True Concurrency at Work:
Relaxed Memory Models

Gérard Boudol
(joint work with Gustavo Petri)
INRIA Sophia Antipolis



THiAGU is 20




THiAGU is 20

Proof: born (to me) at the

Workshop on Computations of Distributed Systems, Konigswinter,
March 2-4, 1988.



THiAGU is 20

Proof: born (to me) at the

Workshop on Computations of Distributed Systems, Konigswinter,
March 2-4, 1988.

True vs ‘false” concurrency



THiAGU is 20

Proof: born (to me) at the

Workshop on Computations of Distributed Systems, Konigswinter,
March 2-4 1988

True vs ‘false” concurrency

A technique — equivalence by permutation of computations, [Berry
& Leévy78] — to extract partial orders out of a standard operational
semantics, i.e. transitions on configurations, with structure (syntax).



Plan of the talk:

» Motivation — shared variable concurrency
» Weak memory in hardware

» [he problem

» Weak memory models

» QOur approach: operational memory model
» Correctness (permutations of transitions)

» Perspectives and conclusion



SHARED VARIABLE CONCURRENCY (1/3)

A renewal of interest in concurrent programming:

» new, naturally concurrent applications;

» multicore architectures.

Shared variable concurrency — aka multithreading — is dithcult:

» state space explosion, non-determinism (testing, debugging?)

» data races, lack of atomicity... =- synchronization (mutual
exclusion).



SHARED VARIABLE CONCURRENCY (2/3)

let © + + = (x := lx + 1). Then, starting from z = 0 and
flagy = tt = flag,

flago :=ff; || flagy == ff;
if Iflag, then if lflag, then
x+ + T+ +,T++

will return either x = 1 or v = 2.



SHARED VVARIABLE CONCURRENCY

(3/3)

However, on most (multicore) machines

flago :==ff; || flagy :==1f;
if lflag, then if lflag, then
T+ + r++,r++

may return x = 3 — an unwanted outcome.



SHARED VARIABLE CONCURRENCY (3/3)

However, on most (multicore) machines

flago :==ff; || flagy :==1f;
if lflag, then if lflag, then
T+ + r++,r++

may return x = 3 — an unwanted outcome.

Why? A write to the memory is issued, and the computation
continues without waiting for it to be performed — think of

flagy := ff || if !flag, then || flag, :=ff | if !flag, then
x + + T+ +,2++



WEAK MEMORY in HARDWARE (1/2)

Optimization for sequential code: writes to the memory run in parallel
with the code.

[1 reordering of instructions:
x:=1;r:=ly
may appear to be executed as
r=ly;x:.=1
But program order on read/writes on a given memory location must be preserved:
ri=1:x:=2:r:=lx
must return r = 2.

[0 write buffers (and caches). Also: delayed reads.



WEAK MEMORY in HARDWARE (2/2)

Synchronization:
» test-and-set, compare-and-swap...

» memory barriers, fence...
[1 locks £ to ensure mutual exclusion (with £ do ---).

For instance

(with ¢ do x + +) || (with £ do = + +)

returns x = 2 , whereas x + + || x + + may return z = 1
r++ || z4++ — =041 xz:=lr+1
S ox=1|z:=lz+1
Soxi=1 x:=1

a data race.



An ALTERNATIVE

Multithreading does not work on optimized, multicore architectures.

[1 give up optimizations — should hardware factories build (and sell)
non-optimized machines?

[0 program in a disciplined way: write only (concurrent) programs
that work!

Using synchronization/memory barriers.



A CHALLENGE

How to be sure that any “well-synchronized” program works on a
relaxed architecture?

» formalize the "memory model,”

» show that it implements the usual, interleaving semantics for
well-synchronized (= Data Race Free) programs, that is

prove the "DRF guarantee.”



WEeEaAK MEMORY MODELS (1/4)9

Intended to formalize the semantics supported by optimized hardware
(and, sometimes, compilers).

» specify which value a read instruction may (or not) get during
execution:

» delimit which optimizations (reorderings) are allowed;

» should support the DRF guarantee.



WEeEaAK MEMORY MODELS (2/41)0

Intel 64 (2007)

Stores are not reordered with older loads:

Processor 0 Processor 1

mov rl, [_x] // M1 | mov r2, [_ y] // M3
mov [_ y], 1 // M2 mov [_x], 1 // M4
Initially x ==y ==

rl == 1 and r2 == 1 is not allowed

The JMM (JAVA Memory Model):

Initially x ==y ==
Thread 1 | Thread 2

rl = x r2 =y

y =1 x =1
Allowed: r1 == 1 == r2




WEeEaAK MEMORY MODELS (3/41)1

JAVA Memory Model [Sevcik & Aspinall 2008]:

» action @ = (¢, k,u) where t = thread identifier, k = kind (read,
write,...), u = unique identifier.

