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GOAL: BUILD RELIABLE SOFTWARE 

Build systems with proven reliability and security guarantees. 

     (Not the same as finding bugs!) 

 

Deductive verification with automatic theorem proving 

• Floyd/Hoare style verification 

• User supplied modular annotations (pre/post cond, class invariants) 

 and loop invariants 

• Resulting verification conditions are derived automatically 

     for each linear program segment (using weakest-pre/strongest-post) 

     Verification conditions are then proved valid using mostly  

            automatic theorem proving (like SMT solvers) 

 

 

 



TARGET:  RELIABLE  SYS TEMS SOFTWARE 

Operating Systems 

Browsers 

VMs 

App platforms 

Systems Software Applications 

Angry birds 

Excel 

Mail clients … 

 

Several success stories: 

 

• Microsoft Hypervisor verification using VCC  [MSR, EMIC] 

 

• A secure foundation for mobile apps  [@Illinois, ASPLOS’13] 

 



A SECURE FOUNDATION FOR MOBILE APPS 

In collaboration with King’s systems group at Illinois 

First OS architecture that provides  
verifiable, high-level abstractions  
for building mobile applications. 

 

Application state is private by default. 

• Meta-data on files controls access by apps; only app with appropriate 
permissions can access files 

• Every page is encrypted before sending to the storage service. 

• Memory isolation between apps 

• A page fault handler serves a file- backed page for a process, the fille has 
to be opened by the same process. 

• Only the current app can write to the screen buffer. 

• IPC channel correctness 

• … 
 
And works!   

 

 

 

 

 

 

VERIFICATION TOOLS  ARE MATURE 

ENOUGH TO BUILD RELIABLE S/W. 



KEY CHALLENGE: HEAPS 

• Methodology: 

• User provides specification using modular annotations  
         (pre/post conditions, class inv) 

     User also provides loop invariants. 

• Automatic generation of verification conditions 
  (pure logic formulas whose validity needs to be verified) 
 

          Example:     [[x > i]]   x:=x+2; i:=i+1;   [[x > i]] 
 
                   gives verification condition:   
 
                     ∀𝑥, 𝑥′, 𝑖, 𝑖′  𝑥 > 𝑖    𝑥′ = 𝑥 + 2  𝑖′ = 𝑖 + 1)  ⇒ 𝑖′ > 𝑥′  
 

• Validity of verification conditions done mostly automatically 

 

• Works well when program uses only static variables (like above) 
But doesn’t really work when manipulating objects, dynamic heaps, etc. 

 

• Key challenges:   specification language,  validity checking 



FULL FUNCTIONAL VERIFICATION 

                EX. AVL TREE FIND 

 Node avl_insert(Node t, Int v) 
//requires  “t points to an AVL tree” 

//ensures “returns a tree t’, where t’ is a pointer to an AVL    

 tree, keys stored in t’ = keys stored in t U { v } and  

 height increases at most by 1” 

//where t points to an AVL-tree if t points to a tree wrt some  

  pointer fields left, right, and tree is almost balanced, and  

  is a binary search tree… 

 { … 

  <<code for AVL-insert>> 

 } 

 

Key requirements: 

 - A natural specification logic 

 - Automated reasoning 

 



DYNAMIC HEAPS 

Fix a finite set of pointer fields PF and a set of data fields DF. 

Fix also a set of program variables PV. 

A heap is a finite set of locations L and maps 

          𝒎𝒑: 𝑳 → 𝑳 ∪ 𝒏𝒊𝒍     for each 𝒑 ∈ 𝑷𝑭 

          𝒎𝒅: 𝑳 → ℤ   for each 𝒅 ∈ 𝑫𝑭 

          𝒑𝒗:  𝑷𝑽 → 𝑳 ∪ 𝒏𝒊𝒍    

 

Graph: edge-labels in PF, integers  

on nodes, PV-labels on some nodes 

Example:  binary trees 

 𝑷𝑭 =  𝒍, 𝒓  ;   𝑫𝑭 =  𝒌𝒆𝒚 ;  𝑷𝑽 = 𝒙    

     (all missing arrows go to nil)    
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DYNAMIC HEAPS:  INHERENT UNDECIDABILITY 

Unbdd # nodes => need universal quantification to describe properties 

 

Example:  Sortedness of lists:     ∀ 𝒙, 𝒚.  𝒔𝒖𝒄𝒄 𝒙, 𝒚   →  𝒙. 𝒅 ≤ 𝒚. 𝒅)  

 

But this immediately gives undecidability of satisfiability/validity:     

 We can simulate 2-counter machines using a linked list with two data-fields. 

