
Verification of Industry Code : Challenges

1

R Venkatesh
r.venky@tcs.com

Overview

� Focus of talk
• Scalability problems in industry code
• Ideas we are exploring

� Formal verification @ TRDDC
– Apply academic ideas to address quality related problems

• Experiments and tools
– Adapt as required

2

– Adapt as required
• Scale up
• Specific solutions

� Based on experiences with embedded software

Context

� Finding bugs early in software

� Model based development
– Matlab Simulink
– Statecharts
– Code

• Generated and hand written

3

• Generated and hand written

� Analysis and Testing
– Most bugs can be found

Experience

Code Analysis

� Standard + other properties
– Zero division
– Correct use of

semaphores
� Dataflow analysis + model

checking
– Variable ranges from static Model

Code

Static Anal

5

– Variable ranges from static
analysis

� Precision is the key challenge
– Model checking does not

scale up

Error Report

Model
Checking

Code Characteristics

Application Size Key Characteristics FPS(ZD)

Infotainment 2MLOC
(1 task)

Large, large arrays(512), loops(unknown
bounds)

77

Smart card
component

7K Loops with large bounds and unknown
bounds

55

Several Upto
36K

- 0

6

j = nondet() * 2;

for (; j < 512; j += 2)
assert(j + 1 < 512);

36K

t = nondet_long();
while((t / sec_366) > 0)
{

if(y % 4) t -= sec_365;
else t -= sec_366;
y++ ;

}
…
assert (m < 12);

Test Generation

� Code coverage
– Modified Decision Condition

Coverage

� Very similar to property
checking
– Most states will be reachable
– High coverage needed

AutoGen

C Code

7

– High coverage needed
– False positives not an issue

� Scaling up is the key challenge
Model checker

Test Cases

Code Characteristics

� Driver assist + odometer cluster
� Generated code
� Recursive code
� Nested loops
� Counters + floating operations

while (j++ <= 31 && !l)

8

while (j++ <= 31 && !l)
for (i = 0; i <= 31; i++)

if (*)
f(a[i]);
l = i;

while c(a[l], a[l + 1])
l++;

while (*)
recursion
<counters>++;
assert (counter < k);

Current Ideas being Explored

Loop Abstraction

� Replace loops by small
bounded loops

� One execution of body
– Each distinct path
– Distinct output variable

� Recurrence relations

while (*)

on = f(<io>);

for (i in 1..n)
k = *;

10

� Recurrence relations
– Linear

� Naïve refinement

k = *;
<io> = */recur(k);
on = f(<io>);

Guessing Invariants : Daikon

� Generate random traces

� Guess invariants
– Daikon
– Template based

� Replace complex code by

Invariant Gen

C Code

11

� Replace complex code by
invariants

� Works well in practice

Test Gen

Test Cases

Statecharts Analysis

• Size
• Per statechart

• ~ 5 states, ~ 6-7 transitions
• Translates to ~200 lines of C

code

• ~ 500 statecharts, composed in
parallel

• Real valued clock variables, ~ 1-2 per

Statemate Models

Dataport

Abstraction Techniques

12

• Real valued clock variables, ~ 1-2 per
statechart

• Very long paths to reach some states
• A fourth of the states did not reach in

depth 50

• loops in each statechart

Translator to SAL

Verification Driver
(SAL-MCs)

Simulation scripts for
Counterexamples

Summary

� Success
– Scales up well to several thousand lines
– Found several bugs

• Production code
• Medical, smart card, auto …

� Limitations
– Scalability

• ECUs of millions of lines of code

13

• ECUs of millions of lines of code
• Financial software much bigger

– Distributed systems
• Multiple ECUs

� Need order of magnitude scale up
– Compositional, heuristics

