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Part I
Introduction

Why distributed setting is interesting for specification, verification and
synthesis.
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Models of distributed systems
Distributed systems

Boxes with links. In every box there is a finite automaton.

a abc

Links as channels
Every link is channel and boxes have send and receive operations:
communicating finite state machines, MSC’s

Links as synchronization

Communication over the link requires two processes to synchronize:
asynchronous automata, traces, event structures.
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Asynchronous automata, traces and event
structures informally

q1 q2 q3

a1, b1, c a2, c, d a3, b3, d

a1

b1

c

a2

a2

d

a3

Representing executions

• As a word:
a1a2a3b1ca2d or a2a3a1b1ca2d

• As a trace.
• The set of all executions can

be represented as a tree
• Or as an event structure.
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Question: why not stay with words and
trees?

Specification

Expressing concurrency. How to say that we want (or allow) two actions to be
concurrent?

Verification
State explosion problem. It may be possible to gain in efficiency if the structure
of the system is known.

Synthesis

Undecidability. With specifications that do not respect concurrency of the
system the synthesis problem becomes undecidable.
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Ad specification

How to express concurrency between a and b?

1 We can write

vabw ∈ L(α) iff vbaw ∈ L(α); for all v,w ∈ Σ∗

2 We can require the diamond property of the
automaton.

a b
b a

Problems

1 The first property is not MSOL definable.
2 The diamond property of the automaton is not bisimulation invariant.
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Ad verification

The state explosion problem

q1

s1

q2

s2

q3

s3

One can always pass from distributed to sequential setting.

One can hope that keeping additional information about the structure of the
system will make verification easier.

• Unfolding techniques [McMilan, Esparza,. . . ]
• Partial order methods [Peled,Valmari,. . . ]
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The synthesis problem

C

Σin

Σout

K ⊆ (ΣinΣout)∗

Centralized synthesis

• We are given a specification K .
• We want a finite automaton C with

L(C ) ⊆ K .

Additional requirements

• ε ∈ L(C ).
• If w ∈ L(C ) and w ends in Σout then for every a ∈ Σin, wa ∈ L(C ).
• If w ∈ L(C ) and w ends in Σin then there is a ∈ Σout with wa ∈ L(C ).
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Reasons for undecidability

A simple distributed architecture

vi = wi

vi `M wi+1

C1 C2

#i$∗ #j$∗

#ivi #jwj

Specification talks about inputs and outputs of the two processes while each
processes knows only its input.

Behaviour
v1 = w1, v1 ` w2, v2 = w2, v2 ` w3, . . .

v1 ` w2 = v2 ` w3 = v3 . . .
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Decidable specifications
Local specification

A specification is local if it is a conjunction of requirements on each controller.

Decidability for local specifications

L1 ⊆ (in1 ∪ out1)∗

L2 ⊆ (in2 ∪ out2)∗
C1 C2

in1 in2

out1 out2

Theorem (Thiagarajan & Madhusudan)

The synthesis problem above is decidable for local specifications.

Remark
Local specifications and trace closed specifications are the same in this case.
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Part II
Distributed systems and ways of specifying

their behaviour

• Asynchronous automata
• Traces
• Event structures.



12/43

Asynchronous automaton: example

q1 q2 q3

a1, b1, c a2, c, d a3, b3, d

a1

b1

c

a2

a2

d

a3
Alphabet

• P: finite set of processes.
• Σ: finite set of letters.
• loc : Σ→ (2P \ ∅): distribution of

letters over processes.
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Asynchronous automata formally
Alphabet

• P: finite set of processes.
• Σ: finite set of letters.
• loc : Σ→ (2P \ ∅): distribution of letters over processes.

A (deterministic) asynchronous automaton

A = 〈{Sp}p∈P, sin, {δa}a∈Σ〉

• Sp states of process p
• sin ∈

∏
p∈P Sp is a (global) initial state,

• δa :
∏

p∈loc(a) Sp
·→
∏

p∈loc(a) Sp is a transition relation.
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Language of an asynchronous automaton

The language of the automaton

The (regular) language of the product automaton.

