natural proofs for
verification of dynamic heaps

P. MADHUSUDAN

UNIV. OF ILLINOIS AT URBANA-CHAMPAIGN
(VISITING MSR, BANGALORE)

WORKSHOP ON MAKING FORMAL VERIFICATION SCALABLE AND USEABLE
CMI, CHENNAI, INDIA

JOINT WORK WITH...
- '. .‘

Xiaokang Qiu
.. graduating!

Gennaro Andrei Pranav Garg
Parlato Stefanescu

GOAL: BUILD RELIABLE SOFTWARE

Build systems with proven reliability and security guarantees.

(Not the same as finding bugs!)

Deductive verification with automatic theorem proving
* Floyd/Hoare style verification
» User supplied modular annotations (pre/post cond, class invariants)
and loop invariants
« Resulting verification conditions are derived automatically
for each linear program segment (using weakest-pre/strongest-post)
Verification conditions are then proved valid using mostly

automatic theorem proving (like SMT solvers)

TARGET: RELIABLE SYS TEMS SOFTWARE

4 | N [|)
Operating Systems Angry birds
Browsers Excel
VMs Mail clients ...
App platforms
N\ J
Systems Software Applications

Several success stories:
* Microsoft Hypervisor verification using VCC [MSR, EMIC]

« A secure foundation for mobile apps [@lllinois, ASPLOS13]

A SECURE FOUNDATION FOR MOBILE APPS

In collaboration with King’s systems group at lllinois
First OS architecture that provides

verifiable, high-level abstractions J
for building mobile applications. Android Android
Drivers WM apps apps
Application state is private by default. Storage Net
] | Android syscall interfaces
- Meta-data on files controls access | Rutime Rach ket
permissions can access files L4
« Every page is encrypted before se Hardware

 Memory isolation between apps

« A page fault handler serves a file- backed page for a process, the fille has
to be opened by the same process.

« Only the current app can write to the screen buffer.
« |PC channel correctness

VERIFICATION TOOLS ARE MATURE
And works! ENOUGH TO BUILD RELIABLE S/W.

KEY CHALLENGE: HEAPS

« Methodology:

- User provides specification using modular annotations
(pre/post conditions, class inv)

User also provides loop invariants.
- Automatic generation of verification conditions
(pure logic formulas whose validity needs to be verified)
Example: [[X>1]] x:=x+2; i:=1i+1; [[X >1]]
gives verification condition:
Vx,x",i,i'’ x>i ANx'=x+2ANi"=i+1) =i >x)

- Validity of verification conditions done mostly automatically

 Works well when program uses only static variables (like above)
But doesn’t really work when manipulating objects, dynamic heaps, etc.

« Key challenges: specification language, validity checking

FULL FUNCTIONAL VERIFICATION
EX. AVL TREE FIND

Node avl insert(Node t, Int v)
//requires “t points to an AVL tree”

//ensures “returns a tree t’, where t’ is a pointer to an AVL

tree, keys stored in t’ = keys stored in t U { v } and
height increases at most by 1”

//where t points to an AVL-tree if t points to a tree wrt some

pointer fields left, right, and tree is almost balanced, and
is a binary search tree..

{

<<code for AVL-insert>>

Key requirements:

- A natural specification logic

- Automated reasoning

DYNAMIC HEAPS

Fix a finite set of pointer fields PF and a set of data fields DF.
Fix also a set of program variables PV.
A heap is afinite set of locations L and maps
m,:L - L U {nil} for each p € PF
my:L - Z for each d € DF
pv: PV —» L U {nil}

root

Graph: edge-labels in PF, integers
on nodes, PV-labels on some nodes

Example: binary trees
PF={l r};, DF={key}; PV = {x}

(all missing arrows go to nil)

DYNAMIC HEAPS: INHERENT UNDECIDABILITY

Unbdd # nodes => need universal quantification to describe properties
Example: Sortedness of lists: V x,y. (succ(x,y) - (x.d <y.d)))

But this immediately gives undecidability of satisfiability/validity:

We can simulate 2-counter machines using a linked list with two data-fields.
Assert consecutive nodes in the list encode the right evolution of counters

Vx,y. (succ(x,y) - ¢@(x.cl,x.c2,y.cl,y.c2))

head tail

.