 Assert consecutive nodes in the list encode the right evolution of counters 

        ∀ 𝒙, 𝒚.   𝒔𝒖𝒄𝒄 𝒙, 𝒚   →  𝝋(𝒙. 𝒄𝟏, 𝒙. 𝒄𝟐, 𝒚. 𝒄𝟏, 𝒚. 𝒄𝟐)  

tail head 

nil 

0 0 1 0 2 0 122 23 122 24 



FUNCTIONAL VERIFICATION OF HEAP-

MANIPULATING PROGRAMS 

Automatic 

Expressive 

Decidable Logics: 

LISBQ, CSL, 

STRAND, etc. 

Expressive Logics: 

Separation logics 

FOL+Ghost-defns, 

HOL, MatchingLogic, 

etc. 
give up decidability 

sound but incomplete 

preserve automaticity 

keep expressiveness 

Natural 

Proofs  

Useful for proving  

programs correct 



DECIDABLE LOGICS  VS   NATURAL PROOFS 

 

All Proofs 

D 
Decision  

Procedure 

N 

All Proofs 

Decision procedure for  

searching for a proof in N 
 

Formulas 

Formulas 



NATURAL PROOFS 

 

• Handle a logic that is very expressive 

   (inevitably undecidable) 

• Identify a class of simple and natural 

proofs N such that 

• Many correct programs can be proved 

using a proof in class N 

• The class N is effectively searchable  

(searching thoroughly for a proof in N is 

efficiently decidable) 

All Proofs 

N 

Natural proofs 

• unfold recursive definitions across the footprint that a straight-

line program manipulated, E.g. 

 

 

 

• formula abstraction (make recursive definitions uninterpreted) 
 

tree*(x) =
def

(x = nilÙemp)Ú

(x
l,r

xl, xr)* tree*(xl)* tree*(xr)



DRYAD LOGIC 

 
Aim:  To provide a single logical framework that supports natural proofs 

for general properties of structure, data, and separation 

DRYAD: A dialect of separation logic 

• no explicit quantification, but supports recursive definitions 

• admits a “deterministic” quantifier-free translation to classical logic 

• Develop natural proofs for this logic using decision procedures 

(powered by SMT solvers) 

 

Separation logic [Reynolds, O’Hearn, Ishtiaq, Yang] 

  Key insight: formulas should be defined on local (small) heaplets  

                          by default, not the global heap 

  Separation operator:    to combine heaplets 

   E.g.,   𝑥 → 𝑦  is true on a heaplet where the pointer fields from only 

  the node {x} is defined; not true  on larger heaps! 

              p ∗ q   is true on a heaplet H if it can be split into two disjoint  

  heaplets,  one satisfying p and one satisfying q  



SEPARATION LOGIC 



SEPARATION LOGIC 



SEPARATION LOGIC 

tree*(x) =
def

(x = nilÙemp)Ú

(x
l,r

xl, xr)* tree*(xl)* tree*(xr)



BINARY SEARCH TREE: 

AN EXAMPLE USING DRYAD 

 

 

 

 

 

 

 

 

(loop invariant for “bst-search”: 

 root points to a BST and curr points into the BST; 

 k is stored in the BST iff k is stored under curr) 
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SYNTAX OF DRYAD 

 



RECURSIVE DEFINITIONS 

 
Recursive Functions 

Loc  IntL, Loc  S(Loc), Loc  S(Int), Loc  MS(Int)L 

 

