
Correctness Issues in
Transforming Task Parallel Programs

V. Krishna Nandivada

IIT Madras

10-Jan-2013

Collaborators: Vivek Sarkar, Jun Shirako and Jisheng Zhao .

“I don’t like the idea of optimizations going wrong!”

Multi-core a new era
“Be the change you want to see in the world.” – Mahatma Gandhi

New H/W: Opteron, (AMD), Cell (IBM+), Core i7 (Intel),
Roadrunner, . . .
New Languages: CAF, Chappel, Fortress, UPC, X10, HJ

New challenge: applications/system software must be redesigned
for multi-core parallelism.

automatic (in the compiler) or semi-automatic (as a source-source
refactoring)

New challenge: Optimizing task parallel programs.

Reducing communication - activities, synchronization, data.

Reasoning about correctness of program transformations.

Reasoning about control and data dependence.

New times⇒ New challenges⇒ New solutions.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 2 / 32

Multi-core a new era
“Be the change you want to see in the world.” – Mahatma Gandhi

New H/W: Opteron, (AMD), Cell (IBM+), Core i7 (Intel),
Roadrunner, . . .
New Languages: CAF, Chappel, Fortress, UPC, X10, HJ

New challenge: applications/system software must be redesigned
for multi-core parallelism.

automatic (in the compiler) or semi-automatic (as a source-source
refactoring)

New challenge: Optimizing task parallel programs.

Reducing communication - activities, synchronization, data.

Reasoning about correctness of program transformations.

Reasoning about control and data dependence.

New times⇒ New challenges⇒ New solutions.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 2 / 32

Multi-core a new era
“Be the change you want to see in the world.” – Mahatma Gandhi

New H/W: Opteron, (AMD), Cell (IBM+), Core i7 (Intel),
Roadrunner, . . .
New Languages: CAF, Chappel, Fortress, UPC, X10, HJ

New challenge: applications/system software must be redesigned
for multi-core parallelism.

automatic (in the compiler) or semi-automatic (as a source-source
refactoring)

New challenge: Optimizing task parallel programs.

Reducing communication - activities, synchronization, data.

Reasoning about correctness of program transformations.

Reasoning about control and data dependence.

New times⇒ New challenges⇒ New solutions.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 2 / 32

Relevant HJ syntax

async S : creates an asynchronous activity.

finish S : ensures activity termination.

// Parent Activity
finish {

S1; // Parent Activity
async {

S2; // Child Activity
}
S3; // Parent activity continues

}
S4;

foreach (i: [1..n]) ≡ for (i: [1..n])
S async S

forall (i: [1..n]) ≡ finish foreach (i: [1..n])
S S

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 3 / 32

Relevant HJ syntax

async S : creates an asynchronous activity.
finish S : ensures activity termination.

// Parent Activity
finish {

S1; // Parent Activity
async {

S2; // Child Activity
}
S3; // Parent activity continues

}
S4;

foreach (i: [1..n]) ≡ for (i: [1..n])
S async S

forall (i: [1..n]) ≡ finish foreach (i: [1..n])
S S

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 3 / 32

Relevant HJ syntax

async S : creates an asynchronous activity.
finish S : ensures activity termination.

// Parent Activity
finish {

S1; // Parent Activity
async {

S2; // Child Activity
}
S3; // Parent activity continues

}
S4;

foreach (i: [1..n]) ≡ for (i: [1..n])
S async S

forall (i: [1..n]) ≡ finish foreach (i: [1..n])
S S

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 3 / 32

Relevant HJ syntax

async S : creates an asynchronous activity.
finish S : ensures activity termination.

// Parent Activity
finish {

S1; // Parent Activity
async {

S2; // Child Activity
}
S3; // Parent activity continues

}
S4;

foreach (i: [1..n]) ≡ for (i: [1..n])
S async S

forall (i: [1..n]) ≡ finish foreach (i: [1..n])
S S

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 3 / 32

IEF and isolated

Each activity has a unique parent finish – called the Immediately
enclosing finish(IEF).

Statically each async has one or more IEFs.

void foo(){
async {

S;
}

}

main(){
finish {
... foo(); ...

}
finish {
... foo(); ...

}
foo();

}

isolated S: global critical section, provides weak isolation.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 4 / 32

IEF and isolated

Each activity has a unique parent finish – called the Immediately
enclosing finish(IEF).
Statically each async has one or more IEFs.

void foo(){
async {

S;
}

}

main(){
finish {

... foo(); ...
}
finish {

... foo(); ...
}
foo();

}

isolated S: global critical section, provides weak isolation.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 4 / 32

IEF and isolated

Each activity has a unique parent finish – called the Immediately
enclosing finish(IEF).
Statically each async has one or more IEFs.

void foo(){
async {
S;

}
}

main(){
finish {

... foo(); ...
}
finish {

... foo(); ...
}
foo();

}
isolated S: global critical section, provides weak isolation.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 4 / 32

IEF and isolated

Each activity has a unique parent finish – called the Immediately
enclosing finish(IEF).
Statically each async has one or more IEFs.

void foo(){
async {
S;

}
}

main(){
finish {

... foo(); ...
}
finish {

... foo(); ...
}
foo();

}
isolated S: global critical section, provides weak isolation.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 4 / 32

IEF and isolated

Each activity has a unique parent finish – called the Immediately
enclosing finish(IEF).
Statically each async has one or more IEFs.

void foo(){
async {
S;

}
}

main(){
finish {

... foo(); ...
}
finish {

... foo(); ...
}
foo();

}

isolated S: global critical section, provides weak isolation.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 4 / 32

IEF and isolated

Each activity has a unique parent finish – called the Immediately
enclosing finish(IEF).
Statically each async has one or more IEFs.

void foo(){
async {
S;

}
}

main(){
finish {

... foo(); ...
}
finish {

... foo(); ...
}
foo();

}
isolated S: global critical section, provides weak isolation.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 4 / 32

Outline

1 Background

2 Data Dependence in task parallel programs

3 Static Happens Before and Dependence relation

4 Optimization framework

5 Correctness

6 Example optimizations

7 Transformations in the presence of exceptions

8 Conclusion

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 5 / 32

Correctness of programs

Say a program P, is transformed to P ′.

