applies
to the base-change from S ′ to S0, since S ′ is also local henselian with closed point s. Thus the
two oblique arrows are equivalence of categories, hence so is the horizontal one. �

Proposition 23.12. Recall the hypotheses of 23.8. Let H,G be MT-groups of finite type
over S and let H ′, G′ be their pull-backs over S ′. Then the natural map below is bijective :

(23.3) HomS-Gr(H,G)→ HomS′-Gr(H
′, G′).

Proof. Set S ′′ = S ′×SS ′ and let pr1, pr2 be its two projections to S ′. As S ′ → S is faithfully
flat and quasi-compact, one has an exact diagram

HomS-Gr(H,G) // HomS′-Gr(H
′, G′)

pr∗2

//
pr∗1 // HomS′′-Gr(H

′′, G′′)

hence we see that the assertion is that for every morphism of S ′-groups f ′ : H ′ → G′, the two
morphisms of S ′′-groups pr∗1(f ′), pr∗2(f)′ : H ′′ → G′′ coincide.

Note that f ′ induces for each n ∈ N∗ a morphism of S ′-groups f ′n : nH
′ → nG

′. But nH
′ and

nG
′ are finite MT-groups over S ′ hence, by the previous proposition, f ′n comes from a morphism

of S-groups fn : nH → nG and hence satisfies pr∗1(f ′n) = pr∗2(f ′n).
Now, since G′′ is affine hence separated over S ′′, the locus where pr∗1(f ′) and pr∗2(f ′) coincide

is a closed subscheme of H ′′, and by the previous paragraph, it contains all the subgroups nH
′′.

Hence, by the density theorem 20.2, pr∗1(f ′) = pr∗2(f ′). This proves the proposition. �

Corollary 23.13. Recall the hypotheses of 23.8. Let G be a MT-group of finite type over
S. Then G is isotrivial. 3

Proof. As G0 is a MT-group of finite type over S0 = Spec(k) it is isotrivial, say of type
M for some finitely generated abelian group M (see Prop. 12.6 in Lecture 5). By Lemma 23.10,
there exists an isotrivial MT-group H over S and an isomorphism u0 : H0 ' G0. Since S is
connected, both H and G are of constant type M over S.

By assertion (2) of Theorem Th. 19.2, that is, by the algebrisation theorem Th. 19.2 (1) and
by the lifting results of Th. 18.3 and Prop. 18.1 (which use duality to extend the cohomological
result of Th. 17.1 to MT-groups, not necessarily smooth), we know that u0 lifts uniquely to a
morphism of S ′-groups u′ : H ′ −→ G′. By the previous proposition, u comes by base-change
from a morphism of S-groups u : H −→ G.

3This extends assertion (3) of Th. 22.2 from the complete to the henselian case. There is also an extension
of assertion (4), but the proof is more difficult, see Exp. X, Lemma 4.3 and Th. 4.4.
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Now, both H and G are MT-groups of constant type M over S, with M finitely generated.
Hence, by Prop. 7.10 of Lecture 3, K = Ker(u) and C = Coker(u) are MT-groups over S, and
since S is connected they also have a constant type over S. Since u0 is an isomorphism, the
type of K and of C is the trivial abelian group {0}. Thus K and C are trivial and hence u is
an isomorphism. �

24. Quasi-isotriviality of finitely generated MT-groups

From the previous corollary, one deduces the following theorem, valid over an arbitrary base
scheme S.

Theorem 24.1. Let G be a MT-group of finite type over a scheme S. Then G is quasi-
isotrivial, i.e. for every s ∈ S there exist an open neighbourhood and a surjective étale morphism
U ′ → U such that GU ′ is diagonalisable.