Independence/Dependence

• Function loc : Σ→ (2P \ ∅) implies some independence on letters:

(a, b) ∈ I iff loc(a) ∩ loc(b) = ∅

• So the language is a closed under permutations of independent letters:

wabv ∈ L(A) implies wbav ∈ L(A)

• Dependence relation D = (Σ× Σ)− I . We will express it graphically:

a − c − b
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Traces: an example

Dependence relation

a1

b1

a2

c

a3

d
b3

A trace
a1

b1

c

a2

a2

d

a3
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Traces: definition

Alphabet

Σ alphabet, D ⊆ Σ× Σ dependency relation (reflexive and symmetric).

Trace
Trace or dependency graph is a partial order

T = 〈E ,≤, λ〉

(T1) ∀e ∈ E . e↓ is a finite set
(T2) ∀e, e′ ∈ E . D(λ(e), λ(e′)) iff e ≤ e′ or e′ ≤ e.

tr(Σ,D) – the set of all traces over (Σ,D).
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Specifying trace properties

Theorem (Zielonka, Thomas, Ebinger, Muscholl. . . )

• Trace languages definable by asynchronous automata are exactly those
definable in MSOL over traces.

• These are the languages whose set of linearizations is regular.
• MSOL over traces ≡ MSOL over linearizations of traces.

Characterisations of recognizable trace languages

• MSOL logic
• Asynchronous Büchi automata
• Recognizing morphisms
• c-regular expressions: a, ∪, ·, c − ∗, c − ω
• A kind of µ-calculus
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Global vs. local logics

⊥

a1 b1 a1 b1

c

a1

a2 b2 a2

Some notions

• Configuration: downwards closed set of events.
• Prime trace: one maximal element.
• C ⇒a C ′

Global and local logics

• Global logic is evaluated in configurations: T ,C � α.
• Local logic is evaluated in events: T , e � α.
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Global temporal logic LTrL

Syntax

LTrL(Σ,D) ::= tt | ¬α | α ∨ β | 〈a〉α | αUβ | 〈a−1〉tt

Semantics

⊥

a1 b1 a1 b1

c

a1

a2 b2 a2

αUβ

Eα ≡ tt Uα Aα ≡ ¬E¬α
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Example

There are three independent events labelled by a1, a2 and a3.

E
(
(〈a1〉tt) ∧ (〈a2〉tt) ∧ (〈a3〉tt)

)
a1

a2

a3
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Expressiveness and Complexity

Theorem (Thiagarajan & W.)

LTrL(Σ,D) is expressively equivalent to FOL(Σ,D).

Theorem
LTrL(Σ,D) is non-elementary.

Theorem
LTrL−(Σ,D) is EXPSPACE-complete.
Where LTrL−(Σ,D) is the logic obtained by removing U and adding E as a
primitive.
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Local Temporal Logics
LTL ::= tt | ¬α | α ∧ β | 〈a〉α | αUβ

Semantics of Unitl

c c c
α

c
β

a a
αUβ

aα

b b bα

Theorem (Diekert & Gastin)

LTL over traces ≡ FOL over traces.

Theorem (Gastin & Kuske)

Every local trace logic with a finite number of operators definable in MSOL is
decidable in PSPACE.
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Structure on traces

Prefix relation on traces

• The prefix relation on traces, t1 < t2 is defined very similarly as for words.
• Differently from words, a trace may have two prefixes that are themselves

incomparable by a prefix relation.

t1, t2 < t but t1 6< t2 and t1 6< t2

For example: a and b are both prefixes of abc.
• We write t1 Z t2 if the two traces do not have a common extension.

For example: ac Z aac
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Event structures
From words to trees
A prefix-closed language L ⊆ Σ∗ defines a Σ labeled tree:

• nodes are elements of L,
• the tree order is given by the prefix relation <.
• the label of w ∈ L is the last letter in L.

ε

a b

a b

From traces to event structures
A prefix-closed language L ⊆ tr(Σ) defines a Σ labeled event structure:

• nodes are prime traces from L.
• the partial order is given by the prefix relation < (on traces).
• the conflict relation # is Z on traces.
• the label of t is the label of the maximal element of t.