Sequential programs: If the behaviour of P and P ′ match.

Parallel programs: If the behaviours of P ′ is a subset of the
behaviours of P.

How to extend it to transformations of parallel programs?

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 6 / 32

Correctness of programs

Say a program P, is transformed to P ′.

Sequential programs: If the behaviour of P and P ′ match.

Parallel programs: If the behaviours of P ′ is a subset of the
behaviours of P.

How to extend it to transformations of parallel programs?

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 6 / 32

Correctness of programs

Say a program P, is transformed to P ′.

Sequential programs: If the behaviour of P and P ′ match.

Parallel programs:

If the behaviours of P ′ is a subset of the
behaviours of P.

How to extend it to transformations of parallel programs?

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 6 / 32

Correctness of programs

Say a program P, is transformed to P ′.

Sequential programs: If the behaviour of P and P ′ match.

Parallel programs: If the behaviours of P ′ is a subset of the
behaviours of P.

How to extend it to transformations of parallel programs?

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 6 / 32

Correctness of programs

Say a program P, is transformed to P ′.

Sequential programs: If the behaviour of P and P ′ match.

Parallel programs: If the behaviours of P ′ is a subset of the
behaviours of P.

How to extend it to transformations of parallel programs?

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 6 / 32

Data Dependence in Task parallel programs -
challenges

Legality of program transformation requires the preservation of the
order of “interfering” memory accesses.

Traditional analysis is not sufficient in the context of task parallel
languages.

Constructs like async makes it challenging.

for (int i = ...) {
/*S1*/ X[f(i)] = ...
async {
/*S2*/ ... = X[g(i)]; }

}

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 7 / 32

Dynamic Happens-before dependence

Extending the classical definition of data dependence in sequential programs
to happens-before dependence in parallel programs;

HB(IA, IB) = true, if

(Sequential order)

S1; // IA
S2; // IB
//IB is control or
//data dependent on IA.

(Async creation)

async // IA
S // IB

(Finish termination)

finish { // finish-start
async {

S1;
S2; // IA

}
} // finish-end IB

(Isolated) Assume a total order.

// A total order
isolated {

S0;
S1; // IA

}
isolated {

S2; // IB
S3;

}

(Transitivity) HB(IA, IC) = true
and HB(IC , IB) = true

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 8 / 32

Dynamic Happens-before dependence

Extending the classical definition of data dependence in sequential programs
to happens-before dependence in parallel programs; HB(IA, IB) = true, if

(Sequential order)

S1; // IA
S2; // IB
//IB is control or
//data dependent on IA.

(Async creation)

async // IA
S // IB

(Finish termination)

finish { // finish-start
async {

S1;
S2; // IA

}
} // finish-end IB

(Isolated) Assume a total order.

// A total order
isolated {

S0;
S1; // IA

}
isolated {

S2; // IB
S3;

}

(Transitivity) HB(IA, IC) = true
and HB(IC , IB) = true

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 8 / 32

Dynamic Happens-before dependence

Extending the classical definition of data dependence in sequential programs
to happens-before dependence in parallel programs; HB(IA, IB) = true, if

(Sequential order)

S1; // IA
S2; // IB
//IB is control or
//data dependent on IA.

(Async creation)

async // IA
S // IB

(Finish termination)

finish { // finish-start
async {

S1;
S2; // IA

}
} // finish-end IB

(Isolated) Assume a total order.

// A total order
isolated {

S0;
S1; // IA

}
isolated {

S2; // IB
S3;

}

(Transitivity) HB(IA, IC) = true
and HB(IC , IB) = true

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 8 / 32

Dynamic Happens-before dependence

Extending the classical definition of data dependence in sequential programs
to happens-before dependence in parallel programs; HB(IA, IB) = true, if

(Sequential order)
S1; // IA
S2; // IB
//IB is control or
//data dependent on IA.

(Async creation)

async // IA
S // IB

(Finish termination)

finish { // finish-start
async {

S1;
S2; // IA

}
} // finish-end IB

(Isolated) Assume a total order.

// A total order
isolated {

S0;
S1; // IA

}
isolated {

S2; // IB
S3;

}

(Transitivity) HB(IA, IC) = true
and HB(IC , IB) = true

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 8 / 32

Dynamic Happens-before dependence

Extending the classical definition of data dependence in sequential programs
to happens-before dependence in parallel programs; HB(IA, IB) = true, if

(Sequential order)
S1; // IA
S2; // IB
//IB is control or
//data dependent on IA.

(Async creation)

async // IA
S // IB

(Finish termination)

finish { // finish-start
async {

S1;
S2; // IA

}
} // finish-end IB

(Isolated) Assume a total order.

// A total order
isolated {

S0;
S1; // IA

}
isolated {

S2; // IB
S3;

}

(Transitivity) HB(IA, IC) = true
and HB(IC , IB) = true

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 8 / 32

Dynamic Happens-before dependence

Extending the classical definition of data dependence in sequential programs
to happens-before dependence in parallel programs; HB(IA, IB) = true, if

(Sequential order)
S1; // IA
S2; // IB
//IB is control or
//data dependent on IA.

(Async creation)
async // IA

S // IB

(Finish termination)

finish { // finish-start
async {

S1;
S2; // IA

}
} // finish-end IB

(Isolated) Assume a total order.