 

Recursive Predicates 

 

 

Restrictions 

• Subtraction, set-difference and negation are disallowed 

• existential variables      are bounded by x 

They are defined over a fixed heaplet 

the set of reachable locations using     , but without going through 

 

Example: list-segment from x to y 

v

pf t

lsegnext, y
* (x)



SEMANTICS:RECURSIVE DEFINITIONS 

To evaluate a recursive definition                   over a heaplet h: 

 

• compute the reach set Reachlt with respect to       and  

• if Dom(h) = Reachlt, then evaluate it as the least fixpoint of the 

recursive definitions 

• otherwise, evaluate to “undef” 

 

Example 

 

 

 

 

DRYAD:               is satisfied by the entire tree 

Conventional SL:              is satisfied by any path in tree! 

f
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TRANSLATING DRYAD TO A CLASSICAL LOGIC 

The scope (heaplet required) of a formula can be syntactically 
determined 

• singleton heap:  a single location 

• recursive definitions:  the set of reachable locations 
                                         according to certain pointer fields 
                                         (but ending at certain prespecified nodes) 

• t op t’ and t ~ t’:  the union of the scopes of both sides 

 

the domain of a heaplet can be modeled as a set of locations, and the 
heaplet semantics can be expressed using free set variables 

Example:    𝒕𝒓𝒆𝒆∗ 𝒙 ∗ 𝒕𝒓𝒆𝒆∗(𝒚)  

 

can be translated to            (still quantifier-free) 

 

 

tree(x)Ù tree(y)Ù

reach(x)Ç reach(y) = ÆÙ

reach(x)È reach(y) =G



We consider programs 
with modular annotations 

• pre/post, loop 
invariant in DRYAD 

• ret denotes the 
returned value 

 

NATURAL PROOFS FOR DRYAD 

 

We verify linear blocks of code, called basic blocks (loops/conditionals 
are replaced with assume statements) 

 

Natural Proofs in 4 steps 

1. Translate DRYAD to classical logic                                           
(R0, …, Rn as the global heap at each timestamp) 

2. VC-Generation (compute strongest-post) 

3. Unfolding across the Footprint (still precise, explained later) 

4. Formula Abstraction  

 (recursive definitions uninterpreted, becomes sound but incomplete) 



UNFOLDING ACROSS THE FOOTPRINT 

The verification condition ψVC involves recursive definitions that can be 
unfolded ad infinitum. 

Our Strategy 

• Unfold only across the footprint (locations get dereferenced in the 
program). For each u in the footprint, for each timestamp i, add 

 

 

 

• Make the recursive definitions consistent across the timestamp: 

 

 

Theorem 

• ψVC is valid iff ψ’
VC is valid. 

treei(u)«
(u = nilÙreachi(u) =Æ) Ú

(treei(ul)Ùtreei (ur)Ù... )

æ

è
ç

ö

ø
÷



FORMULA ABSTRACTION 

 
Natural Proofs in two steps: 

 

Formula Abstraction 

• replace each recursive definition rec with uninterpreted  

• replace the corresponding reach set Reachrec with uninterpreted Hrec 

• when a proof for          is found, we call it a natural proof for  

 (sound but incomplete) 

 

       is mostly expressible in the QF theory of arrays, maps, uninter-
preted functions and integers (sets/multisets as arrays, heap mutations as 
array-store operations, set-operations as mapping functions) 
 

              between integer sets? 

translated to                                                             

 (decidable in Array Property Fragment) 

 

yVC Þ
unfold

¢yVC Þ

formula
abstraction

y abs

VC

rec

yVC

abs yVC

yVC

abs

S1 £ S2

"i1, i2. i1 < i2 ® (ØS2[i1]ÚØS1[i2 ])( )



EXPERIMENTAL EVALUATION 

 
A prototype verifier for Dryad with Z3 as the backend solver 

Verified about 100 routines manipulating datastructures,  

    automatically. 