122 23 122 24

FUNCTIONAL VERIFICATION OF HEAP-
MANIPULATING PROGRAMS

A : :
Expressive keep expressiveness

Useful for proving
programs correct

Natural

EXxpressive Logics: Proofs

Separation logics
FOL+Ghost-defns,
HOL, MatchingLogic, give up decidability
etc. sound but incomplete
preserve automaticity

Decidable Logics:
LISBQ, CSL,

STRAND, etc.

—>
Automatic

DECIDABLE LOGICS VS NATURAL PROOFS

All Proofs

All Proofs

(2

NATURAL PROOFS

« Handle alogic that is very expressive

(inevitably undecidable)

» Identify a class of simple and natural
All Proofs
proofs .#'such that

- Many correct programs can be proved
using a proof in class 4

« The class /is effectively searchable

(searching thoroughly for a proof in N is
efficiently decidable)

Natural proofs
« unfold recursive definitions across the footprint that a straight-

line program manipulated, E.g. W
tree (x) = (x =nilUemp) U

Ir N N
(x> xl, xr)* tree (xI)* tree (xr)

« formula abstraction (make recursive definitions uninterpreted)

DRYAD LOGIC

Aim: To provide a single logical framework that supports natural proofs
for general properties of structure, data, and separation

DRYAD: A dialect of separation logic

* no explicit quantification, but supports recursive definitions
* admits a “deterministic” quantifier-free translation to classical logic

« Develop natural proofs for this logic using decision procedures
(powered by SMT solvers)

Separation logic [Reynolds, O’Hearn, Ishtiaq, Yang]

Key insight: formulas should be defined on local (small) heaplets
by default, not the global heap

Separation operator: * to combine heaplets

E.g., x — y istrue on a heaplet where the pointer fields from only
the node {x} is defined; not true on larger heaps!

p *q Istrue on a heaplet H if it can be split into two disjoint
heaplets, one satisfying p and one satisfying q

SEPARATION LOGIC P
Y+

SEPARATION LOGIC

\j — ¢ .*_Z‘j Tt

SEPARATION LOGIC Y

def < -
tree’ (x) = (x =nilUemp) U
z g

(x Hr xl, xr)* tree” (xI)* tree” (xr) L | N 9\

kl%

BINARY SEARCH TREE:
AN EXAMPLE USING DRYAD

bst(x)dif(x =nil Aemp)v
(X iy x1, xr, xk)* (bst(x1) A keys(xl) < {xk})* (bst(xr) A{xk} < keys(xr))

def

keys(x) =(x =nil: &

l,r key root
(X = xlI, xr, xk)*true{xk}u keys(xl) w keys(xr);
default<d)
w=bst(root)A(bst(curr)*true) Faan N
A(K € keys(root)<>k € keys(curr)*true) 7 \i \4 ‘\\
Il \
(loop invariant for “bst-search”: ¥ (™ curr ‘&
root points to a BST and curr points into the BST; v
k

k is stored in the BST iff k is stored under curr)

SYNTAX OF DRYAD

pf € PF 1" : Loc = Inty p* : Loc — Bool x € Loc Variables
df € DF si* : Loc = S(Int) S € 8(Int) Variables J € Inty, Variables
¢ : Int; Constant msi* : Loc = MS(Int); MS € MS(Int);, Variables q € Bool Variables
LocTerm: It := x|nil
Int; Term: it = c|j| it 41t | it =it
S(Loc) Term: st == 0 | t} N | sltUslt | slenslt | sit\ slt
S(Int) Term: sit == 05 | S | {it}{ | si;ff(lt) | sitUsit | sitnsit | sit\ sit
MS(Int); Term: msit = 0y | M| {it}y, msi;.fd(l | msit U msit | msit 0\ msit | msit\msit
- PRaf 5 .
Positive Formula: ¢ = truelgq emp | It V= (Itit)|lt=1t|lt#1t|it<it|it<it]

slt C slt | slt € slt | sit C sif [sit € sit | msit C msit | msit © msit |

lteslt|lt¢slt|itesit|itésit|itemsittg msit|sit < sit| sit < sit |
msitSmsitImsit<m.sit|(p/\cp|<pV«,o
Formula: & = @|UAY YV |-y