// A total order
isolated {

S0;
S1; // IA

}
isolated {

S2; // IB
S3;

}

(Transitivity) HB(IA, IC) = true
and HB(IC , IB) = true

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 8 / 32

Dynamic Happens-before dependence

Extending the classical definition of data dependence in sequential programs
to happens-before dependence in parallel programs; HB(IA, IB) = true, if

(Sequential order)
S1; // IA
S2; // IB
//IB is control or
//data dependent on IA.

(Async creation)
async // IA

S // IB

(Finish termination)

finish { // finish-start
async {
S1;
S2; // IA

}
} // finish-end IB

(Isolated) Assume a total order.

// A total order
isolated {

S0;
S1; // IA

}
isolated {

S2; // IB
S3;

}

(Transitivity) HB(IA, IC) = true
and HB(IC , IB) = true

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 8 / 32

Dynamic Happens-before dependence

Extending the classical definition of data dependence in sequential programs
to happens-before dependence in parallel programs; HB(IA, IB) = true, if

(Sequential order)
S1; // IA
S2; // IB
//IB is control or
//data dependent on IA.

(Async creation)
async // IA

S // IB

(Finish termination)
finish { // finish-start
async {

S1;
S2; // IA

}
} // finish-end IB

(Isolated) Assume a total order.

// A total order
isolated {

S0;
S1; // IA

}
isolated {

S2; // IB
S3;

}

(Transitivity) HB(IA, IC) = true
and HB(IC , IB) = true

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 8 / 32

Dynamic Happens-before dependence

Extending the classical definition of data dependence in sequential programs
to happens-before dependence in parallel programs; HB(IA, IB) = true, if

(Sequential order)
S1; // IA
S2; // IB
//IB is control or
//data dependent on IA.

(Async creation)
async // IA

S // IB

(Finish termination)
finish { // finish-start
async {

S1;
S2; // IA

}
} // finish-end IB

(Isolated) Assume a total order.

// A total order
isolated {

S0;
S1; // IA

}
isolated {

S2; // IB
S3;

}

(Transitivity) HB(IA, IC) = true
and HB(IC , IB) = true

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 8 / 32

Dynamic Happens-before dependence

Extending the classical definition of data dependence in sequential programs
to happens-before dependence in parallel programs; HB(IA, IB) = true, if

(Sequential order)
S1; // IA
S2; // IB
//IB is control or
//data dependent on IA.

(Async creation)
async // IA

S // IB

(Finish termination)
finish { // finish-start
async {

S1;
S2; // IA

}
} // finish-end IB

(Isolated) Assume a total order.

// A total order
isolated {
S0;
S1; // IA

}
isolated {
S2; // IB
S3;

}

(Transitivity) HB(IA, IC) = true
and HB(IC , IB) = true

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 8 / 32

Dynamic Happens-before dependence

Extending the classical definition of data dependence in sequential programs
to happens-before dependence in parallel programs; HB(IA, IB) = true, if

(Sequential order)
S1; // IA
S2; // IB
//IB is control or
//data dependent on IA.

(Async creation)
async // IA

S // IB

(Finish termination)
finish { // finish-start
async {

S1;
S2; // IA

}
} // finish-end IB

(Isolated) Assume a total order.
// A total order
isolated {

S0;
S1; // IA

}
isolated {

S2; // IB
S3;

}

(Transitivity) HB(IA, IC) = true
and HB(IC , IB) = true

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 8 / 32

Dynamic Happens-before dependence

Extending the classical definition of data dependence in sequential programs
to happens-before dependence in parallel programs; HB(IA, IB) = true, if

(Sequential order)
S1; // IA
S2; // IB
//IB is control or
//data dependent on IA.

(Async creation)
async // IA

S // IB

(Finish termination)
finish { // finish-start
async {

S1;
S2; // IA

}
} // finish-end IB

(Isolated) Assume a total order.
// A total order
isolated {

S0;
S1; // IA

}
isolated {

S2; // IB
S3;

}

(Transitivity) HB(IA, IC) = true
and HB(IC , IB) = true

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 8 / 32

Happens-before dependence using dynamic HB

Given dynamic HB, and a two statement A and B in a program,
we say that HBD(A,B) = true, if
∃IA, IB, instances of A and B, such that

1 HB(IA, IB) = true, and
2 IA and IB access the same location X and at least one of the

accesses is a write, and
3 ¬∃ IC in the same execution that writes X such that

HB(IA, IC) = true and HB(IC , IB) = true.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 9 / 32

Happens-before dependence using dynamic HB

Given dynamic HB, and a two statement A and B in a program,
we say that HBD(A,B) = true, if
∃IA, IB, instances of A and B, such that

1 HB(IA, IB) = true, and

2 IA and IB access the same location X and at least one of the
accesses is a write, and

3 ¬∃ IC in the same execution that writes X such that
HB(IA, IC) = true and HB(IC , IB) = true.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 9 / 32

Happens-before dependence using dynamic HB

Given dynamic HB, and a two statement A and B in a program,
we say that HBD(A,B) = true, if
∃IA, IB, instances of A and B, such that

1 HB(IA, IB) = true, and
2 IA and IB access the same location X and at least one of the

accesses is a write, and

3 ¬∃ IC in the same execution that writes X such that
HB(IA, IC) = true and HB(IC , IB) = true.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 9 / 32

Happens-before dependence using dynamic HB

Given dynamic HB, and a two statement A and B in a program,
we say that HBD(A,B) = true, if
∃IA, IB, instances of A and B, such that

1 HB(IA, IB) = true, and
2 IA and IB access the same location X and at least one of the

accesses is a write, and
3 ¬∃ IC in the same execution that writes X such that

HB(IA, IC) = true and HB(IC , IB) = true.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 9 / 32

HBD details

If no parallelism→ HBD = traditional data dependence.
HBD is conservative.
We classify dependence as flow, anti, and output dependence.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 10 / 32

HBD analysis example

for (int i = ...) {
/*S1*/ X[f(i)] = ...
async {

/*S2*/ ... = X[g(i)]; }
}

Sequential compiler, sequential program – exists a loop carried
dependence cycle.

