
P. MADHUSUDAN

UNIV. OF ILLINOIS AT URBANA-CHAMPAIGN

 (VISITING MSR, BANGALORE)

WORKSHOP ON MAKING FORMAL VERIFICATION SCALABLE AND USEABLE

CMI, CHENNAI, INDIA

 natural proofs for
 verification of dynamic heaps

 JOINT WORK WITH…

Xiaokang Qiu

 .. graduating!

Gennaro

 Parlato

Andrei

 Stefanescu

Pranav Garg

GOAL: BUILD RELIABLE SOFTWARE

Build systems with proven reliability and security guarantees.

 (Not the same as finding bugs!)

Deductive verification with automatic theorem proving

• Floyd/Hoare style verification

• User supplied modular annotations (pre/post cond, class invariants)

 and loop invariants

• Resulting verification conditions are derived automatically

 for each linear program segment (using weakest-pre/strongest-post)

 Verification conditions are then proved valid using mostly

 automatic theorem proving (like SMT solvers)

TARGET: RELIABLE SYS TEMS SOFTWARE

Operating Systems

Browsers

VMs

App platforms

Systems Software Applications

Angry birds

Excel

Mail clients …

Several success stories:

• Microsoft Hypervisor verification using VCC [MSR, EMIC]

• A secure foundation for mobile apps [@Illinois, ASPLOS’13]

A SECURE FOUNDATION FOR MOBILE APPS

In collaboration with King’s systems group at Illinois

First OS architecture that provides
verifiable, high-level abstractions
for building mobile applications.

Application state is private by default.

• Meta-data on files controls access by apps; only app with appropriate
permissions can access files

• Every page is encrypted before sending to the storage service.

• Memory isolation between apps

• A page fault handler serves a file- backed page for a process, the fille has
to be opened by the same process.

• Only the current app can write to the screen buffer.

• IPC channel correctness

• …

And works!

VERIFICATION TOOLS ARE MATURE

ENOUGH TO BUILD RELIABLE S/W.

KEY CHALLENGE: HEAPS

• Methodology:

• User provides specification using modular annotations
 (pre/post conditions, class inv)

 User also provides loop invariants.

• Automatic generation of verification conditions
 (pure logic formulas whose validity needs to be verified)

 Example: [[x > i]] x:=x+2; i:=i+1; [[x > i]]

 gives verification condition:

 ∀𝑥, 𝑥′, 𝑖, 𝑖′ 𝑥 > 𝑖 𝑥′ = 𝑥 + 2 𝑖′ = 𝑖 + 1) ⇒ 𝑖′ > 𝑥′

• Validity of verification conditions done mostly automatically

• Works well when program uses only static variables (like above)
But doesn’t really work when manipulating objects, dynamic heaps, etc.

• Key challenges: specification language, validity checking

FULL FUNCTIONAL VERIFICATION

 EX. AVL TREE FIND

 Node avl_insert(Node t, Int v)
//requires “t points to an AVL tree”

//ensures “returns a tree t’, where t’ is a pointer to an AVL

 tree, keys stored in t’ = keys stored in t U { v } and

 height increases at most by 1”

//where t points to an AVL-tree if t points to a tree wrt some

 pointer fields left, right, and tree is almost balanced, and

 is a binary search tree…

 { …

 <<code for AVL-insert>>

 }

Key requirements:

 - A natural specification logic

 - Automated reasoning

DYNAMIC HEAPS

Fix a finite set of pointer fields PF and a set of data fields DF.

Fix also a set of program variables PV.