RECURSIVE DEFINITIONS

Recursive Functions
Loc =2 Int,, Loc = S(Loc), Loc =2 S(Int), Loc = MS(Int),

4 . def ; 5 ' - 5 -) :
f;j)'f’(X) = (cp{ (X:1:9)5 ff (B7) 5. s so{(x, £,V) f[(x, V) ; default : r,f+1(x, V)
Recursive Predicates
def aly
pL, (x) = P(x,1,V)
pfit

Restrictions

« Subtraction, set-difference and negation are disallowed
- existential variables y are bounded by x
They are defined over a fixed heaplet

the set of reachable locations using 17]; but without going through ?

Example: list-segment fromxtoy [seg (x)

SEMANTICS:RECURSIVE DEFINITIONS

To evaluate a recursive definition f
pf .t

- compute the reach set Reach,, with respect to pf and 1

- if Dom(h) = Reach,,, then evaluate it as the least fixpoint of the
recursive definitions

 otherwise, evaluagq to “undef”
Uy (X)=(x=nil Aemp)v
Example Lr
)v

(lt) over a heaplet h:

DRYAD: Uan(X) is satisfied by the entire tree

Conventional SL: U, »(X) is satisfied by any path in tree!

TRANSLATING DRYAD TO A CLASSICAL LOGIC

The scope (heaplet required) of a formula can be syntactically
determined
« singleton heap: a single location

* recursive definitions: the set of reachable locations
according to certain pointer fields
(but ending at certain prespecified nodes)

« topt’andt~t: the union of the scopes of both sides

the domain of a heaplet can be modeled as a set of locations, and the
heaplet semantics can be expressed using free set variables

Example: tree*(x) xtree*(y)

tree(x) Utree(y) U
can be translated to < (still quantifier-free)

reach(x)C reach(y) = AU
reach(x)E reach(y) =G

NATURAL PROOFS FOR DRYAD

We consider programs P — PP | stmt
with modular annotations stmt = w:=v|u:=nil|u:=vpflupf:=v

» pre/post, loop

| Ji=iidf | wdf*= 3 | ji= texpr
| u:=new | freeu | assume bexpr

iInvariant in DRYAD | u:= f#.2) | ji= g2
« ret denotes the aexpr — int | j | aexpr + aexpr | aexpr — aexpr
returned value bexpr — wu=v|u=nil|aexpr < aexpr

| —bexpr | bexpr V bexpr

We verify linear blocks of code, called basic blocks (loops/conditionals
are replaced with assume statements)

Natural Proofs in 4 steps

1.

2.
3.
4

Translate DRYAD to classical logic
(Ry, ---» R,, as the global heap at each timestamp)

VC-Generation (compute strongest-post)

Unfolding across the Footprint (still precise, explained later)
Formula Abstraction

(recursive definitions uninterpreted, becomes sound but incomplete)

{

UNFOLDING ACROSS THE FOOTPRINT

The verification condition g, involves recursive definitions that can be
unfolded ad infinitum.
Our Strategy
» Unfold only across the footprint (locations get dereferenced in the
program). For each u in the footprint, for each timestamp i, add
(u=nilAreach (u) =) v

tree (u) (tree,(ul) Atree (ur)A...)

- Make the recursive definitions consistent across the timestamp:
Yye = Yve A UNFOLD A FOOTPRINT

A SEGUNCHANGED A CALLUNCHANGED A SELFREACH
Theorem

* yc is valid iff v is valid.