ES(A)

We denote by ES(A) the (trace) event structure of the language L(A).
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Event structures: examples
From traces to event structures
A prefix-closed language L ⊆ tr(Σ) defines a Σ labeled event structure:

• nodes are prime traces from L.
• the partial order is given by the prefix relation < (on traces).
• the conflict relation # is Z on traces.
• the label of t is the label of the maximal element of t.

Σ = {a, b}, independent
a

a

a

b

b

b

Σ = {a, b, c}, c common
c

a

a

a

b b b

c c

c c
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Event structures

Event structure (E ,≤,#)

• E : a set of events
• ≤: a partial order on E (causality relation)
• #: symmetric and irreflexive relation (conflict relation)

Two conditions:
1 e↓ is a finite set for every a ∈ E .
2 For e1, e2, e3 ∈ E , if e1#e2 and e2 ≤ e3 then e1#e3.

Question

When such an object comes from a finite device?
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Regular event structures

Suffix of an event structure

E/e is the part of the event structure E − ({e} ∪ {e′ : e′#e})

Regular event structure

E is regular if there are finitely many E/e and there is a uniform bound on the
out-degree of each event.

Conjecture [Thiagarajan]

Does every regular event structure comes from a 1-safe Petri Net?
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Specifying event structures
Logics for event structures

First-order logic (FOL) over the signature ≤, #, Pa for a ∈ Σ:

x ≤ x ′ | x#x ′ | Pa(x) | ¬ϕ | ϕ ∨ ψ | ∃x.ϕ(x).

Monadic second-order logic (MSOL)

. . . x ∈ Z | ∃Z .ϕ(Z ).

Monadic trace logic (MTL): quantification restricted to conflict free sets.

Theorem (Madhusudan)

The problem if a given formula holds in a given trace event structure is
decidable for FOL and MTL.

Remark
There are trace event structures with undecidable MSOL theory.
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Thiagarajan’s conjecture
Synchronizing automata

An automaton A is not synchronizing if there are traces x, u, v, y such that

• u, v are nonempty and independent from each other.
• xuvy is a prime trace.
• xu∗v∗y ⊆ L(A).

x
u
v

y

Remark
If A is not synchronizing then ES(A) has undecidable MSOL theory.

Conjecture

If A is synchronizing then the MSOL theory of E(A) is decidable.
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Strongly strongly-synchronizing automata

Strongly synchronizing automaton

An asynchronous automaton A is strongly synchronizing if in every prime trace
of L(A), each of its events has at most |A| many concurrent events.

Theorem (Madhusudan, Thiagarajan, Yang)

If A is strongly synchronizing then the MSOL theory of ES(A) is decidable.

Remark
There are automata A that are not strongly synchronizing but still MSOL
theory of ES(A) is decidable.

Fact
Thiagarajan’s conjecture holds when alphabet is a cograph.
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Strongly synchronizing are too strong
Remark
There are automata A that are not strongly synchronizing but still MSOL
theory of ES(A) is decidable.

Example: Σ = {a, b, c}, L(A) = a∗bc

• This event structure is not strongly synchronizing
• It has decidable MSOL theory.

a

a

a
...

b
c

c

c

c
...
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Part III
Controlling asynchronous automata

• Process and action based-control.
• Encoding into MSOL theory of event structures. Decidability results.
• Reduction from process to action-based control.
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Back to synthesis

C

Σin

Σout

K ⊆ (ΣinΣout)∗

Centralized synthesis

• We are given a specification K .
• We want a finite automaton C with
L(C ) ⊆ K .

Additional requirements

• If w ∈ L(C ) and w ends in Σout then for every a ∈ Σin, wa ∈ L(C ).
• If w′ ∈ L(C ) and w ends in Σin then there is a ∈ Σout with wa ∈ L(C ).

Remark
Synthesis is about branching time properties.
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Controlling an asynchronous automaton:
an example

a0, a1 b0, b1

c0, c1

Example specifications

1 aibjck with k = i.
2 aibjck with k = i · j .

Two methods of control

• Process-based: Process decides what actions it can do.
• Action-based: Actions decide whether they can execute.



35/43

Process based control
Plant over P, loc : Σ→ P and Σ = Σsys ∪ Σenv

A deterministic asynchronous automaton.

Views for a process p ∈ P

• Let viewp(t) be the smallest prefix of t containing all p-actions.
• Let Playsp(A) = {viewp(t) : t ∈ L(A)}.

