Early Time-Budgeting in Distributed Embedded Control Systems

Manoj G. Dixit,

Jointly with,

Prof. Pallab Dasgupta, IIT KGP and Dr. S. Ramesh, GM R&D

- Modern embedded control systems are component based and have large number of features
 - E.g. AUTOSAR based development
- Safety features have strict real-time end-to-end requirements
- Many components interact together to meet system level requirements
- System is distributed in nature

How to do a timing layout of entire system to meet end-to-end real-time requirements?

Illustrative Example

illustrative Example

Manoj Dixit 10th Jan 2013

Emerging Challenges

- Increasing complex features
- Multiple functions in a single computational unit, e.g. AUTOSAR
- More component sharing promoted by the smaller component sizes
- Need for advance planning of resources for extensibility
- This is leading to...
 - Increasing real-time interdependencies between components

Prevalent Approaches

How to budget time for each component is not clear

Our Proposal

- Early time-budgeting for embedded control-systems
- Component have parametric timing requirements
- Use formal specification and analysis methodology to generate constraints on parameter valuations

Time-Budgeting: What values of x, y, w, z are good-enough?

Industrial relevance

Shift towards early specification of timing

requirements

- Large component integration, multiple suppliers
- Important to know, how a specific choice of timing specification for one component affects the other
- AUTOSAR meta model allows specifying timing specifications at different levels of software

hierarchy - components to network

- EAST-ADL and TIMMO2 provides higher level of abstractions for specifying functional and product line requirements
- Timing requirements are refined across different levels
 - Event models periodic, sporadic etc.
 - Delay, synchronization constraints

Source: TIMMO Methodology presentation by Stephan Kuntz, Continental Automotive GmbH, 2010

Manoj Dixit 10th Jan 2013

The Problem

• We are given a set of features and their real-time requirements

• We are given a set of components and their parametric-time requirements for implementing these features

- Propose Early stage Time-Budgeting Methodology
 - Find constraints over parameter values
 - Design space exploration to select suitable valuation
 - Scalable

Scalability and Usability Considerations -1

- In practice, component decompositions are hierarchical:
 DAG
 - Methodology aligned for hierarchical specifications
- Large decompositions:
 - Each feature component has 10s of requirements
 - Simultaneous budgeting does not seem to be scalable
 - Linear constraints are preferred
- Requirements become finer and more complex (or

detailed) as we move down the hierarchy

- Handling large hierarchical decompositions:
 - Split component time-budgeting into smaller subproblems and repeat
 - Compositional approach
 - DF-traversal with back-tracking takes care of component re-use case
- Specialized methods to analyze requirements patterns

Time-Budgeting Single Step

Formalization of Requirement Decomposition

- Requirements decomposition step is formalized as a collection of *requirement decomposition pairs*
- f: feature requirement and let $g_1, ..., g_k$ are component requirements identified for f
- (f, $\{g_1, ..., g_k\}$) is a requirement decomposition pair
- Verification check:
 - Informally: component requirements put-together should satisfy all feature requirements
 - We have the following reduction:

Theorem:

It is enough to analyze each pair separately, compute <u>validity constraint</u>. Any solution to conjoined constraint defines a suitable time-budget

Manoj Dixit 10th Jan 2013

Formal Specification for Requirements

Parametric Temporal Logic (PLTL)

- Extends well known Linear Temporal Logic
- Semantics is defined by using a parameter valuation

	Feature/Component Name	PLTL Formula
	ACC Feature	$\phi_1: \Box(lead_slow \Rightarrow \Diamond_{\leq 500} apply_brake)$
Sensor Component		$\psi_1: \Box(lead_slow \Rightarrow \Diamond_{\leq x_1} \ lead_kinematics_info)$
	ACC Controller Component	$\psi_2: \Box(lead_kinematics_info \Rightarrow \Diamond_{\leq x_2} apply_brake)$