FORMULA ABSTRACTION

Natural Proofs in two steps: Jormula

unfold abstraction ;
abs
Ve P YE P Vic

Formula Abstraction

* replace each recursive definition rec with uninterpreted rec

* replace the corresponding reach set Reach'¢ with uninterpreted H'¢

- when a proof for ¥ is found, we call it a natural proof for ¥

(sound but incomplete)

Y2 is mostly expressible in the QF theory of arrays, maps, uninter-

preted functions and integers (sets/multisets as arrays, heap mutations as
array-store operations, set-operations as mapping functions)

S, £ S, between integer sets?

translated to " i,,i,. (i, <i, = (@S, [, VDS, [5,]))
(decidable in Array Property Fragment)

EXPERIMENTAL EVALUATION

A prototype verifier for Dryad with Z3 as the backend solver

Verified about 100 routines manipulating datastructures,
automatically.

- 10+ data structures
singly-linked list, sorted list, doubly-linked list, cyclic list, max-heap,
BST, Treap, AVL tree, red-black tree, binomial heap...

- 80+ DRYAD-annotated programs
textbook algorithms, GTK library, OpenBSD library, an ongoing
OS+Browser verification project...

* All these VCs that were generated by the natural proof
methodology set forth in this work were proved by Z3

(To the best of our knowledge)

First terminating automatic mechanism that can prove such a wide
variety of data-structure algorithms full-functionally correct

Datastructure Routines Time (s) / routine

Singly linked find, insert_front, insert_back,
lists delete_all, copy, append, reverse 1s

Sorted lists find, insert, merge, delete_all, insert_sort, Os
reverse, find_last, insert*, quicksort

Doubly-linked insert_front, insert_back, delete_all, append, 1s

lists mid_insert, mid_delete, meld

Cyclic lists Insert_front, insert_back, delete front, 1s
delete _back

Max-heap heapify Os

Binary search find, find*, insert, delete, remove_root, 47s

trees find_leftmost, remove_root, delete

Treap find, delete, insert, remove_root /s

AVL trees balance, leftmost, insert, remove 5s

Red-black trees Insert, insert_left,fix, insert_right_fix, delete, 16s
delete left_fix, delete_right_fix, leftmost

Binomial heap find_min, merge 78s

Tree traversals Inorder_tree to_list, inorder _tree to_list*, 10s

preorder, postorder, inorder

Package Routines Time
(s) /rout

schorr-waite marking_iter 1s
glib/gslist.c free, prepend, concat, insert_before,
Singly linkedlist(1.1K) remove_all, remove_link, delete_link, copy,
reverse, nth, nth_data, find, position, index, 1s
last, length
append, insert_at_pos, remove, insert_slist, 7s
merge_slists, merge_sort
glib/glist.c free, prepend, reverse, nth, nth_data, position,
DoublyLinkedIst(0.3K) find, index, last, length 1s
quicksort_iter 65S
openbsd/queue.h simpleq_init, simpleqg_remove,
LOC 0.1K simpleq_insert_head, simpleq_insert_tail, 6S
simpleq_insert_after, simpleg_remove_head
secureOS/ Lookup prev, add_cachepage 4s
cachepage(0.1K)
secureQS/ memory_region_init, create_user_space_reqg,
memRegion (0.1K) split_ memory_region 4s

linux/mmap.c (0.1K) find_vma, remove_vma, remove_vma_list 1s

CONCLUSIONS

« Deductive verification with automated theorem proving
Tipping point; very effective

* Logics for heaps and automated reasoning for them form a
fascinating landscape of research

 Despite being the core software verification problem, field is quite
young.

 Natural proofs:
* Sound-but-incomplete procedures
« Search for natural proof done by SMT solvers
* Very expressive logics
« Embodies natural proof tactics
» Tractable separation logic

Natural proof for Building reliable

tree ds [POPL'12] software with
proven properties

Natural proofs for
sep logic [submitted] SecureOS [ASPLOS13]

Maj, King, Pek, Xue
[J | Concurrency;,
rely-guarantee

f
DEDUCTIVE VERIFICATION Combining dec
WITH AUTOMATED THM sep logic with

rely/guar
E’ROVING

J

Natural proofs for C Strengthen natural proofs; 4 :
strengthen pre/post/L| Learning loop
NP -> ghost code in VCC automatically Invariants
Ongoing work: Ongoing work: Ongoing work:
[Pek, Qiu] [Viswanathan, Qiu] [Garg, Loding,

Neider]

SCRATCH