Strategy

• A strategy is a tuple of functions fp : Playsp(A)→ 2Σsys
for p ∈ P.

• Plays respecting σ = {fp}p∈P.
• if a ∈ Σenv and ua ∈ Plays(A) then ua is in Plays(A, σ).
• if a ∈ Σsys and ua ∈ Plays(A) then ua ∈ Plays(A, σ) provided that

a ∈ fp(viewp(u)) for all p ∈ loc(a).
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Process based control

Requirements

• We are given asynchronous automaton A and a regular trace language K .
• A strategy σ = {fp}p∈P gives us a set of traces Playsω(A, σ).
• A strategy is non-blocking if every trace in Plays(A, σ) that has a

prolongation in Plays(A) has a prolongation in Plays(A, σ).

The synthesis problem

Given A and K , decide if there is a non-blocking strategy σ such that
Playsω(A, σ) ⊆ K .
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Process based control

{c0, c1} {c0, c1}

a1 b1

c0, c1

Example specifications

1 aibjck with k = i.
2 aibjck with k = i · j .
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Action based control

Process based Action based

viewp(t) viewa(t) =
⋃
{viewp(t) : p ∈ loc(a)}

Playsp(A) Playsa(A) = {viewa(t) : t ∈ L(A)}

fp : Playsp(A)→ Σsys ga : Playsa(A)→ {tt,ff }

σ = {fp}p∈P ρ = {ga}a∈Σsys

Playsω(A, ρ)

• if a ∈ Σenv and ua ∈ Plays(A) then ua is in Plays(A, ρ).
• if a ∈ Σsys and ua ∈ Plays(A) then ua ∈ Plays(A, ρ) provided that
ga(viewa(u)) = tt.
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Encoding the process-based synthesis
problem

Encoding the process based synthesis

For a MSOL specification α there is a MSOL formula ϕα such that ES(A) � ϕα
iff process-based control problem for (A, α) has a solution.

Corollary [Madhusudan & Thiagarajan]

The process-based control problem is decidable for strongly synchronizing
automata.

Remark
The same can be done for action-based control.
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Writing the formula ϕα

Encoding strategies

• Take σ = {fa}p∈P where each fp : Playsp(A)→ Σ.
• Encode σ with the help of variables Za

p for a ∈ Σsys and p ∈ P.

for every e ∈ ES(A) e ∈ Za
p iff a ∈ fp(e)

Encoding action-based control

• Write a formula defining Plays(A, σ): π(X ,Za
p , . . . ).

• Write a formula defining Playsω(A, σ): π(X ,Za
p , . . . ).

• Say that all paths in Playsω(A, ρ) satisfy the specification:
∀X .πω(X ,Za

p , . . . )⇒ α(X).
• The required formula is: ∃Za

p . . . ∀X .πω(X ,Za
p , . . . )⇒ α(X).
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Reduction “process-based” to
“action-based”

Observation 1

If there is a process-based controller than there is an action-based controller.

Observation 2

This does not in principle imply that process-based control is easier than
action-based control (nor vice-versa).

Fact
For every asynchronous automaton A and MSOL specification α, one can
construct A and α such that:

action-based controller for (A, α) exists
iff

process-based controller for (A, α) exists.
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Decidability of MSOL is not necessary
Observation

Thiagarajan’s conjecture implies decidability of process-based and
action-based control for synchronizing automata.

Definition
A trace alphabet is a co-graph if it does not contain the pattern
x1 − x2 − x3 − x4 in its induced graph.

Theorem (Gastin & Lehrman & Zeitoun)

The action-based control problem is decidable for automata over trace
alphabets that are co-graphs.

Remark
Alphabet Σ = {a, b, c} with a − c − b is a co-graph. There is A over this
alphabet whose ES(A) has undecidable MSOL theory.
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Conclusions

• Non-interleaving semantics have big potential, especially in the context of
synthesis.

• While traces are relatively well understood, event-structures are much
less studied.

• From the synthesis point of view, event structures are more fundamental
than traces.

• Thiagarajan’s conjecture is an important milestone in understanding the
decidability frontier.

• It may well be the case that action based control is decidable for all
asynchronous automata.