In the parallel version – no dependence from S2 to S1; hence no cycle –
loop can be distributed.

for (int i = ...) {
/*S1*/ X[f(i)] = ...
async {
/*S2*/...=X[g(i)]; }

}

=⇒

// After loop dist
for (int i = ...)

/*S1*/ X[f(i)] = ...
for (int i = ...)

async {
/*S2*/...=X[g(i)]; }

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 11 / 32

HBD analysis example

for (int i = ...) {
/*S1*/ X[f(i)] = ...
async {

/*S2*/ ... = X[g(i)]; }
}

Sequential compiler, sequential program – exists a loop carried
dependence cycle.

In the parallel version – no dependence from S2 to S1; hence no cycle –
loop can be distributed.

for (int i = ...) {
/*S1*/ X[f(i)] = ...
async {
/*S2*/...=X[g(i)]; }

}

=⇒

// After loop dist
for (int i = ...)

/*S1*/ X[f(i)] = ...
for (int i = ...)

async {
/*S2*/...=X[g(i)]; }

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 11 / 32

HBD analysis example

for (int i = ...) {
/*S1*/ X[f(i)] = ...
async {

/*S2*/ ... = X[g(i)]; }
}

Sequential compiler, sequential program – exists a loop carried
dependence cycle.

In the parallel version – no dependence from S2 to S1; hence no cycle –
loop can be distributed.

for (int i = ...) {
/*S1*/ X[f(i)] = ...
async {
/*S2*/...=X[g(i)]; }

}

=⇒

// After loop dist
for (int i = ...)

/*S1*/ X[f(i)] = ...
for (int i = ...)

async {
/*S2*/...=X[g(i)]; }

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 11 / 32

Outline

1 Background

2 Data Dependence in task parallel programs

3 Static Happens Before and Dependence relation

4 Optimization framework

5 Correctness

6 Example optimizations

7 Transformations in the presence of exceptions

8 Conclusion

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 12 / 32

Static HBD

Compute Static Happens-before relation.

Use Program Structure Graph (PSG) as the program
representation.

nodes = root, statement, loop, async, finish, isolated and call.
edges = subset of abstract syntax tree.

In two phases.

Generate and solve a set of constraints to compute static
happens-before information, without considering isolated
statements.
Improve the partial may-happen-before information by considering
isolated statements.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 13 / 32

Static HBD

Compute Static Happens-before relation.

Use Program Structure Graph (PSG) as the program
representation.

nodes = root, statement, loop, async, finish, isolated and call.

edges = subset of abstract syntax tree.
In two phases.

Generate and solve a set of constraints to compute static
happens-before information, without considering isolated
statements.
Improve the partial may-happen-before information by considering
isolated statements.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 13 / 32

Static HBD

Compute Static Happens-before relation.

Use Program Structure Graph (PSG) as the program
representation.

nodes = root, statement, loop, async, finish, isolated and call.
edges = subset of abstract syntax tree.

In two phases.

Generate and solve a set of constraints to compute static
happens-before information, without considering isolated
statements.
Improve the partial may-happen-before information by considering
isolated statements.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 13 / 32

Static HBD

Compute Static Happens-before relation.

Use Program Structure Graph (PSG) as the program
representation.

nodes = root, statement, loop, async, finish, isolated and call.
edges = subset of abstract syntax tree.

In two phases.

Generate and solve a set of constraints to compute static
happens-before information, without considering isolated
statements.
Improve the partial may-happen-before information by considering
isolated statements.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 13 / 32

Static HBD

Compute Static Happens-before relation.

Use Program Structure Graph (PSG) as the program
representation.

nodes = root, statement, loop, async, finish, isolated and call.
edges = subset of abstract syntax tree.

In two phases.
Generate and solve a set of constraints to compute static
happens-before information, without considering isolated
statements.

Improve the partial may-happen-before information by considering
isolated statements.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 13 / 32

Static HBD

Compute Static Happens-before relation.

Use Program Structure Graph (PSG) as the program
representation.

nodes = root, statement, loop, async, finish, isolated and call.
edges = subset of abstract syntax tree.

In two phases.
Generate and solve a set of constraints to compute static
happens-before information, without considering isolated
statements.
Improve the partial may-happen-before information by considering
isolated statements.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 13 / 32

Static MHB

Phase 1
For each N1,N2 ∈ Nodes

1 Same activity:

async

N1 · · ·
N2

(N1,N2) ∈ MHB

2 loop ancestor:

async

loop

N1 N2 {(N1,N2), (N2,N1)} ⊆ MHB;

3 Async and stmt:

async (N1)

N2 · · · (N1,N2) ∈ MHB;

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 14 / 32

Static MHB

Phase 1
For each N1,N2 ∈ Nodes

1 Same activity:

async

N1 · · ·
N2

(N1,N2) ∈ MHB

2 loop ancestor:

async

loop

N1 N2 {(N1,N2), (N2,N1)} ⊆ MHB;

3 Async and stmt:

async (N1)

N2 · · · (N1,N2) ∈ MHB;

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 14 / 32

Static MHB

Phase 1
For each N1,N2 ∈ Nodes

1 Same activity:

async

N1 · · ·
N2

(N1,N2) ∈ MHB

2 loop ancestor:

async

loop

N1 N2 {(N1,N2), (N2,N1)} ⊆ MHB;

3 Async and stmt:

async (N1)

N2 · · · (N1,N2) ∈ MHB;