Manoj Dixit 10th Jan 2013

Validity of a Requirement Decomposition Pair

Feature/Component Name	PLTL Formula
ACC Feature	$\phi_1 : \Box(lead_slow \Rightarrow \Diamond_{\leq 500} apply_brake)$
Sensor Component	$\psi_1: \Box(lead_slow \Rightarrow \Diamond_{\leq x_1} \ lead_kinematics_info)$
ACC Controller Component	$\psi_2: \Box(lead_kinematics_info \Rightarrow \diamondsuit_{\leq x_2} apply_brake)$

The requirement decomposition pair is *valid* if and only if PLTL formula $\psi_1 \wedge \psi_2 \Rightarrow \phi_1$ is valid.

Due to the parameters, this reduces to constraint computation

Abstractly...

Given a PLTL formula ϕ , we want to find the representation of the solution region in the form of a constraint

Scalability and Usability Considerations - 2

- Scalable decision procedures for PLTL
 - Emptiness, universality conditions for a formula
 - Closed form representation of validity region possibly using linear constraints
 - Constraint computation involves dealing with large search space to compute boundary

- Pattern specific scalable constraint computation techniques
 - Requirement decomposition pairs modeled using boundedresponse pattern
 - Suitable for specifying end-to-end response

Developing modeling guidelines for enhancing the usability

- Model requirements at top level of hierarchy using bounded response pattern
- At lower level have more complex pattern
- Whenever scalability issues are encountered in constraint computation, perform bounded-response based decomposition and then refine

Manoj Dixit 10th Jan 2013

Emptiness, Universality and Finiteness of Validity Region

+

Unsuitability of Linear Predicates for Representing Validity

Region

CMI Workshop: Making Formal Verification Scalable and Usable Manoj Dixit 10th Jan 2013

Emptiness, Universality and Finiteness Problems

Formula	Emp	otiness		Universality			Finiteness		
Φ	F	S_{Φ}	V_{Φ}	F	S_{Φ}	V_{Φ}	F	S_{Φ}	V_{Φ}
PLTL□	$\{\Phi(\alpha_0)\}$	⇔, sat	⇔, val	$\{\widetilde{\Phi}\}$	\Rightarrow , sat	⇔, val	$\{ \widetilde{\Phi(0_{Y \setminus \{y\}})} \mid y \in Y \}$	⇒, any member sat	⇔, any member val
$PLTL_{\Diamond}$	$\{\widetilde{\Phi}\}$	⇔, sat	\Rightarrow , val	$\{\Phi(lpha_0)\}$	⇔, sat	⇔, val	$\{\widetilde{\Phi}\}$	⇔, sat	\Rightarrow , val
PLTL	$\{\widetilde{\Phi(0_Y)}\}$	⇔, sat	\Rightarrow , val	$\{\widetilde{\Phi(0_X)}\}$	\Rightarrow , sat	⇔, val	$\{\widetilde{\Phi(0_Y)}\}$	⇔, sat	\Rightarrow , val

 α_0 : Parameter valuation assigning 0 to all parameters.

- 0_X : Partial parameter valuation assigning 0 to all members of X.
- 0_Y : Partial parameter valuation assigning 0 to all members Y.
- $0_{Y \setminus \{y\}}$: Partial parameter valuation assigning 0 to all members of $Y \setminus \{y\}$.
- ⇔: Solution provides both necessary and sufficient condition.
- \Rightarrow : Solution provides only sufficient condition.
- sat: Satisfiability check required of a member formula.
- val: Validity check required of a member formula.