Sketch of proof. This uses the principle, detailed in [EGA] IV3, §8, that is f : X → Y
is a morphism of schemes of finite presentation over the spectrum S of a ring Λ, and if Λ is
the filtered inductive limit of a family of subrings (Λi)i∈I , then, denoting by a subscript i the
pull-backs over Si = Spec Λi, one has:

a) There exists an index i ∈ I and a morphism fi : Xi → Yi such that f comes from fi by
base change.

b) If one considers a property (P) like being: an isomorphism, an open or closed immersion,
an affine, quasi-affine, finite, quasi-finite, or proper morphism, then f has property (P)
if and only if there exists an index i1 ≥ i such that for every j ≥ i1 the morphism fj
obtained from fi by base-change has property (P).

Applying this firstly to the local ring OS,s, it suffices to prove the theorem over SpecOS,s.
Next, OS,s is the inductive limit of local subrings which are localizations of finitely generated Z-

algebras, so we are reduced to the case where A = OS,s is noetherian. Let Ã be its henselisation.

Then, by the previous corollary, there exists a finite étale morphism Ã → A′ such that the

pull-back G′ of G over SpecA′ is diagonalisable. Since Ã is the filtered inductive limit of “étale
neighbourhoods of s”, one obtains from the previous principle an open neighbourhood U of s
in S and a surjective étale morphism U ′ → U such that GU ′ is diagonalisable. This proves the
theorem. �

Notes for this Lecture

In Theorem 22.2, assertions (1) and (3) are in Th. 3.2 of Exp. X, whereas assertion (4) is Th. 3.7 of Exp. X.

The proof of assertion (4) is taken from the proof of [Co14], Th. B.3.2; it is easier to understand than the
proof of X, Th. 3.7, which relies on the results 6.1 to 6.6 of Exp. IX.

Remark 23.9, Lemma 23.10 and Prop. 23.11 are Exp. X, 4.0, Rem. 4.0.1 and Lemma 4.1.

Prop. 23.12 and Cor. 23.13 are taken from Exp. X, Lemma 4.3 and Th. 4.4, which prove a more general result,
namely that the spreading theorem (assertion (4) of Th. 22.2) holds true over a local henselian ring. We have
followed the more comprehensible proof of [Co14], Prop. B.3.4.

Theorem 24.1 is Exp. X, Cor. 4.5. The reductions to the local ring OS,s, then to a noetherian local ring and
then to a noetherian local henselian ring are detailed in the proof of X, Th. 4.4 in the new edition of [SGA32],
whose preliminary version is available on the lecturer’s web page.



LECTURE 11

Representability of centralisers and transporters

25. Weil restriction

Let us fix a morphism of schemes Z → S.

Definition 25.1. For any Z-scheme Y , its Weil restriction of scalars from Z to S,
denoted by RZ/S(Y ) (or sometimes

∏
Z/S Y ) is the contravariant functor from (Sch/S) to (Sets)

such that, for every S-scheme T :

HomS

(
T,RZ/S(Y )

)
= HomZ(T ×S Z, Y ).

Remark 25.2. Note that RZ/S(Y ) is a sheaf for the fpqc topology. Indeed, let T ′ → T be a
Zariski covering or a faithfully flat and quasi-compact morphism. Setting as usual T ′′ = T ′×T T ′,
one has a commutative diagram:

(25.1) HomS(T,RZ/S(Y )) // HomS(T ′,RZ/S(Y )) //
// HomS(T ′′,RZ/S(Y ))

HomZ(T ×S Z, Y ) // HomZ(T ′ ×S Z, Y ) //
// HomZ(T ′′ ×S Z, Y ).

Since the morphism ZT ′ → ZT obtained by base change is again a Zariski covering or faithfully
flat and quasi-compact and since ZT ′ ×ZT ZT ′ ' Z ×S T ′′, the second row is exact and hence so
is the first row.

Remark 25.3. If S = Spec(A) and Z = Spec(B), where B is a finite free A-module of rank
d, it is easy to see that RZ/S(An

Z) ' And
S , see [BLR], §7.6, Th. 4 for a more general result along

these lines.

Here, we will be interested in the case where Y is a closed subscheme of Z, with applications to
the representability of centralisers and transporters, see below. Let us start with the following
definition.

