Applications and Algorithms

/,f. :‘, I’,"[’ : Ryl ; \"_.‘.i .'> \ S A» “\‘:» S ‘&..;' < :'
S/)\ N\ SRR :

Workshop on Making Formal Verification Scalable and Useable

Chennai Mathematical Institute, 9" January 2013
© 2013 IBM Corporation

»Hardware Verification Basics
= Verification at IBM I/
SixthSense Edition

= Formal Verification at IBM

= Formal Verification: Past, Present, and Future Directions

2 © 2013 IBM Corporation

Hardware Verification: Why so Important?
1) Hardware bugs are expensive to fix

= ~$1M per bug; lost time-to-market; lost marketshare

= Software bugs are cheap & easy to fix — look at # Windows patches!

2) Performance-critical nature of HW entails unique challenges
= HW is often power-optimized, timing-optimized, pipelined, multi-threaded, ...
= Non-functional design artifacts complicate verification
= Arithmetic operators (e.g. multipliers) are often bit-optimized

« Very difficult to prove that bit-optimization preserves functionality!

3) Verification now dominates semiconductor development cost

Verification Complexity: Intractable!

2 14,000,000 -—-- # States of Powerd Processor Core

Moore’s Law:
it’s getting even
harder!

- Particles in Universe

- US Deficit $

= Advances in verification technology + methodology have come a long way
to cope with this inherent feasibility

® Nonetheless, a very active area of research with great industrial needs!

Introduction to Hardware Verification

= Numerous types of verification relevant to hardware design

_ be _A-m' . "I "].
always @(posedge clk) begin ﬁ_[I e W ‘”j,{-*”‘ Tl
if (r)thenp<=0 2 2 1 D k3
end if;) _%:r AR A
end 9 N e

] = B!
HDL Netlist Schematic Layout
Equivalence Equivalence Layout vs Wafer
Checking Checking Schematic Test

= Also timing analysis, circuit analysis, protocol analysis, ...

Introduction to Hardware Verification

= RuleBase SixthSense Edition: a tool for logical implementation verification

1) Functional verification: property checking or model checking

2) Combinational and sequential equivalence checking

always @(posedge clk) begin

if(r)thenp<=0
IEEE # else p <= p+1; “

Standard end if;
754-2008 end
HDL
Remains a Eunctional Equivalence Relatively
challenging @ @< \/crification Checking mature

technolog

problem

= May also be applied to architectural models, protocol models,
software-like models, ... As long as they are synthesizable

Validation and Verification Techniques

= Simulation and Acceleration

= Explicit-state guided random walk i
v Scalable to HUGE designs e ::dslpsll
v Mature methodology + tools for high coverage ® Bug
X %Coverage inherently very limited |
X Misses bugs; never complete
= Formal Verification (FV) * | @tu
® Search

» Exhaustive state coverage via symbolic algos Unexplored
v Yields (corner-case) bugs or proofs _—

X Capacity-limited to moderately-sized designs

= Semi-formal Verification (SFV)

Completed
)) o ’ . Exhaustive
= Combine symbolic + explicit search | N
g ; 2 nexplor
. ‘ N A : ‘ W . Stategpace
v Exposes corner-case bugs on large designs ' o a N O —
X Only yields bounded proofs : - ' - ® Bug

= Hardware Verification Basics
» Verification at IBM .’
SixthSense Edition

= Formal Verification at IBM

= Formal Verification: Past, Present, and Future Directions

8 © 2013 IBM Corporation

Verification Technology at IBM

RTL
(VHDL, Verilog

Physical VLSI
Design Tools /
Custom Design

Test Program
Generator

(GPro, X-Gen)

l Constrained

C++ Random
Testbench Testbench

9 © 2013 IBM Corporation

Formal Verification at IBM

= Vision: Bring FV to the masses
— Common infrastructure — Trivial learning curve, resource savings x

— Shared / reusable verification IP — High ROI, tight integration
— High scalability — Improved productivity

Approaching 200 users per month, >>100k sessions per month
Contrast to early days of model checking at IBM: <10 expert users

Amortize R&D cost — Higher value proposition

= Critical applications by dedicated FV experts still occurs and is very valuable

= Though strong push to enable applications by non-FV experts

10

© 2013 IBM Corporation

IBM Systems and Technology Group

» Assertion-based Verification (ABV) ||:> Designer-level Verification (DLV)
— Designers capture assumptions as assertions; used in basic verification

— High Return on Investment (ROI)

 Facilitates design process: bugs caught immediately vs only after IP integration
v Early design exploration and debug

» Easier debug: failed assertion immediately localizes failure or bad assumption
v Valuable even when reused in alternate verification disciplines

» Accelerates design closure: some corner-case bugs flushed out early

* Serve as documentation

Enables
| Integrated
Checking

w Simulation

Assertion-Based Verification

@

: Enables /

Stimulus

Designer-Level Verification

Block-Level Verification

1

© 2013 IBM Corporation

» FV plans drawn collaboratively with design and simulation teams
— LRUs, Arbitration, Debug Buses, ... done purely with formal
— Harder-to-stress design components / functionality targeted heavily with formal
— Optimize testplans: no need to target FV-covered behavior in sim

= Common verification model facilitates:
— Leveraging FV to hit hard-to-cover simulation behaviors
— Establishing FV testbench for bug reproduction (e.g., post-Silicon analysis)

PB Unit Testplan

Cateqory |Main Task Category Detail |Description Implementation |Notes

PB Unt Arbiter Grants Arbiters grant when able C+t
8 |ldentify starvation scenarios for various nvestigate complete matrix coresponding to
y [thrattle and 110 rate VHDL all parameter values.

