
True Concurrency at Work:

Relaxed Memory Models

Gérard Boudol

(joint work with Gustavo Petri)

INRIA Sophia Antipolis

1

THIAGU is 20

1

THIAGU is 20

Proof: born (to me) at the

Workshop on Computations of Distributed Systems, Königswinter,

March 2 - 4, 1988.

1

THIAGU is 20

Proof: born (to me) at the

Workshop on Computations of Distributed Systems, Königswinter,

March 2 - 4, 1988.

True vs “false” concurrency

1

THIAGU is 20

Proof: born (to me) at the

Workshop on Computations of Distributed Systems, Königswinter,

March 2 - 4, 1988.

True vs “false” concurrency

A technique – equivalence by permutation of computations, [Berry

& Lévy78] – to extract partial orders out of a standard operational

semantics, i.e. transitions on configurations, with structure (syntax).

Plan of the talk:

◮ Motivation – shared variable concurrency

◮ Weak memory in hardware

◮ The problem

◮ Weak memory models

◮ Our approach: operational memory model

◮ Correctness (permutations of transitions)

◮ Perspectives and conclusion

2

SHARED VARIABLE CONCURRENCY (1/3)

A renewal of interest in concurrent programming:

◮ new, naturally concurrent applications;

◮ multicore architectures.

Shared variable concurrency – aka multithreading – is difficult:

◮ state space explosion, non-determinism (testing, debugging?)

◮ data races, lack of atomicity... ⇒ synchronization (mutual

exclusion).

3

SHARED VARIABLE CONCURRENCY (2/3)

Let x + + = (x := !x + 1). Then, starting from x = 0 and

flag0 = tt = flag1

flag0 := ff ; ‖ flag1 := ff ;

if !flag1 then if !flag0 then

x + + x + + ; x + +

will return either x = 1 or x = 2.

4

SHARED VARIABLE CONCURRENCY (3/3)

However, on most (multicore) machines

flag0 := ff ; ‖ flag1 := ff ;

if !flag1 then if !flag0 then

x + + x + + ; x + +

may return x = 3 – an unwanted outcome.

4

SHARED VARIABLE CONCURRENCY (3/3)

However, on most (multicore) machines

flag0 := ff ; ‖ flag1 := ff ;

if !flag1 then if !flag0 then

x + + x + + ; x + +

may return x = 3 – an unwanted outcome.

Why? A write to the memory is issued, and the computation

continues without waiting for it to be performed – think of

flag0 := ff ‖ if !flag1 then ‖ flag1 := ff ‖ if !flag0 then

x + + x + + ; x + +

5

WEAK MEMORY in HARDWARE (1/2)

Optimization for sequential code: writes to the memory run in parallel

with the code.

➥ reordering of instructions:

x := 1 ; r := !y

may appear to be executed as

r := !y ; x := 1

But program order on read/writes on a given memory location must be preserved:

x := 1 ; x := 2 ; r := !x

must return r = 2.

➥ write buffers (and caches). Also: delayed reads.

6

WEAK MEMORY in HARDWARE (2/2)

Synchronization:

◮ test-and-set, compare-and-swap...

◮ memory barriers, fence...

➥ locks ℓ to ensure mutual exclusion (with ℓ do · · ·).

For instance

(with ℓ do x + +) ‖ (with ℓ do x + +)

returns x = 2 , whereas x + + ‖ x + + may return x = 1:

x + + ‖ x + + → x := 0 + 1 ‖ x := !x + 1
∗

→ x := 1 ‖ x := !x + 1
∗

→ x := 1 ‖ x := 1

a data race.

7

An ALTERNATIVE

Multithreading does not work on optimized, multicore architectures.

➥ give up optimizations – should hardware factories build (and sell)

non-optimized machines?

➥ program in a disciplined way: write only (concurrent) programs

that work!

Using synchronization/memory barriers.

8

A CHALLENGE

How to be sure that any “well-synchronized” program works on a

relaxed architecture?

◮ formalize the “memory model,”

◮ show that it implements the usual, interleaving semantics for

well-synchronized (= Data Race Free) programs, that is

prove the “DRF guarantee.”

9

WEAK MEMORY MODELS (1/4)

Intended to formalize the semantics supported by optimized hardware

(and, sometimes, compilers).