Definition 25.4. One says that the S-scheme Z is essentially free if there exists a covering
(Si) of S by affine open subsets Si and for each i an affine and faithfully flat morphism S ′i → Si
such that Z ′i = Z×SS ′i is covered by affine open subsets Z ′ij such that every O(Z ′ij) is a projective
module over O(S ′i).

Example 25.5. If H is a S-group of multiplicative type, it is essentially free over S. Indeed,
by assumption there exists a covering (Si)i∈I of S by affine open subsets Si and for each i an
affine and faithfully flat morphism S ′i → Si such that H ′i = H ×S S ′i is a diagonalisable group
over S ′i of type Mi, for some abelian group Mi. Then O(H ′i) = O(S ′i)[Mi] is a free O(S ′i)-module.

Lemma 25.6. (a) If Z is essentially free over S, it is flat over S.

(b) If S = Spec(k), where k is a field, every S-scheme is essentially free.

(c) If Z is essentially free over S, then for any base-change morphism X → S, the morphism
Z ×S X → X is essentially free.

Proof. Left to the reader. �
0version of Nov. 1, 2023.

61



62 11. REPRESENTABILITY OF CENTRALISERS AND TRANSPORTERS

Remark 25.7. Suppose that τ : Y ↪→ Z is a closed immersion. Then, for any S-scheme T
one has:

RZ/S(Y )(T ) =

{
{τ−1
T } if τT : YT ↪→ ZT is an isomorphism,

∅ otherwise.

Indeed, RZ/S(Y )(T ) = HomZ(Z×ST, Y ) = HomZT (ZT , YT ) is the set of morphisms f : ZT → YT
such that τT ◦ f = idZT . Since τT is a closed immersion, such an f exists if and only if τT is an
isomorphism, and then f = τ−1

T .

Theorem 25.8. Suppose that Y ↪→ Z is a closed immersion and that Z is essentially free
over S.

(i) Then RZ/S(Y ) is represented by a closed subscheme C of S.

(ii) Further, if Z → S is quasi-compact and Y ↪→ Z is of finite presentation, then C ↪→ S is
of finite presentation.

Proof. Set F = RZ/S(Y ). The proof is in four steps.
(1) Suppose firstly that S = Spec(A) and Z = Spec(B), where B is a projective A-module.

Hence B is a direct summand of a free A-module L with basis (eλ)λ∈Λ. Let ϕλ : L→ A be the
coordinate forms with respect to this basis. Let E be a set of generators of the ideal J of B
defining the closed subscheme Y ⊂ Z and let I be the ideal of A generated by the ϕλ(x), for
x ∈ E and λ ∈ Λ.

Now, let T → S be a morphism such that the closed immersion YT → ZT is an isomorphism.
Then, for any affine open subset T ′ = Spec(R) of T , one has a morphism of rings f : A → R
and one obtains that the surjective morphism B⊗AR→ (B/J)⊗AR is an isomorphism, which
amounts to saying that for any x ∈ E the image of x⊗1 in B⊗AR or, equivalently, in L⊗AR is
zero. Since x =

∑
λ ϕλ(x)eλ, the latter image is

∑
λ eλ ⊗ f(ϕλ(x)) and this is zero if and only if

f(ϕλ(x)) = 0. Thus Ker(f) contains I and hence T ′ → S factors through the closed subscheme
C = V(I). Since this is true for any open affine subset of T , one obtains thats T → S factors
through C. Conversely, under this condition one has YT = ZT . This proves the first assertion.
Further, if J is finitely generated we may take E to be finite and as each x ∈ E as only finitely
many non-zero coordinates ϕλ(x), it follows that I is finitely generated.

(2) Still with S = Spec(A), suppose now that Z is covered by affine open subsets Zj such that
each Bj = O(Zj) is a projective A-module. For each j, set Yj = Y ∩Zj and let the ideals Jj ⊂ Bj

and Ij ⊂ A be defined as above. Then, for any S-scheme T , the base change of Y → Z is an
isomorphism if and only if the same is true for each Yj → Zj. It follows that F is represented by
the intersection C of the closed subschemes Cj = V(Ij), defined by the ideal I =

∑
j Ij. Assume

further that Z → S is quasi-compact, then Z is quasi-compact hence can be covered by finitely
many open subsets Zj. Therefore, if the closed immersion Y ↪→ Z is of finite presentation, so is
the closed immersion C ↪→ S.