A heap is a finite set of locations L and maps

 𝒎𝒑: 𝑳 → 𝑳 ∪ 𝒏𝒊𝒍 for each 𝒑 ∈ 𝑷𝑭

 𝒎𝒅: 𝑳 → ℤ for each 𝒅 ∈ 𝑫𝑭

 𝒑𝒗: 𝑷𝑽 → 𝑳 ∪ 𝒏𝒊𝒍

Graph: edge-labels in PF, integers

on nodes, PV-labels on some nodes

Example: binary trees

 𝑷𝑭 = 𝒍, 𝒓 ; 𝑫𝑭 = 𝒌𝒆𝒚 ; 𝑷𝑽 = 𝒙

 (all missing arrows go to nil)

6

5 8

3 6 7 9

1 4

l

l

l

l

r

r r

r

root

DYNAMIC HEAPS: INHERENT UNDECIDABILITY

Unbdd # nodes => need universal quantification to describe properties

Example: Sortedness of lists: ∀ 𝒙, 𝒚. 𝒔𝒖𝒄𝒄 𝒙, 𝒚 → 𝒙. 𝒅 ≤ 𝒚. 𝒅)

But this immediately gives undecidability of satisfiability/validity:

 We can simulate 2-counter machines using a linked list with two data-fields.

 Assert consecutive nodes in the list encode the right evolution of counters

 ∀ 𝒙, 𝒚. 𝒔𝒖𝒄𝒄 𝒙, 𝒚 → 𝝋(𝒙. 𝒄𝟏, 𝒙. 𝒄𝟐, 𝒚. 𝒄𝟏, 𝒚. 𝒄𝟐)

tail head

nil

0 0 1 0 2 0 122 23 122 24

FUNCTIONAL VERIFICATION OF HEAP-

MANIPULATING PROGRAMS

Automatic

Expressive

Decidable Logics:

LISBQ, CSL,

STRAND, etc.

Expressive Logics:

Separation logics

FOL+Ghost-defns,

HOL, MatchingLogic,

etc.
give up decidability

sound but incomplete

preserve automaticity

keep expressiveness

Natural

Proofs

Useful for proving

programs correct

DECIDABLE LOGICS VS NATURAL PROOFS

All Proofs

D
Decision

Procedure

N

All Proofs

Decision procedure for

searching for a proof in N

Formulas

Formulas

NATURAL PROOFS

• Handle a logic that is very expressive

 (inevitably undecidable)

• Identify a class of simple and natural

proofs N such that

• Many correct programs can be proved

using a proof in class N

• The class N is effectively searchable

(searching thoroughly for a proof in N is

efficiently decidable)

All Proofs

N

Natural proofs

• unfold recursive definitions across the footprint that a straight-

line program manipulated, E.g.

• formula abstraction (make recursive definitions uninterpreted)

tree*(x) =
def

(x = nilÙemp)Ú

(x
l,r

xl, xr)* tree*(xl)* tree*(xr)

DRYAD LOGIC

Aim: To provide a single logical framework that supports natural proofs

for general properties of structure, data, and separation

DRYAD: A dialect of separation logic

• no explicit quantification, but supports recursive definitions

• admits a “deterministic” quantifier-free translation to classical logic

• Develop natural proofs for this logic using decision procedures

(powered by SMT solvers)

Separation logic [Reynolds, O’Hearn, Ishtiaq, Yang]

 Key insight: formulas should be defined on local (small) heaplets

 by default, not the global heap

 Separation operator: to combine heaplets

 E.g., 𝑥 → 𝑦 is true on a heaplet where the pointer fields from only

 the node {x} is defined; not true on larger heaps!

 p ∗ q is true on a heaplet H if it can be split into two disjoint

 heaplets, one satisfying p and one satisfying q

SEPARATION LOGIC

SEPARATION LOGIC

SEPARATION LOGIC

tree*(x) =
def

(x = nilÙemp)Ú

(x
l,r

xl, xr)* tree*(xl)* tree*(xr)

BINARY SEARCH TREE:

AN EXAMPLE USING DRYAD

(loop invariant for “bst-search”:

 root points to a BST and curr points into the BST;

 k is stored in the BST iff k is stored under curr)