◮ specify which value a read instruction may (or not) get during

execution;

◮ delimit which optimizations (reorderings) are allowed;

◮ should support the DRF guarantee.

10

WEAK MEMORY MODELS (2/4)

Intel 64 (2007)

Stores are not reordered with older loads:

Processor 0 Processor 1

mov r1, [x] // M1 mov r2, [y] // M3

mov [y], 1 // M2 mov [x], 1 // M4

Initially x == y == 0

r1 == 1 and r2 == 1 is not allowed

The JMM (JAVA Memory Model):

Initially x == y == 0

Thread 1 Thread 2

r1 = x r2 = y

y = 1 x = 1

Allowed: r1 == 1 == r2

11

WEAK MEMORY MODELS (3/4)

JAVA Memory Model [Sevcik & Aspinall 2008]:

◮ action a = (t, k, u) where t = thread identifier, k = kind (read,

write,...), u = unique identifier.

◮ execution E = (P,≤po,≤so, V,W) where

• P = program = set of traces (sequences of actions);

• ≤po program order on actions;

• ≤so synchronization order on actions;

• V the visibility mapping, from read actions to write actions;

• W written value assigned to each (write) action.

◮ happens-before order ≤hb= (≤sw ∪ ≤po)
+ where ≤sw is...

12

WEAK MEMORY MODELS (4/4)

An execution E = (P,≤po,≤so, V,W) is well-formed iff

1. ...

...

4. ≤so is consistent with ≤po, that is ...;

...

9. ≤hb is consistent with V , that is ...;

10. ...

A well-formed execution is legal iff ... (7 axioms).

➥ more than 3 (LNCS) pages in [Sevcik & Aspinall 2008] to define

the “allowable behaviour” of a program.

13

PROBLEM

How to prove the DRF guarantee for such a memory

model?

◮ how to relate the usual, interleaving semantics of a program

(= expression written in some programming language) with such

a memory model?

◮ how to define the semantics of a program determined by the

memory model?

Looks like a “true concurrency problem,” but...

◮ a “truly concurrent” version of the interleaving semantics would

leave the input/output behaviour invariant, thus cannot account

for the “weak semantics” (unexpected outcomes).

➥ A new approach to formalizing relaxed memory models.

14

Our APPROACH

Considering a memory model, to establish the DRF guarantee for a

given language, with threads and locks:

◮ define the “reference” interleaving semantics (as usual),

◮ define the memory model as part of a weak operational semantics;

◮ prove that the weak semantics implements the interleaving

semantics for DRF programs.

We use a bisimulation method, and we need to establish that DRF

programs are well-synchronized.

◮ proved using “true-concurrency” techniques (Berry & Lévy’s

permutation equivalence).

15

LANGUAGE

An ML-like language (no typing), with threads and locks:

e ::= v | (e0e1) expressions

| (ref e) | (! e) | (e0 := e1)

| (thread e) | (with ℓ do e)

v ::= x | λxe | () values

E ::= [] | (E e) | (v E) evaluation contexts

| (ref E) | (!E) | (E := e) | (v := E)

| (holding ℓ do E)

equipped with an interleaving semantics.

Sequential composition:

e0 ; e1 =def (let x = e0 in e1) = (λxe1e0)

(x not free in e1).

16

WRITE BUFFERS

Write buffer: a queue of values (FIFO) per pointer.

B = {p1 7→ v1
1 · · · v

1
n1

, . . . , pk 7→ vk
1 · · · v

k
nk
}

Syntax for thread systems:

Θ ::= e | 〈B〉Θ | (Θ ‖Θ)

depicted as, e.g.
Store

↑

B

ր տ

B0 B1

↑ ↑

e0 e1

17

WEAK SEMANTICS – ROUGHLY (1/3)

x := 1 ; !y ‖ y := 1 ; !x

{x 7→ 0, y 7→ 0}

ր տ

{} {}

↑ ↑

x := 1 y := 1

!y !x

18

WEAK SEMANTICS – ROUGHLY (2/3)

x := 1 ; !y ‖ y := 1 ; !x

{x 7→ 0, y 7→ 0}

ր տ

{x 7→ 1} {y 7→ 1}

↑ ↑

!y !x

19

WEAK SEMANTICS – ROUGHLY (3/3)

x := 1 ; !y ‖ y := 1 ; !x

{x 7→ 0, y 7→ 0}

ր տ

{x 7→ 1} {y 7→ 1}

↑ ↑

0 0

20

WEAK SEMANTICS – FORMALLY

Main rules: read, write and unlock + propagation of writes.