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 14 / 32

Static MHB

Phase 1
For each N1,N2 ∈ Nodes

1 Same activity:

async

N1 · · ·
N2

(N1,N2) ∈ MHB

2 loop ancestor:

async

loop

N1 N2

{(N1,N2), (N2,N1)} ⊆ MHB;

3 Async and stmt:

async (N1)

N2 · · · (N1,N2) ∈ MHB;

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 14 / 32

Static MHB

Phase 1
For each N1,N2 ∈ Nodes

1 Same activity:

async

N1 · · ·
N2

(N1,N2) ∈ MHB

2 loop ancestor:

async

loop

N1 N2

{(N1,N2), (N2,N1)} ⊆ MHB;

3 Async and stmt:

async (N1)

N2 · · · (N1,N2) ∈ MHB;

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 14 / 32

Static MHB

Phase 1
For each N1,N2 ∈ Nodes

1 Same activity:

async

N1 · · ·
N2

(N1,N2) ∈ MHB

2 loop ancestor:

async

loop

N1 N2 {(N1,N2), (N2,N1)} ⊆ MHB;

3 Async and stmt:

async (N1)

N2 · · · (N1,N2) ∈ MHB;

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 14 / 32

Static MHB

Phase 1
For each N1,N2 ∈ Nodes

1 Same activity:

async

N1 · · ·
N2

(N1,N2) ∈ MHB

2 loop ancestor:

async

loop

N1 N2 {(N1,N2), (N2,N1)} ⊆ MHB;

3 Async and stmt:

async (N1)

N2 · · ·

(N1,N2) ∈ MHB;

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 14 / 32

Static MHB

Phase 1
For each N1,N2 ∈ Nodes

1 Same activity:

async

N1 · · ·
N2

(N1,N2) ∈ MHB

2 loop ancestor:

async

loop

N1 N2 {(N1,N2), (N2,N1)} ⊆ MHB;

3 Async and stmt:

async (N1)

N2 · · ·

(N1,N2) ∈ MHB;

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 14 / 32

Static MHB

Phase 1
For each N1,N2 ∈ Nodes

1 Same activity:

async

N1 · · ·
N2

(N1,N2) ∈ MHB

2 loop ancestor:

async

loop

N1 N2 {(N1,N2), (N2,N1)} ⊆ MHB;

3 Async and stmt:

async (N1)

N2 · · · (N1,N2) ∈ MHB;

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 14 / 32

Static MHB (contd)

4 Async and IEF
finish finish

finStart finEnd (N2) finStart finEnd (N2)
· · · · · ·

async

· · · N1

(N1,N2) ∈ MHB;

5 Tansitivity: if ∃N3 ∈ Nodes, (N1,N3) ∈ MHB and (N3,N2) ∈ MHB
then (N1,N2) ∈ MHB.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 15 / 32

Static MHB (contd)

4 Async and IEF
finish finish

finStart finEnd (N2) finStart finEnd (N2)
· · · · · ·

async

· · · N1

(N1,N2) ∈ MHB;

5 Tansitivity: if ∃N3 ∈ Nodes, (N1,N3) ∈ MHB and (N3,N2) ∈ MHB
then (N1,N2) ∈ MHB.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 15 / 32

Static MHB (contd)

4 Async and IEF
finish finish

finStart finEnd (N2) finStart finEnd (N2)
· · · · · ·

async

· · · N1

(N1,N2) ∈ MHB;
5 Tansitivity: if ∃N3 ∈ Nodes, (N1,N3) ∈ MHB and (N3,N2) ∈ MHB

then (N1,N2) ∈ MHB.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 15 / 32

Static Happens-before dependence

For any two nodes N1 and N2, we say that N2 has a
may-happen-before-dependence on N1, denoted by
MHBD(N1,N2) = true, if

i (N1,N2) ∈ MHB,
ii N1 and N2 access the same variable or storage location and one of

the access is a write,
iii ¬∃N3 ∈ Nodes: MHBD(N3,N1) = true and MHBD(N2,N3) = true.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 16 / 32

Static Happens-before dependence

For any two nodes N1 and N2, we say that N2 has a
may-happen-before-dependence on N1, denoted by
MHBD(N1,N2) = true, if

i (N1,N2) ∈ MHB,

ii N1 and N2 access the same variable or storage location and one of
the access is a write,

iii ¬∃N3 ∈ Nodes: MHBD(N3,N1) = true and MHBD(N2,N3) = true.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 16 / 32

Static Happens-before dependence

For any two nodes N1 and N2, we say that N2 has a
may-happen-before-dependence on N1, denoted by
MHBD(N1,N2) = true, if

i (N1,N2) ∈ MHB,
ii N1 and N2 access the same variable or storage location and one of

the access is a write,

iii ¬∃N3 ∈ Nodes: MHBD(N3,N1) = true and MHBD(N2,N3) = true.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 16 / 32

Static Happens-before dependence

For any two nodes N1 and N2, we say that N2 has a
may-happen-before-dependence on N1, denoted by
MHBD(N1,N2) = true, if

i (N1,N2) ∈ MHB,
ii N1 and N2 access the same variable or storage location and one of

the access is a write,
iii ¬∃N3 ∈ Nodes: MHBD(N3,N1) = true and MHBD(N2,N3) = true.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 16 / 32

Correctness of a transformation

Definition
A transformation of a parallel program is semantics-preserving if the
set of happens-before dependencies of all the variables at all program
points in the source program are conservatively preserved in the
translated program.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 17 / 32