(3) Suppose now that S = Spec(A) and there exists an affine and faithfully flat morphism
S ′ → S such that Z ′ = Z ×S S ′ is covered by affine open subsets Z ′j such that every O(Z ′j)
is a projective module over O(S ′). Then, by the previous step, FS′ is represented by a closed
subscheme C ′ of S ′. It is endowed with a descent datum relative to S ′/S (because FS′ is) and,
by [SGA1], Exp. VIII, Cor. 1.9, C ′ descends to a closed subscheme C of S; moreover, since F
is a fpqc sheaf, C represents F (see the proof of Prop. 10.7 in Lecture 5). Further, if Z → S is
quasi-compact and Y ↪→ Z is of finite presentation, then C ′ ↪→ S ′ is of finite presentation and
hence so is C ↪→ S, by [EGA] IV2, Prop. 2.7.1.

(4) Finally, in the general case, with the notation of Def. 25.4, each functor Fi = F ×S Si is
represented by a closed subscheme Ci of Si. Since F is a local functor, the Ci glue together to
give a closed subscheme C of S, which represents F (see the proof of Lemma 10.2 in Lect. 5).
Further, if Z → S is quasi-compact and Y ↪→ Z is of finite presentation, then each Ci ↪→ Si
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is of finite presentation, hence C ↪→ S is locally of presentation, and being a closed immersion
(hence quasi-compact and separated), it is of finite presentation. �

26. Transporters and centralisers

26.1. Two consequences of theorem 25.8. Let S be a base scheme and let G, Y,X, U
denote S-schemes, with U essentially free over S.

Proposition 26.1. Let P = G ×S U , let a : P → X be a S-morphism, let V be a closed
subscheme of X and let P ′ = P ×X V . Then RP/G(P ′) is represented by a closed subscheme G′

of G and for any G-scheme T one has:

G′(T ) = {g ∈ G(T ) | the morphism a ◦ (g × idU) : T ×S U → X factors through V }.
Further, if U → S is quasi-compact and V → X is of finite presentation, then G′ → G is of
finite presentation.

Proof. Since P ′ is a closed subscheme of P and P = G ×S U is essentially free over G,
the first assertion follows from Theorem 25.8 applied to S = G, Z = P and Y = P ′. For any
G-scheme T one has, by Remark 25.7,

G′(T ) = {g ∈ G(T ) | T ×G P ′ = T ×G P}.
Since T ×G P = T ×S U and T ×G P ′ = T ×S U ×X V , one obtains that G′(T ) is the set of those
g ∈ G(T ) such that a ◦ (g × idU)(T ×S U) ⊂ V .

Further, the second assertion follows from assertion (ii) of Th. 25.8. �

Proposition 26.2. Suppose that X is separated. Let P = Y ×S U , let a1, a2 be two S-
morphisms P → X, let a = a1 × a2 be the corresponding morphism P → X ×S X and let P ′

be the pull-back of the diagonal of X ×S X by a. Then RP/Y (P ′) is represented by a closed
subscheme Y ′ of Y and for any Y -scheme T one has:

Y ′(T ) = {y ∈ Y (T ) | the morphisms ai ◦ (y × idU) : T ×S U → X coincide, for i = 1, 2}.
Further, if U → S is quasi-compact and X → S is locally of finite type, the closed immersion
Y ′ ↪→ Y is of finite presentation.

Proof. As before, P = Y ×S U is essentially free over Y . Since X → S is separated, the
diagonal ∆X/S of W = X ×S X is a closed subscheme and hence P ′ is a closed subscheme of P .
Thus, the first assertion follows from Theorem 25.8 applied to S = Y , Z = P and Y = P ′. For
any T -scheme T one has, by Remark 25.7,

Y ′(T ) = {y ∈ Y (T ) | T ×Y P ′ = T ×Y P}.
Since T ×Y P = T ×S U and T ×Y P ′ = T ×S U ×W ∆X/S, one obtains that Y ′(T ) is the set of
those y ∈ Y (T ) such that a ◦ (y× idU)(T ×S U) ⊂ ∆X/S, i.e. such that ai ◦ (y× idU) coincide on
T ×S U , for i = 1, 2.