(S, L,Θ[E[(! p)]]) → (S, L,Θ[E[v]]) (S,Θ)(p) = v

(S,L,Θ[E[(p := v)]]) → (S, L,Θ[〈{p 7→ v}〉E[()]])

(S,L,Θ[E[(holding ℓ do v)]]) → (S, L− {ℓ},Θ[E[v]]) Θ†

(S,L, 〈B〉Θ) → (S[p := v], L, 〈B ↑ p〉Θ)

B(p) = v · s

(S,L,Θ[〈B0〉〈B1〉Θ]) → (S, L,Θ[〈B0[p← v]〉〈B1 ↑ p〉Θ])

B1(p) = v · s

(S,L,Θ[(〈B〉Θ ‖Θ′)]) → (S, L,Θ[〈{p 7→ v}〉(〈B ↑ p〉Θ ‖Θ′)])

B(p) = v · s

(S,L,Θ[(Θ ‖〈B〉Θ′)]) → (S, L,Θ[〈{p 7→ v}〉(Θ ‖〈B ↑ p〉Θ′)])

B(p) = v · s

(S, L,Θ[〈B〉Θ]) → (S, L,Θ[Θ]) W(B) = ∅

21

WEAK SEMANTICS: EXAMPLE (1/5)

(with ℓ do x := 1) ; !y ‖ (with ℓ do y := 1) ; !x

{x 7→ 0, y 7→ 0}

ր տ

{} {}

↑ ↑

with ℓ with ℓ

x := 1 y := 1

!y !x

22

WEAK SEMANTICS: EXAMPLE (2/5)

(with ℓ do x := 1) ; !y ‖ (with ℓ do y := 1) ; !x

{ℓ, x 7→ 0, y 7→ 0}

ր տ

{} {}

↑ ↑

hold ℓ with ℓ

x := 1 y := 1

!y !x

23

WEAK SEMANTICS: EXAMPLE (3/5)

(with ℓ do x := 1) ; !y ‖ (with ℓ do y := 1) ; !x

{ℓ, x 7→ 0, y 7→ 0}

ր տ

{x 7→ 1} {}

↑ ↑

hold ℓ with ℓ

() y := 1

!y !x

24

WEAK SEMANTICS: EXAMPLE (4/5)

(with ℓ do x := 1) ; !y ‖ (with ℓ do y := 1) ; !x

{ℓ, x 7→ 1, y 7→ 0}

ր տ

{} {}

↑ ↑

hold ℓ with ℓ

() y := 1

!y !x

25

WEAK SEMANTICS: EXAMPLE (5/5)

(with ℓ do x := 1) ; !y ‖ (with ℓ do y := 1) ; !x

{x 7→ 1, y 7→ 0}

ր տ

{} {}

↑ ↑

!y with ℓ

y := 1

!x

26

CORRECTNESS

◮ standard, or strong configuration: C = (S,L,Θ) where Θ does

not contain any write buffer – otherwise: weak configuration.

◮ DRF configuration: cannot reach (in the interleaving semantics)

a configuration C where there are conflicting, concurrent accesses

to the same pointer, i.e. C = (S,L,Θ) where

Θ = · · · ‖E[e] ‖ · · · ‖E[e′] ‖ · · ·

where e and e′ are reads (!p) or writes (p := v) to the same

pointer, one of which is a write.

Theorem. The strong configurations reachable from a (strong)

DRF configuration C in the weak semantics coincide with the

configurations reachable from C in the interleaving semantics.

27

Some NOTATIONS

◮ transitions in the weak semantics: C → C ′.

◮ propagation of buffered writes: C →b C ′.

◮ transitions in the interleaving semantics (C strong): C →s C ′.

28

BISIMULATION (1/2)

Lemma. For any configuration C there exists a strong

configuration C ′ such that C
∗

→b C ′. Notation: C ⇓ C ′.