• 10+ data structures  

singly-linked list, sorted list, doubly-linked list, cyclic list, max-heap, 

BST, Treap, AVL tree, red-black tree, binomial heap… 

• 80+ DRYAD-annotated programs 

textbook algorithms, GTK library, OpenBSD library, an ongoing 

OS+Browser verification project… 

• All these VCs that were generated by the natural proof 

methodology set forth in this work were proved by Z3 
 

(To the best of our knowledge)  

First terminating automatic mechanism that can prove such a wide 

variety of data-structure algorithms full-functionally correct 



 Datastructure             Routines Time (s) / routine 

Singly linked  

  lists 

find, insert_front, insert_back, 

delete_all, copy, append, reverse 

 

               1s 

Sorted lists find, insert, merge, delete_all, insert_sort, 

reverse, find_last, insert*, quicksort 

               9s 

Doubly-linked 

lists 

insert_front, insert_back, delete_all, append, 

mid_insert, mid_delete, meld 

               1s 

Cyclic lists Insert_front, insert_back, delete front, 

delete_back 

              1s 

Max-heap heapify               9s 

Binary search 

trees 

find, find*, insert, delete, remove_root, 

find_leftmost, remove_root, delete 

            47s 

Treap find, delete, insert, remove_root              7s 

AVL trees balance, leftmost, insert, remove              5s 

Red-black trees Insert, insert_left,fix, insert_right_fix, delete, 

delete_left_fix, delete_right_fix, leftmost 

            16s 

Binomial heap find_min, merge 78s 

Tree traversals Inorder_tree_to_list, inorder_tree_to_list*, 

preorder, postorder, inorder 

10s 



Package             Routines Time 

(s) /rout  

schorr-waite marking_iter 1s 

 glib/gslist.c 

Singly linkedlist(1.1K) 

free, prepend, concat, insert_before, 

remove_all, remove_link, delete_link, copy, 

reverse, nth, nth_data, find, position, index, 

last, length 

 

             

1s 

append, insert_at_pos, remove, insert_slist, 

merge_slists, merge_sort 

7s 

    glib/glist.c 

DoublyLinkedlst(0.3K) 

free, prepend, reverse, nth, nth_data, position, 

find, index, last, length 

             

1s 

quicksort_iter 65s           

openbsd/queue.h 

    LOC 0.1K 

simpleq_init, simpleq_remove, 

simpleq_insert_head, simpleq_insert_tail, 

simpleq_insert_after, simpleq_remove_head 

             

6s 

secureOS/ 

  cachepage(0.1K) 

Lookup_prev, add_cachepage 4s          

secureOS/ 

  memRegion (0.1K) 

memory_region_init, create_user_space_reg, 

split_memory_region 

              

4s 

linux/mmap.c (0.1K) find_vma, remove_vma, remove_vma_list 1s          



CONCLUSIONS 

   

• Deductive verification with automated theorem proving 

Tipping point; very effective  

 

• Logics for heaps and automated reasoning for them form a 

fascinating landscape of research 

• Despite being the core software verification problem, field is quite 

young. 

 

• Natural proofs: 

• Sound-but-incomplete procedures 

• Search for natural proof done by SMT solvers 

• Very expressive logics  

• Embodies natural proof tactics 

• Tractable separation logic 

 

 

 

 

 



DEDUCTIVE VERIFICATION 

WITH AUTOMATED THM 

PROVING 

Building reliable 

software with 

proven properties 

 

SecureOS [ASPLOS13] 

 [Mai, King, Pek, Xue] 

Strengthen natural proofs; 

strengthen pre/post/LI 

    automatically 

 

Ongoing work: 

   [Viswanathan, Qiu] 

Concurrency; 

 rely-guarantee 

 

Combining dec 

sep logic with 

rely/guar 

Natural proofs for C 

 

NP -> ghost code in VCC 

 

Ongoing work: 

   [Pek, Qiu] 

Natural proof for  

 tree ds [POPL’12] 

 

Natural proofs for  

 sep logic [submitted] 

Learning loop 

invariants 

 

Ongoing work: 

[Garg, Loding,  

 Neider] 
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