Defined *parameter abstraction operation* for PLTL

$$\Phi = \Box_{\leq y} p_1 \wedge \Box_{\leq 10} p_2 \qquad \widetilde{\Phi} = \Box p_1 \wedge \Box_{\leq 10} p_2$$

• Improved Complexity

• Our complexity: $O(c_{\Phi}2^{n_{\Phi}})$. Earlier: $O(c_{\Phi}^{k_{\Phi}+1}k_{\Phi}^{k_{\Phi}}2^{n_{\Phi}(k_{\Phi}+1)})$

Unsuitability of Linear predicates

• Negative result

- Earlier known for a wider class of PLTL formulae
- We have further restricted this to a subclass of PLTL
- However.. all is not lost... many nice properties still fall in decidable fragment

Bounded-Response Constraint Extraction Method

CMI Workshop: Making Formal Verification Scalable and Usable Manoj Dixit 10th Jan 2013

A Scalable Method for a widely used Requirement Pattern

- At higher levels most of the requirements are based on a specific pattern... *bounded-response*
 - ϕ : Boolean formula
- ψ_{-} : Boolean formula
- x : Parameter or constant
- We consider validity checks of requirement decomposition pairs using this pattern

$$\Box(\phi \Rightarrow \diamondsuit_{\leq x}\psi)$$

Bounded-response formula in PLTL

Constraint Extraction Method

- Reasoning over temporal formulae reduced to Boolean reasoning... hence scalable
- And-or tree constructed from formulae
 - We have defined a notion of an *irreducible cover* for Boolean formulae
- Assign path constraints
- Final constraint: conjunction/disjunction of path constraints

Let γ and $\gamma_1, \dots, \gamma_n$ be Boolean formulae. An irreducible cover of γ is a minimal subset H of $\{\gamma_1, \dots, \gamma_n\}$ such that $\gamma \Rightarrow \bigvee_{\gamma' \in H} \gamma'$ is valid.

Example: Bounded-Response Tree

 $\{[(x_1+x_3 \le 10) \land (x_1+x_4 \le 10)] \lor [(x_1+x_3 \le 10) \land (x_1+x_5 \le 10)] \lor [(x_1+x_3 \le 10) \land \texttt{false}]\} \land (x_2+x_3 \le 10) \land \texttt{false}\} \land (x_2+x_3 \le 10) \land \texttt{false}\} \land \texttt{false} \land \texttt{false}\} \land \texttt{false} \land \texttt{$

Manoj Dixit 10th Jan 2013

Corner Point Constraint Extraction Method

CMI Workshop: Making Formal Verification Scalable and Usable Manoj Dixit 10th Jan 2013

A General Constraint Extraction Method for PLTL

$$\Box_{\leq m} \phi \Rightarrow \Box_{\leq (m-1)} \phi$$
$$\Diamond_{\leq m} \phi \Rightarrow \Diamond_{\leq (m+1)} \phi$$

Monotonicity of PLTL operators

$$\bigvee_{i=1}^3 x_1 \leq lpha_i(x_1) \wedge x_2 \leq lpha_i(x_2)$$

- Suitable for complex temporal properties
- We focus on PLTL fragments and their geometric properties
- PLTL Global fragment is downward-closed
- Downward Closed Region have finite number of *corner-points*
 - Include Point-at-infinity
 - Constraint definition using Corner-Points

Algorithm Overview

- Prune and Search Approach
 - Find a corner point
 - Partition the further search

Search Step

- Obtain a farthest useful valuation along diagonal starting from a base
- Decide sub-set of parameters for which max limit is reached
- Fix them and re-iterate till all parameters are over

Prune Step

- Partition and identify the region(s) where no corner-point can lie
- Adjust new base valuation so that those regions get ignored from later search
- Repeat Search step recursively for them

Demonstration of the Methodology

CMI Workshop: Making Formal Verification Scalable and Usable Manoj Dixit 10th Jan 2013

Integrated Time-Budgeting Methodology

- NuSMV for LTL checks
- Yices for constraint solving
- Eclipse, Java

Case Studies

- Adaptive Cruise Control, Collision Mitigation
- 120+ feature and component properties
- 100+ add-on constraints in the design space exploration
- Budgeting for 3 feature combinations: ACC only, CM only and ACC-CM