Outline

1 Background

2 Data Dependence in task parallel programs

3 Static Happens Before and Dependence relation

4 Optimization framework
Extending traditional loop transformations
New transformations

5 Correctness

6 Example optimizations

7 Transformations in the presence of exceptions

8 Conclusion

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 18 / 32

Extending traditional loop transformations I

1. Serial loop distribution:
for (...) { S1;S2; }
// no dependence cycle between S1 & S2

=⇒
{

for (...) {S1;}
for (...) {S2;}

2. Parallel loop distribution:
forall (point p : R1)
{ S1; S2; }

// S1 has no dependence on S2
=⇒

{
forall (point p : R1) S1;
forall (point p : R1) S2;

3. Loop/Finish interchange:
for (S1;cond;S2)
finish S3;

// Say Es = set of e-asyncs in S3
// ¬∃e ∈ Es: cond has dependence on e
// ¬∃e ∈ Es:body of e has loop
// carried dependence on S2, cond or S3

=⇒


S1;
finish
for (;cond;S2)
S3;

4. Serial-parallel loop interchange:
for (i: [1..n])
forall (point p : R1) S;

// iterations of the for loop are independent.
// R1 does not depend on i

=⇒


forall (point p : R1)
for (i: [1..n])
S;

5. Parallel-serial loop interchange:
forall (point p : R1)
for (point q : R2) S

// R2 is independent of p
// S contains no break/continue

=⇒


for (point q : R2)
forall (point p : R1)
S

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 19 / 32

Extending traditional loop transformations I

1. Serial loop distribution:
for (...) { S1;S2; }
// no dependence cycle between S1 & S2

=⇒
{

for (...) {S1;}
for (...) {S2;}

2. Parallel loop distribution:
forall (point p : R1)
{ S1; S2; }

// S1 has no dependence on S2
=⇒

{
forall (point p : R1) S1;
forall (point p : R1) S2;

3. Loop/Finish interchange:
for (S1;cond;S2)
finish S3;

// Say Es = set of e-asyncs in S3
// ¬∃e ∈ Es: cond has dependence on e
// ¬∃e ∈ Es:body of e has loop
// carried dependence on S2, cond or S3

=⇒


S1;
finish
for (;cond;S2)
S3;

4. Serial-parallel loop interchange:
for (i: [1..n])
forall (point p : R1) S;

// iterations of the for loop are independent.
// R1 does not depend on i

=⇒


forall (point p : R1)
for (i: [1..n])
S;

5. Parallel-serial loop interchange:
forall (point p : R1)
for (point q : R2) S

// R2 is independent of p
// S contains no break/continue

=⇒


for (point q : R2)
forall (point p : R1)
S

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 19 / 32

Extending traditional loop transformations I

1. Serial loop distribution:
for (...) { S1;S2; }
// no dependence cycle between S1 & S2

=⇒
{

for (...) {S1;}
for (...) {S2;}

2. Parallel loop distribution:
forall (point p : R1)
{ S1; S2; }

// S1 has no dependence on S2
=⇒

{
forall (point p : R1) S1;
forall (point p : R1) S2;

3. Loop/Finish interchange:
for (S1;cond;S2)
finish S3;

// Say Es = set of e-asyncs in S3
// ¬∃e ∈ Es: cond has dependence on e
// ¬∃e ∈ Es:body of e has loop
// carried dependence on S2, cond or S3

=⇒


S1;
finish
for (;cond;S2)
S3;

4. Serial-parallel loop interchange:
for (i: [1..n])
forall (point p : R1) S;

// iterations of the for loop are independent.
// R1 does not depend on i

=⇒


forall (point p : R1)
for (i: [1..n])
S;

5. Parallel-serial loop interchange:
forall (point p : R1)
for (point q : R2) S

// R2 is independent of p
// S contains no break/continue

=⇒


for (point q : R2)
forall (point p : R1)
S

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 19 / 32

Extending traditional loop transformations I

1. Serial loop distribution:
for (...) { S1;S2; }
// no dependence cycle between S1 & S2

=⇒
{

for (...) {S1;}
for (...) {S2;}

2. Parallel loop distribution:
forall (point p : R1)
{ S1; S2; }

// S1 has no dependence on S2
=⇒

{
forall (point p : R1) S1;
forall (point p : R1) S2;

3. Loop/Finish interchange:
for (S1;cond;S2)
finish S3;

// Say Es = set of e-asyncs in S3
// ¬∃e ∈ Es: cond has dependence on e
// ¬∃e ∈ Es:body of e has loop
// carried dependence on S2, cond or S3

=⇒


S1;
finish
for (;cond;S2)
S3;

4. Serial-parallel loop interchange:
for (i: [1..n])
forall (point p : R1) S;

// iterations of the for loop are independent.
// R1 does not depend on i

=⇒


forall (point p : R1)
for (i: [1..n])
S;

5. Parallel-serial loop interchange:
forall (point p : R1)
for (point q : R2) S

// R2 is independent of p
// S contains no break/continue

=⇒


for (point q : R2)
forall (point p : R1)
S

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 19 / 32

Extending traditional loop transformations II

6. Loop unpeeling:
forall (point p: R) S1;
S2;
// no break/continue in S2.
// Say Es = set of e-asyncs in S1
// ¬∃e ∈ Es: S2 has dependence on e

=⇒
{

forall (point p: R)
{S1; S2;}

7. Loop fusion:
forall (point p: R1) S1;
forall (point p: R2) S2;
// Say Es = set of e-asyncs in S1
// ¬∃e ∈ Es: S2 has dependence on e

=⇒


forall (point p: R1||R2)
{if (R1.contains (p)) S1;
;
if (R2.contains (p)) S2;}

8. Loop switching:
if (c)
forall (point p: R)
S;

=⇒


final boolean v = c;
forall (point p: R)
if (v) S;