Proof: propagation of buffered writes terminates.

C a strong configuration, R(C) given by

C0R(C)C1 ⇔def C
∗

→ C0 ⇓ C1

The weak semantics simulates the interleaving semantics:

C
∗

→ C0 → C ′

0

⇓ ⇓

C1 →s C ′

1

29

COHERENCE

◮ coherent configuration: no concurrent buffered writes on the same

pointer.

◮ fully coherent configuration: in addition, no buffered write concur-

rent with a read on the same pointer.

Fully coherent ≈ without “weak data race.”

Lemma. Buffered writes propagation (i.e. →b) preserves full

coherence, and, for coherent configurations, is locally confluent.

Corollary. (Confluence) C coherent:

C ⇓ C0 & C ⇓ C1 ⇒ C0 = C1

30

BISIMULATION (2/2)

Claim. C DRF & C
∗

→ C ′ ⇒ C ′ fully coherent.

C DRF: the weak semantics does not deviate from the interleaving

one.

C
∗

→ C0 → C ′

0 C ′

0 C ′

0

⇓ ⇒ ⇓ or ⇓

C1 C1 C1 →s C ′

1

➥ correctness.

31

The CLAIM – ROUGHLY

◮ a strong configuration C is well-synchronized if in any strong com-

putation of C, two conflicting, concurrent actions are separated

by an unlock in the same thread as the one of the first action.

Proposition. If C is DRF then C is well-synchronized.

Lemma. C strong. If C
∗

→ C ′, where C ′ contains a write

buffered for pointer p, then in the reduction there is a write (p := v)

on the same thread to the store, which is not followed by any unlock

(unless concurrent with the write).

Corollary. C DRF & C
∗

→ C ′ ⇒ C ′ fully coherent.

32

DRF⇒ WELL-SYNCHRONIZED (1/2)

(now we consider only the interleaving semantics, and strong configurations.)

C DRF:

C
∗

→
a
−→
t
· · ·︸︷︷︸

n

b
−→
t′
· · ·

where a and b are conflicting (a # b), concurrent (t 6= t′) actions,

then, for n = 0:

◮ a and b cannot be accesses to the same pointer, one of them a

write (would contradict DRF);

◮ if a and b are “acquire” or “release” of the same lock, a must be

a release (= unlock).

For n > 0? By cases on the step following a, possibly commuting

the two – permutation of transitions.

33

PERMUTATION of TRANSITIONS

In the interleaving semantics, concurrent, non-conflicting steps can

be permuted:

C
a
−→
t

b
−→
t′

C ′ & ¬(a # b) & t 6= t′ ⇒ C
b
−→
t′

a
−→
t

C ′

➥ generates an equivalence on computations

· · · C
ր ց

ց ր
C ′ · · ·

Event = occurrence of an action in such a computation.

➥ ordering of events: e “happens before” e′ in a computation iff e

precedes e′ in any permutation of the computation.

34

DRF⇒ WELL-SYNCHRONIZED (2/2)

Crucial Lemma. For any computation of a DRF program, if an

event e performed by thread t happens before e′, performed by thread

t′, in the computation, while being concurrent with e′ (t 6= t′), then

t performs an unlock operation that happens before e′ in the same

computation.

Proof: transposition of computing steps between e and e′ – details

in the paper.

35

WORK in PROGRESS

◮ specialize the model, to make it closer to (less relaxed) specific

architectures: Itanium, ARM, SPARC’s TSO and PSO.

◮ extend it to capture more relaxed architectures, with delayed reads:

SPARC’s RMO, Power PC, Intel 64.

◮ make a similar study for speculative computation, where evaluation

order is completely relaxed:

◮◮ guessing (instead of reading) values from the memory, and

◮◮ computing in advance, e.g. in the branches of a conditional

construct and the continuation of a sequential composition.

36

CONCLUSION

◮ True concurrency techniques are appropriate to study the

semantics of concurrent programs running on truly concurrent

machines.

◮ Weak operational models may be useful for reasoning about

programs.

◮ Big challenge: back-end compiler’s optimizations.

◮ Is (truly) shared memory a good idea?

Happy Birthday, Thiagu!