Some Results

	-			
Component	Parameter	Only ACC	Only CM	ACC-CM
	w_1	200	160	160
	w_2	70	-	70
Proka Controllor Component	w_3	100	Ξ.	100
Brake Controller Component	w_4	100	-	100
	w_5	10	-	10
	w_6	150	100	100
	w_{11}	35	20	20
	w_{12}	100	80	80
	w_{13}	30	20	20
Electronic Brake Control	w_{14}	10	40	20
	w_{15}	100	100	100
	w_{16}	60	-	60
	w_{17}	60	-	60

25	MBR	1	5. 50 B	85
Decomposition Type	Num Compo- nents	RDP Nos	Num. SAT Checks (Average)	Constraint Computation Time (Aver- age) (sec)
Single Level	12	15	314 (LTL)	1280
Multi Level	22	11 (Bounded- Resp), 20 (General)	83 (Boolean SAT), 57 (LTL)	2.36 (Boolean SAT), 19.25 (LTL)

Many Challenges still remain ...

- Validity checking of parameter-free PLTL formulae
 - Presence of large constants lead to scalability of model checkers
- More scalable decidability algorithms for PLTL
- Seamless integration with architecture exploration phase to align with existing development flow

Summary

- A Hierarchical Time-Budgeting Methodology
 - Integrates all of the below techniques
- Emptiness, Universality and Finiteness Problems for PLTL
 - Non-triviality of the solution region
- Bounded-Response Constraint Extraction Method
 - A specially tuned method for a widely used requirements pattern
- Corner Point Constraint Extraction Method
 - Complex temporal relationships
- Case Studies
 - Tool framework and demonstration on automotive features ACC and CM

Publications

- Manoj G. Dixit, Pallab Dasgupta and S. Ramesh. *Taming the Component Timing: A CBD Methodology* for Real-time Embedded Systems. DATE, 1649-1652, 2010
- Manoj G. Dixit, S. Ramesh and Pallab Dasgupta. Some Results on Parametric Temporal Logic. Information Processing Letters, 994-998, 2011
- Manoj G. Dixit, S. Ramesh and Pallab Dasgupta. *Parametric Analysis of Real-time response guarantees* on interacting software components, World Intellectual Property Organization, WO/2009/129089, International Patent Application No: PCT/US2009/039837
- Manoj G. Dixit, S. Ramesh and Pallab Dasgupta. *Time-budgeting: A component based Methodology for Real-time Embedded Systems*. Accepted, Formal Aspects of Computing, Springer
- Manoj G. Dixit, S. Ramesh and Pallab Dasgupta, *Early Time-budgeting for Component based Embedded Control Systems*, Under Review, ESWEEK Workshop

References

R. Alur, K. Etessami, S. La Torre, and D. Peled. Parametric Temporal Logic for "Model Measuring". *ACM Transactions on Computational Logic*, 2(3):388–407, 2001.

C. Bartolini, G. Lipari, and M. Di Natale. From Functional Blocks to the Synthesis of the Architectural Model in Embedded Real-time Applications. In *IEEE Real-Time and Embedded Technology and Applications Symposium*, pages 458–467, 2005.

M. Di Natale and A. L. Sangiovanni-Vincentelli. Moving From Federated to Integrated Architectures in Automotive: The Role of Standards, Methods and Tools. *Proceedings of the IEEE*, 98(4):603–620, 2010.

H. Blom, R. Johansson, and H. Lönn. Annotation with Timing Constraints in the Context of EAST-ADL2 and AUTOSAR - the Timing Augmented Description Language. In Workshop on the Definition, evaluation, and exploitation of modelling and computing standards for Real-Time Embedded Systems, 2009.

Thank You

CMI Workshop: Making Formal Verification Scalable and Usable Manoj Dixit 10th Jan 2013

The relevance

- AUTOSAR defines a meta-model for specifying component based distributed systems in automotive domain
- Specifications for components, middleware and higher level properties

CMI Workshop: Making Formal Verification Scalable and Usable

Manoj Dixit 10th Jan 2013