9. Parallel loop unswitching:
forall (point p : R1)
if (e) S

//e is a pure function and is independent of p
=⇒

{
if (e)
forall (point p : R1) S

10. Serial loop unswitching:
for(S2;cond1;S3){
if (cond2) S4; else S5;

}
// cond2 has no dependence
// on S2,S3,S4 and S5,
// cond2 has no side effects

=⇒


if (cond2) {
for(S2;cond1;S3) S4;

} else {
for(S2;cond1;S3) S5;

}

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 20 / 32

Variations of traditional transformations

1. Finish distribution:
finish { S1; S2; }
// S1 has no e-asyncs.

=⇒
{

S1;
finish { S2; }

2. Finish unswitching:
finish
if(cond)S1; else S2;

// cond has no e-async
=⇒

{
if (cond) finish S1;
else finish S2;

3. If expansion:

finish {
S1;
if(cond) S2; else S3;
S4; }

// no dependence between cond and S1

=⇒



finish {
if (cond)
{S1; S2; S4;}

else
{S1; S3; S4}

}
4. Redundant finish elimination:
finish S;
// S has no e-async.

=⇒
{
S;

5. Tail finish elimination:
finish { S1;finish S2;} =⇒

{
finish {S1; S2; }

6. Finish fusion
finish S1;
finish S2;
// Say Es = set of e-asyncs in S1
// ¬∃e ∈ Es: S2 has dependence on e

=⇒


finish{

S1;
S2;

}

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 21 / 32

Variations of traditional transformations

1. Finish distribution:
finish { S1; S2; }
// S1 has no e-asyncs.

=⇒
{

S1;
finish { S2; }

2. Finish unswitching:
finish
if(cond)S1; else S2;

// cond has no e-async
=⇒

{
if (cond) finish S1;
else finish S2;

3. If expansion:

finish {
S1;
if(cond) S2; else S3;
S4; }

// no dependence between cond and S1

=⇒



finish {
if (cond)
{S1; S2; S4;}

else
{S1; S3; S4}

}
4. Redundant finish elimination:
finish S;
// S has no e-async.

=⇒
{
S;

5. Tail finish elimination:
finish { S1;finish S2;} =⇒

{
finish {S1; S2; }

6. Finish fusion
finish S1;
finish S2;
// Say Es = set of e-asyncs in S1
// ¬∃e ∈ Es: S2 has dependence on e

=⇒


finish{

S1;
S2;

}

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 21 / 32

Variations of traditional transformations

1. Finish distribution:
finish { S1; S2; }
// S1 has no e-asyncs.

=⇒
{

S1;
finish { S2; }

2. Finish unswitching:
finish
if(cond)S1; else S2;

// cond has no e-async
=⇒

{
if (cond) finish S1;
else finish S2;

3. If expansion:

finish {
S1;
if(cond) S2; else S3;
S4; }

// no dependence between cond and S1

=⇒



finish {
if (cond)
{S1; S2; S4;}

else
{S1; S3; S4}

}

4. Redundant finish elimination:
finish S;
// S has no e-async.

=⇒
{
S;

5. Tail finish elimination:
finish { S1;finish S2;} =⇒

{
finish {S1; S2; }

6. Finish fusion
finish S1;
finish S2;
// Say Es = set of e-asyncs in S1
// ¬∃e ∈ Es: S2 has dependence on e

=⇒


finish{

S1;
S2;

}

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 21 / 32

Variations of traditional transformations

1. Finish distribution:
finish { S1; S2; }
// S1 has no e-asyncs.

=⇒
{

S1;
finish { S2; }

2. Finish unswitching:
finish
if(cond)S1; else S2;

// cond has no e-async
=⇒

{
if (cond) finish S1;
else finish S2;

3. If expansion:

finish {
S1;
if(cond) S2; else S3;
S4; }

// no dependence between cond and S1

=⇒



finish {
if (cond)
{S1; S2; S4;}

else
{S1; S3; S4}

}
4. Redundant finish elimination:
finish S;
// S has no e-async.

=⇒
{
S;

5. Tail finish elimination:
finish { S1;finish S2;} =⇒

{
finish {S1; S2; }

6. Finish fusion
finish S1;
finish S2;
// Say Es = set of e-asyncs in S1
// ¬∃e ∈ Es: S2 has dependence on e

=⇒


finish{

S1;
S2;

}

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 21 / 32

Variations of traditional transformations

1. Finish distribution:
finish { S1; S2; }
// S1 has no e-asyncs.

=⇒
{

S1;
finish { S2; }

2. Finish unswitching:
finish
if(cond)S1; else S2;

// cond has no e-async
=⇒

{
if (cond) finish S1;
else finish S2;

3. If expansion:

finish {
S1;
if(cond) S2; else S3;
S4; }

// no dependence between cond and S1

=⇒



finish {
if (cond)
{S1; S2; S4;}

else
{S1; S3; S4}

}
4. Redundant finish elimination:
finish S;
// S has no e-async.

=⇒
{
S;

5. Tail finish elimination:
finish { S1;finish S2;} =⇒

{
finish {S1; S2; }

6. Finish fusion
finish S1;
finish S2;
// Say Es = set of e-asyncs in S1
// ¬∃e ∈ Es: S2 has dependence on e

=⇒


finish{

S1;
S2;

}

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 21 / 32

Variations of traditional transformations

1. Finish distribution:
finish { S1; S2; }
// S1 has no e-asyncs.

=⇒
{

S1;
finish { S2; }

2. Finish unswitching:
finish
if(cond)S1; else S2;

// cond has no e-async
=⇒

{
if (cond) finish S1;
else finish S2;

3. If expansion:

finish {
S1;
if(cond) S2; else S3;
S4; }

// no dependence between cond and S1

=⇒



finish {
if (cond)
{S1; S2; S4;}

else
{S1; S3; S4}

}
4. Redundant finish elimination:
finish S;
// S has no e-async.