Finally, ifX → S is separated and locally of finite type, the closed immersion ∆X/S ↪→ X×SX
is of finite presentation (see [EGA] IV1, Cor. 1.4.3.1), hence the second assertion follows from
assertion (ii) of Th. 25.8. �

26.2. Transporters and centralisers. Suppose now that G is a S-group scheme acting
on a S-scheme X. Let U, V be subschemes of X.

Definition 26.3. (1) The transporter of U in V , denoted TranG(U, V ), is the subfunctor of
G whose T -points are those g ∈ G(T ) such that g(UT ) ⊂ VT .

(2) The strict transporter of U to V , denoted TranstG(U, V ), is the subfunctor of G whose
T -points are those g ∈ G(T ) such that g(UT ) = VT .
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(3) Denoting by φ : G → G ×S G the morphism sending an arbitrary T -point g to (g, g−1),
one sees that TranstG(U, V ) is the inverse image by φ of TranG(U, V ) ×S TranG(V, U). There-
fore, if both TranG(U, V ) and TranG(V, U) are represented by closed subschemes of G, so is
TranstG(U, V ).

Firstly, one deduces from Prop. 26.1 the following corollary.

Corollary 26.4. Let G be a S-group scheme acting on a S-scheme X and let U, V be
subschemes of X.

(1) If V is a closed subscheme and U is essentially free over S, then TranG(U, V ) is repre-
sented by a closed subscheme of G.

(2) If U, V are closed subschemes and are essentially free over S, then TranstG(U, V ) is
represented by a closed subscheme of G.

For X = G, on which G acts by conjugation, one obtains:

(3) If H is a closed subscheme of G, essentially free over S, then NormG(H) is represented
by a closed subgroup scheme of G.

(4) In particular, if H is a closed S-subgroup scheme of multiplicative type, then NormG(H)
is represented by a closed subgroup scheme of G.

Proof. Assertion (4) follows from assertion (3) since any S-group of multiplicative type is
essentially free over S (Example 25.5). �

Secondly, let us derive three consequences of Prop. 26.2.

Corollary 26.5. If X is essentially free and separated over S, then the kernel of the action
of G on X is represented by a closed S-subgroup scheme K of G.

If further X → S is of finite type, the closed immersion K ↪→ G is of finite presentation.

Proof. One applies Prop. 26.2 to the given action a1 : G×S X → X of G on X and to the
trivial action a2 : (g, x) 7→ x. (For the second assertion, recall that finite type = quasi-compact
and locally of finite type.) �

Replacing (Y, U,X) in Prop. 26.2 by (X,G,X), that is, applying Prop. 26.2 to the maps
a1 : X ×S G→ X, (x, g) 7→ gx and a2 : (x, g) 7→ x, one obtains the:

Corollary 26.6. If G is essentially free over S and X separated over S, the subfunctor of
invariants XG is represented by a closed subscheme of X.

If further G → S is quasi-compact and X → S locally of finite type, the closed immersion
XG ↪→ X is of finite presentation.

Proof. Since G is essentially free over S then P = X ×S G is essentially free over X. And
since X → S is separated, the diagonal ∆X/S of W = X ×S X is a closed subscheme and hence
P ′ is a closed subscheme of P . Thus, the first assertion follows from Theorem 25.8 applied to
S = X, Z = P and Y = P ′. For any X-scheme T one has, by Remark 25.7,

XG(T ) = {x ∈ X(T ) | T ×X P ′ = T ×X P}.
Since T ×X P = T ×S G and T ×X P ′ = T ×S G ×W ∆X/S, one obtains that XG(T ) is the set
of those x ∈ X(T ) such that ai ◦ (x × idG) coincide on T ×S G, for i = 1, 2, which amounts to
saying that for every T ′ → T and g ∈ G(T ′), one has gxT ′ = xT ′ .