)true*)()((

true)*)(()(

):default

;)()(}{:true*),,(

;:nil()(

)(}{)(*}{)()(*),,(

)empnil()(

,,

,,

currkeyskrootkeysk

currbstrootbst

xrkeysxlkeysxkxkxrxlx

xxkeys

xrkeysxkxrbstxkxlkeysxlbstxkxrxlx

xxbst

keyrl

def

keyrl

def

root

curr

k

SYNTAX OF DRYAD

RECURSIVE DEFINITIONS

Recursive Functions

Loc IntL, Loc S(Loc), Loc S(Int), Loc MS(Int)L

Recursive Predicates

Restrictions

• Subtraction, set-difference and negation are disallowed

• existential variables are bounded by x

They are defined over a fixed heaplet

the set of reachable locations using , but without going through

Example: list-segment from x to y

v

pf t

lsegnext, y
* (x)

SEMANTICS:RECURSIVE DEFINITIONS

To evaluate a recursive definition over a heaplet h:

• compute the reach set Reachlt with respect to and

• if Dom(h) = Reachlt, then evaluate it as the least fixpoint of the

recursive definitions

• otherwise, evaluate to “undef”

Example

DRYAD: is satisfied by the entire tree

Conventional SL: is satisfied by any path in tree!

f
pf ,t

* (lt)

pf t

)(*,

)(*,

) nil()(

},{

,

},{

,

},{

zUzyx

yUzyx

empxxU

rl

rl

rl

rl

def

rl

)(},{ xU rl

)(},{ xU rl

TRANSLATING DRYAD TO A CLASSICAL LOGIC

The scope (heaplet required) of a formula can be syntactically
determined

• singleton heap: a single location

• recursive definitions: the set of reachable locations
 according to certain pointer fields
 (but ending at certain prespecified nodes)

• t op t’ and t ~ t’: the union of the scopes of both sides

the domain of a heaplet can be modeled as a set of locations, and the
heaplet semantics can be expressed using free set variables

Example: 𝒕𝒓𝒆𝒆∗ 𝒙 ∗ 𝒕𝒓𝒆𝒆∗(𝒚)

can be translated to (still quantifier-free)

tree(x)Ù tree(y)Ù

reach(x)Ç reach(y) = ÆÙ

reach(x)È reach(y) =G

We consider programs
with modular annotations

• pre/post, loop
invariant in DRYAD

• ret denotes the
returned value

NATURAL PROOFS FOR DRYAD

We verify linear blocks of code, called basic blocks (loops/conditionals
are replaced with assume statements)

Natural Proofs in 4 steps

1. Translate DRYAD to classical logic
(R0, …, Rn as the global heap at each timestamp)

2. VC-Generation (compute strongest-post)

3. Unfolding across the Footprint (still precise, explained later)

4. Formula Abstraction

 (recursive definitions uninterpreted, becomes sound but incomplete)

UNFOLDING ACROSS THE FOOTPRINT

The verification condition ψVC involves recursive definitions that can be
unfolded ad infinitum.

Our Strategy

• Unfold only across the footprint (locations get dereferenced in the
program). For each u in the footprint, for each timestamp i, add

• Make the recursive definitions consistent across the timestamp:

Theorem

• ψVC is valid iff ψ’
VC is valid.

treei(u)«
(u = nilÙreachi(u) =Æ) Ú

(treei(ul)Ùtreei (ur)Ù...)

æ

è
ç

ö

ø
÷

FORMULA ABSTRACTION

Natural Proofs in two steps:

Formula Abstraction

• replace each recursive definition rec with uninterpreted

• replace the corresponding reach set Reachrec with uninterpreted Hrec

• when a proof for is found, we call it a natural proof for

 (sound but incomplete)

 is mostly expressible in the QF theory of arrays, maps, uninter-
preted functions and integers (sets/multisets as arrays, heap mutations as
array-store operations, set-operations as mapping functions)

 between integer sets?

translated to

 (decidable in Array Property Fragment)

yVC Þ
unfold

¢yVC Þ

formula
abstraction

y abs

VC

rec

yVC

abs yVC

yVC

abs

S1 £ S2

"i1, i2. i1 < i2 ® (ØS2[i1]ÚØS1[i2])()

EXPERIMENTAL EVALUATION

A prototype verifier for Dryad with Z3 as the backend solver

Verified about 100 routines manipulating datastructures,

 automatically.