» execution B = (P, <p0, <s0, V, W) where

e P = program = set of traces (sequences of actions);

e <,, program order on actions;

e <, synchronization order on actions;

e V the visibility mapping, from read actions to write actions;

e W written value assigned to each (write) action.

» happens-before order <pp= (s U <po) T where <y is...



WEeEaAK MEMORY MODELS (4/41)2

An execution B = (P, <,0, <50, V, W) is well-formed iff

1. ..

4. <go is consistent with <,,,, thatis ...;

9. <pp is consistent with V', that is ...;
10. ...

A well-formed execution is legal iff ... (7 axioms).

[0 more than 3 (LNCS) pages in [Sevcik & Aspinall 2008] to define

the “allowable behaviour” of a program.



13

PROBLEM

How to prove the DRF guarantee for such a memory
model?

» how to relate the usual, interleaving semantics of a program
(= expression written in some programming language) with such
a memory model?

» how to define the semantics of a program determined by the

memory model?
Looks like a “true concurrency problem,” but...

» a truly concurrent’” version of the interleaving semantics would
leave the input/output behaviour invariant, thus cannot account
for the “weak semantics” (unexpected outcomes).

[1 A new approach to formalizing relaxed memory models.



14

Our APPROACH

Considering a memory model, to establish the DRF guarantee for a
given language, with threads and locks:

» define the “reference” interleaving semantics (as usual),

» define the memory model as part of a weak operational semantics;
» prove that the weak semantics implements the interleaving

semantics for DRF programs.

We use a bisimulation method, and we need to establish that DRF
programs are well-synchronized.

» proved using “true-concurrency” techniques (Berry & Lévy's
permutation equivalence).



15

| ANGUAGE

An ML-like language (no typing), with threads and locks:

e == v | (epeq) expressions
| (refe) | (Te) | (eo:=e1)
| (threade) | (with £ do e)
v = x| Aze | () values
E | | (Ee) | (vE) evaluation contexts

| (refE) | ('E) | (E:=¢) | (v:=E)
| (holding ¢ do E)

equipped with an interleaving semantics.
Sequential composition:
eo; €1 =def (let z =eg in e1) = (Azereq)

( not free in e1).



VVRITE BUFFERS

16

Write buffer: a queue of values (FIFO) per pointer.
1 1 k

B:{levl...Unl’ 7pk|_>U1...

Syntax for thread systems:
©:=e | (B)O | (0]6)

depicted as, e.g.
Store

k

N



VWEAK SEMANTICS — ROUGHLY (1/3)

r:=1;ly | y:=1;

{z+— 0,y — 0}
AN

. ——
| = ——

/
{}
T
r:=1
ly



VWEAK SEMANTICS — ROUGHLY (2/3)

My || la
{z+— 0,y +— 0}
/ AN
{z — 1} {y — 1}
1 1

ly lx



VWEAK SEMANTICS — ROUGHLY (3/3)

y || 1o
{z+— 0,y +— 0}
/ AN
{z — 1} {y — 1}
T 1

0 0



20

VWEAK SEMANTICS — FORMALLY

Main rules: read, write and unlock + propagation of writes.

(5, L, O[E((! )]

(5, L, ®[E[(p := v)]])

(S, L, ©[E[(holding ¢ do v)]])
)

(5, L, (B)®

(Sv Lv ®[<BO><B1>@])
(S, L, ®[((B)O ]| ©)))
(S, L, ®[(©|[(B)6)])

(5, L, ®[(B)6))

Lol bl

l

(S,LOEPN])  (5.0)(p) =0
(S, L,®[({p — vHE[)]])

(S, L — {£}, O[E[v]]) o
(Slp := ], L, (B 1 p)®©)
B(p)=v-s

(S, L, ®[(Bolp «v]){(B1 1 p)0O])
Bi(p)=v-s

(S,L,®[{{p — v} ((B1pO|[6)])
B(p)=wv-s

(S, L,®[{({p— v})(© (B 1p©)])
B(p)=wv-s

(S, L,0[0)) W(B) = 0



WEAK SEMANTICS: EXAMPLE (1/5)

(with £ dox:=1);ly || (withfdoy:=1); lx

{z— 0,y — 0}
/ AN
{} {}
T T
with ¢ with ¢
T = Y =

ly lx



WEAK SEMANTICS: EXAMPLE (2/5)

(with doxz:=1); 1y || (withfdoy:=1); lx

{t,z— 0,y — 0}

/ AN
U U
1 1
hold ¢ with /¢
T = Y =



WEAK SEMANTICS: EXAMPLE (3/5)

(with ¢ do )ily || (withldoy:=1); lx

{t,z— 0,y — 0}

/ AN
{z —1} {}
I I
hold with ¢
0 Y =

ly lx



WEAK SEMANTICS: EXAMPLE (4/5)

(with £ do z:=1); 1y || (with £ doy:=1); lx

{t,z— 1,y 0}

/ AN
8 {}
I I
hold with ¢
0 Y =

ly lx



WEAK SEMANTICS: EXAMPLE (5/5)

(with £ do z:=1); 1y || (with £ doy:=1); lx

{z—1y—0}
/! AN
U U
1 1
ly with /¢
Y=



26

CORRECTNESS

» standard, or strong configuration: C' = (S, L, ©) where © does
not contain any write buffer — otherwise: weak configuration.