Further, the last assertion follows from the last assertion of Prop. 26.2. �

Definition 26.7. Let U be a subscheme of G. The centraliser of U in G, denoted by
CentG(U), is the S-subgroup functor of G defined for every S-scheme T by:

CentG(U)(T ) = {g ∈ G(T ) | ugu−1 = g, ∀u ∈ U(T )}.
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Thus, setting P = G ×S U and considering the S-morphisms a1 : P → G, (g, u) 7→ ugu−1 and
a2 : (g, u) 7→ g, we can use Prop. 26.2 with (Y, U,X) = (G,U,G). Thus, we obtain:

Corollary 26.8. Suppose that G → S is separated and let U be a subscheme of G, essen-
tially free over S.

(1) The centraliser CentG(U) is represented by a closed subgroup scheme CG(U) of G.

(2) If further U → S is quasi-compact and G→ S locally of finite type, the closed immersion
CG(U) ↪→ G is of finite presentation.

(3) IfG → S is locally of finite type and if H is a subgroup scheme of multiplicative type,
the closed immersion CG(H) ↪→ G is of finite presentation.

Proof. (1) and (2) follow from Prop. 26.2. If H is a subgroup scheme of multiplicative type,
then H → S is essentially free (Example 25.5) and affine, hence quasi-compact. Thus (3) follows
from (2). �

Proposition 26.9. Suppose that G is a smooth affine S-group and H is a subgroup scheme
of multiplicative type. Then the closed subgroup scheme C = C(H) is smooth.

Proof. By the previous corollary, we know already that C → S is of finite presentation, so
it suffices to see that the functor CentG(H) is formally smooth. Denoting by u the immersion
H ↪→ G, one has CentG(H) = CentG(u). Let S ′ = Spec(A) be an affine scheme over S, let I
be a nilpotent ideal of A and S ′0 = Spec(A/I). Let u0 denote the pull-back of u to S ′0 and let
z ∈ C(S ′0). That is, z is an element of G(S ′0) such that int(z) ◦ u0 = u0. Since G is smooth, z
lifts to an element x ∈ G(S ′). Set v = int(x) ◦ u, then v0 = u0. By Th. 17.1 in Lect. 7, there
exists g ∈ Ker(G(S ′) → G(S ′0)) such that int(g) ◦ v = u. Set y = gx, then int(y) ◦ u = u hence
y ∈ C(S ′), and the image of y in G(S ′0) is z. This proves that C is smooth. �

Notes for this Lecture

The content of this lecture appears in Exp. VIII, §6, nos 6.1 to 6.5 of [SGA32] and has also been reproduced
in the new edition of [SGA31], Exp. VIB , nos 6.2.1 to 6.2.5, following a footnote by Grothendieck at the beginning
of Exp. VIII, §6: “The natural place for this paragraph would be in Exp. VIB”.

The assertion (ii) of Th. 25.8 (and the similar assertions in all subsequent results) was not in [SGA32] and
was added by the lecturer in [SGA31], Exp. VIB , where the hypothesis that Z → S be quasi-compact has been
overlooked, unfortunately.

The representability of Weil restrictions is also discussed in [BLR], §7.6, where a result similar to Th. 25.8
is proved under the more restrictive hypothesis that Z → S be finite and locally free.

Proposition 26.9 is proved several times in SGA3. In Exp. XI, Cor. 5.3 (a), it is derived from the (hard)

resultat that the functor of homomorphisms of S-groups H → G is representable. A simpler proof is given in

Exp. XI, Th. 6.2 (iii), see also Cor. 9.8 in the additional section XII.9 in the new edition. Finally, the direct proof

given above is taken from Exp. XIX, proof of Prop. 6.1.
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I,II,III1, III2, IV1, IV2, IV3, IV4, Publ. Math. IHÉS, 4 (1960), 8, 11 (1961), 17 (1963), 20 (1964), 24
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