• 10+ data structures

singly-linked list, sorted list, doubly-linked list, cyclic list, max-heap,

BST, Treap, AVL tree, red-black tree, binomial heap…

• 80+ DRYAD-annotated programs

textbook algorithms, GTK library, OpenBSD library, an ongoing

OS+Browser verification project…

• All these VCs that were generated by the natural proof

methodology set forth in this work were proved by Z3

(To the best of our knowledge)

First terminating automatic mechanism that can prove such a wide

variety of data-structure algorithms full-functionally correct

 Datastructure Routines Time (s) / routine

Singly linked

 lists

find, insert_front, insert_back,

delete_all, copy, append, reverse

 1s

Sorted lists find, insert, merge, delete_all, insert_sort,

reverse, find_last, insert*, quicksort

 9s

Doubly-linked

lists

insert_front, insert_back, delete_all, append,

mid_insert, mid_delete, meld

 1s

Cyclic lists Insert_front, insert_back, delete front,

delete_back

 1s

Max-heap heapify 9s

Binary search

trees

find, find*, insert, delete, remove_root,

find_leftmost, remove_root, delete

 47s

Treap find, delete, insert, remove_root 7s

AVL trees balance, leftmost, insert, remove 5s

Red-black trees Insert, insert_left,fix, insert_right_fix, delete,

delete_left_fix, delete_right_fix, leftmost

 16s

Binomial heap find_min, merge 78s

Tree traversals Inorder_tree_to_list, inorder_tree_to_list*,

preorder, postorder, inorder

10s

Package Routines Time

(s) /rout

schorr-waite marking_iter 1s

 glib/gslist.c

Singly linkedlist(1.1K)

free, prepend, concat, insert_before,

remove_all, remove_link, delete_link, copy,

reverse, nth, nth_data, find, position, index,

last, length

1s

append, insert_at_pos, remove, insert_slist,

merge_slists, merge_sort

7s

 glib/glist.c

DoublyLinkedlst(0.3K)

free, prepend, reverse, nth, nth_data, position,

find, index, last, length

1s

quicksort_iter 65s

openbsd/queue.h

 LOC 0.1K

simpleq_init, simpleq_remove,

simpleq_insert_head, simpleq_insert_tail,

simpleq_insert_after, simpleq_remove_head

6s

secureOS/

 cachepage(0.1K)

Lookup_prev, add_cachepage 4s

secureOS/

 memRegion (0.1K)

memory_region_init, create_user_space_reg,

split_memory_region

4s

linux/mmap.c (0.1K) find_vma, remove_vma, remove_vma_list 1s

CONCLUSIONS

• Deductive verification with automated theorem proving

Tipping point; very effective

• Logics for heaps and automated reasoning for them form a

fascinating landscape of research

• Despite being the core software verification problem, field is quite

young.

• Natural proofs:

• Sound-but-incomplete procedures

• Search for natural proof done by SMT solvers

• Very expressive logics

• Embodies natural proof tactics

• Tractable separation logic

DEDUCTIVE VERIFICATION

WITH AUTOMATED THM

PROVING

Building reliable

software with

proven properties

SecureOS [ASPLOS13]

 [Mai, King, Pek, Xue]

Strengthen natural proofs;

strengthen pre/post/LI

 automatically

Ongoing work:

 [Viswanathan, Qiu]

Concurrency;

 rely-guarantee

Combining dec

sep logic with

rely/guar

Natural proofs for C

NP -> ghost code in VCC

Ongoing work:

 [Pek, Qiu]

Natural proof for

 tree ds [POPL’12]

Natural proofs for

 sep logic [submitted]

Learning loop

invariants

Ongoing work:

[Garg, Loding,

 Neider]

SCRATCH