» DRF configuration: cannot reach (in the interleaving semantics)
a configuration C where there are conflicting, concurrent accesses
to the same pointer, i.e. C'= (S, L, ©) where

O=--|Elel|---|El]]-

where e and €’ are reads (!p) or writes (p := v) to the same
pointer, one of which is a write.

Theorem. The strong configurations reachable from a (strong)
DRF configuration C' in the weak semantics coincide with the
configurations reachable from C' in the interleaving semantics.



Some NOTATIONS

27

» transitions in the weak semantics: C' — C’.
» propagation of buffered writes: C' —y C.

» transitions in the interleaving semantics (C' strong): C' —4 C".



BISIMULATION (1/2)

Lemma. For any configuration C' there exists a strong
configuration C’ such that C' =, C’. Notation: C || C".
Proof: propagation of buffered writes terminates.

C' a strong configuration, R(C') given by
CoR(C)C1  ©ges C 5 Col Cy
The weak semantics simulates the interleaving semantics:

C 5 C,
|}
Cl s Ci



29

COHERENCE

» coherent configuration: no concurrent buffered writes on the same
pointer.

» fully coherent configuration: in addition, no buffered write concur-
rent with a read on the same pointer,

Fully coherent & without "“weak data race.”

Lemma. Buffered writes propagation (i.e. —y) preserves full
coherence, and, for coherent configurations, is locally confluent.

Corollary. (Confluence) C' coherent:

Cl}C()&CUCl — C()ZCl



BISIMULATION (2/2)

Claim. CDRF & C 5 C' = ' fully coherent.

C' DRF: the weak semantics does not deviate from the interleaving

one.
c = Co — (] C|, C|,
[} = I or
Cy Cy Cy

[] correctness.



31

T he CLAIM — ROUGHLY

» a strong configuration C' is well-synchronized if in any strong com-
putation of C', two conflicting, concurrent actions are separated
by an unlock in the same thread as the one of the first action.

Proposition. If C is DRF then C' is well-synchronized.

Lemma. C(C strong. If C = ' where ¢ contains a write
buffered for pointer p, then in the reduction there is a write (p := v)
on the same thread to the store, which is not followed by any unlock
(unless concurrent with the write).

Corollary. C DRF & C = ¢’ = (' fully coherent.



DRF = WELL-SYNCHRONIZED (1/23)2

(now we consider only the interleaving semantics, and strong configurations.)

C DRF:

b
oS58 02,
t \/t/

where a and b are conflicting (a # b), concurrent (¢ # t) actions,
then for n = 0:

» a and b cannot be accesses to the same pointer, one of them a
write (would contradict DRF);

» if a and b are "acquire” or “release” of the same lock, a must be
a release (= unlock).

For n > 07 By cases on the step following a, possibly commuting
the two — permutation of transitions.



33

PERMUTATION of | RANSITIONS

In the interleaving semantics, concurrent, non-conflicting steps can
be permuted:

c{+im&ﬂm#m&t¢ﬂ¢cyi&0'

t/ t’

[1 generates an equivalence on computations

o’ N

Event = occurrence of an action in such a computation.

[1 ordering of events: e "happens before” €’ in a computation iff e
precedes €’ in any permutation of the computation.



DRF = WELL-SYNCHRONIZED (2/23)4

Crucial Lemma. For any computation of a DRF program, if an
event e performed by thread ¢ happens before €, performed by thread
t’, in the computation, while being concurrent with €’ (¢ # t), then
t performs an unlock operation that happens before €’ in the same

computation.

Proof: transposition of computing steps between e and €’ — details
in the paper.



35

VVWORK in PROGRESS

» specialize the model, to make it closer to (less relaxed) specific
architectures: ltanium, ARM, SPARC's TSO and PSO.

» extend it to capture more relaxed architectures, with delayed reads:

SPARC's RMO, Power PC. Intel 64.

» make a similar study for speculative computation, where evaluation
order is completely relaxed:
» guessing (instead of reading) values from the memory, and

» computing in advance, e.g. in the branches of a conditional
construct and the continuation of a sequential composition.



36

CONCLUSION

» [rue concurrency techniques are appropriate to study the
semantics of concurrent programs running on truly concurrent
machines.

» Weak operational models may be useful for reasoning about
programs.

» Big challenge: back-end compiler's optimizations.

» Is (truly) shared memory a good idea”



Happy Birthday, Thiagu!