=⇒
{
S;

5. Tail finish elimination:
finish { S1;finish S2;} =⇒

{
finish {S1; S2; }

6. Finish fusion
finish S1;
finish S2;
// Say Es = set of e-asyncs in S1
// ¬∃e ∈ Es: S2 has dependence on e

=⇒


finish{

S1;
S2;

}

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 21 / 32

Outline

1 Background

2 Data Dependence in task parallel programs

3 Static Happens Before and Dependence relation

4 Optimization framework

5 Correctness

6 Example optimizations

7 Transformations in the presence of exceptions

8 Conclusion

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 22 / 32

Correctness

Definition
A transformation of a parallel program is semantics-preserving if the
set of happens-before dependencies of all the variables at all program
points in the source program are conservatively preserved in the
translated program.

Lemma
The preconditions for each rule ensure that the individual
transformation resulting from each of the rules is
semantics-preserving.

Theorem
Any optimization pass consisting of applying one or more instances of
the rules shown is semantics-preserving.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 23 / 32

Correctness

Definition
A transformation of a parallel program is semantics-preserving if the
set of happens-before dependencies of all the variables at all program
points in the source program are conservatively preserved in the
translated program.

Lemma
The preconditions for each rule ensure that the individual
transformation resulting from each of the rules is
semantics-preserving.

Theorem
Any optimization pass consisting of applying one or more instances of
the rules shown is semantics-preserving.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 23 / 32

Correctness

Definition
A transformation of a parallel program is semantics-preserving if the
set of happens-before dependencies of all the variables at all program
points in the source program are conservatively preserved in the
translated program.

Lemma
The preconditions for each rule ensure that the individual
transformation resulting from each of the rules is
semantics-preserving.

Theorem
Any optimization pass consisting of applying one or more instances of
the rules shown is semantics-preserving.

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 23 / 32

Outline

1 Background

2 Data Dependence in task parallel programs

3 Static Happens Before and Dependence relation

4 Optimization framework

5 Correctness

6 Example optimizations

7 Transformations in the presence of exceptions

8 Conclusion

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 24 / 32

Motivating example - finish elimination

void foo(int n) {
...
finish {
for (...) {
if (c) {
async foo(n-1);
} else {
foo(n-1);

}
} // for

} // finish
}

void foo(int n) {
...
if (c) {
finish {

for (...) {
async foo(n-1);
} // for

} // finish
} else {
for (...) {

foo(n-1);
} // for
}

}

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 25 / 32

Motivating example - finish elimination

void foo(int n) {
...
finish {
for (...) {
if (c) {
async foo(n-1);
} else {
foo(n-1);

}
} // for

} // finish
}

void foo(int n) {
...
if (c) {
finish {

for (...) {
async foo(n-1);
} // for

} // finish
} else {
for (...) {

foo(n-1);
} // for
}

}

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 25 / 32

Motivating example - finish elimination

void sim_village_par(Village vil){
// Traverse village hierarchy

1: finish {
2: final Iterator it = vil.forward.iterator();
3: while (it.hasNext()){
4: final Village v=(Village)it.next();
5: if ((sim_level-vil.level) < cutoff){
6: async sim_village_par(v);

} else {
7: sim_village_par(v);

}
... ...;} // while

} // finish
} // end function

BOTS Health benchmark
V. Krishna Nandivada (IIT Madras) 10-Jan-2013 26 / 32

Finish elimination - block diagram

Finish
Distribution

Serial Loop
Distribution

Loop/Finish
Interchange

Finish
Fusion

Tail Finish
Elimination

Redundant
Finish

Elimination
Finish

Unswitching

If ExpansionSerial Loop
Unswitching

PSG

finish
present?

Optimized
Code

no
change

?

yes

no

yes

no

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 27 / 32

Optimizing the “running” example

Next: Loop unswitching

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 28 / 32

Optimizing the “running” example

Next: Loop unswitching

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 28 / 32

Optimizing the “running” example

Next: finish unswitching

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 29 / 32

Optimizing the “running” example

Next: finish unswitching

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 29 / 32

Optimizing the “running” example

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 30 / 32

Transformations in the presence of exceptions

Finish distribution: (no exceptions)
finish { S1; S2; }
// S1 has no e-asyncs.

=⇒
{

S1;
finish { S2; }

Finish distribution: (with exceptions)

finish { S1; S2; }
// (1) S1 has no e-asyncs.
// (a) S2 has e-asyncs.

=⇒


try {S1;}
catch(Exception e){
MultiException me tt=new · · ·;
me.pushEx(e1); throw me; }

finish { S2; }

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 31 / 32

Transformations in the presence of exceptions

Finish distribution: (no exceptions)
finish { S1; S2; }
// S1 has no e-asyncs.

=⇒
{

S1;
finish { S2; }

Finish distribution: (with exceptions)

finish { S1; S2; }
// (1) S1 has no e-asyncs.
// (a) S2 has e-asyncs.

=⇒


try {S1;}
catch(Exception e){
MultiException me tt=new · · ·;
me.pushEx(e1); throw me; }

finish { S2; }

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 31 / 32

Conclusion

Control and Data dependence in the context of task parallel programs.

Correctness argument in the presence of multiple tasks, procedures and
Exceptions.

Extend traditional optimizations in the context of task parallel programs.

Results in significant performance improvement:

geometric average performance improvement of 6.56×, 6.28×, and
9.77× on three platforms (Sparc 128 cores, Intel 16 cores, and IBM
32 cores) respectively

V. Krishna Nandivada (IIT Madras) 10-Jan-2013 32 / 32

	Background
	Data Dependence in task parallel programs
	Static Happens Before and Dependence relation
	Optimization framework
	Extending traditional loop transformations
	New transformations

	Correctness
	Example optimizations
	Transformations in the presence of exceptions
	Conclusion