PB Macro |Central Cg ‘

12

© 2013 IBM Corporation

Hierarchical Verification Progression

Hardware VPO Level
Emulation Hardware /
Firmware
VBU Level Verification

System Level
Hardware

Acceleration
Chip Level
Hardware
Verification
Element Level
Software
Simulation
Unit Level
Formal Block Level
Verification

VBU = Virtual Bring-Up (chip)
VPO = Virtual Power-On (system)

13 © 2013 IBM Corporation

= Hardware Verification Basics
= Verification at IBM .’
SixthSense Edition

» Formal Verification at IBM

= Formal Verification: Past, Present, and Future Directions

14 © 2013 IBM Corporation

Hierarchical Verification Progression

Hardware VPO Level
Emulation Hardware /
Firmware
VBU Level Verification
System Level
Hardware
Acceleration
Chip Level
Hardware
Verification
Element Level
Software
Simulation
Unit Level
F_O_rmal Block Level
Verification

VBU = Virtual Bring-Up (chip)
VPO = Virtual Power-On (system)

15 © 2013 IBM Corporation

IBM Systems and Technology Group

Verification Progression (1)

= Block Level

— Targeted “deep dive” driven by knowledge of the micro-architecture
* Rigorous documentation often lacking at this level

— Formal / Semi-formal verification leveraged heavily at this level

» Designer-level verification

» FV engineer focus for mission-critical logic / functionality, hard-to-cover in sim

— Small size) reliable proofs

— Controllability =) corner cases easily exercised

Design-Under-Test

—
Driver —
—

entity

end ...
architecture....

—

7’

Testbench

16

© 2013 IBM Corporation

IBM Systems and Technology Group

Verification Progression (2)

= Functional Units

— Informal verification: biased random tests directly against unit interface
» Transaction-, Instruction-based

— Formal / Semi-Formal verification applied selectively at this level
- Similar to block-level, though larger size) capacity challenges
» Better-documented / simpler interfaces, reusable drivers / checkers
» Reference model-based end-to-end check

 Fixed- / Floating-point Unit, Memory Controller, ...

IEEE Floating

Point Spec

FLAVOR
o

Full Proof
(dataflow)

FLAVOR: FLoAting-point Verif EnviORment

17 © 2013 IBM Corporation

IBM Systems and Technology Group

Verification Progression (3 & 4)

» Element and Chip Level

— Informal verification: transactions, pre-generated test programs

— (Semi-) formal verif used to verify multi-unit / core interactions, architectural aspects...
* Reuse RTL models with suitably abstracting blocks / units with behaviorals
« Multi-unit models with heavy black-boxing / over-constraining
« Verify unit interconnections, clock domain crossings, ...

* Hangs, stalls, bus protocols, arbitration...

Chiplet

18 © 2013 IBM Corporation

IBM Systems and Technology Group

Verification Progression (5)

19

= System Level

— Informal verification: Pre-generated test-programs
» Multiprocessor models / tests
* /O chips interactions, asynchronous aspects

— Formal methods applied to study chip interactions
» High-level analysis of protocol models

 Traffic flow, asynchronous interfaces, timing
protection windows, deadlocks...

© 2013 IBM Corporation

IBM Systems and Technology Group

Quality Refinement Process

Because controllability, state coverage is higher, and cost
of a bug is lower, at lower levels :

r = Every major bug find at higher level is treated as
escape of lower level

r = | ower level team gets feedback to reproduce problems
r — Harden lower level environments

r — Reproduce with targeted block-level checkers
* Prove fixes with formal verification

20 © 2013 IBM Corporation

Sequential Equivalence Checking

Sequential Equivalence Checking (SEC)

Simulation
Cj\, Supports arbitrary changes that preserve 10 behavior
Proof of
CEID —

Initialization > Mismatch
Data
Inout
Constraints
Inputs

-e OUtpms;
Hierarchical application enables high scalability

Retiming, power optimization, logic minimization,

Lower levels) . .
black boxed Game changing application of FV
Lower levels End-to-end verification of entire chips
black boxed
""" B S Invaluable productivity advantage, resource savings
Lower levels
black boxed .. .
----- Unbounded proofs are critical in SEC!
Leaf level

Design hierarchy
21 © 2013 IBM Corporation

Model checking with RuleBase SixthSense Edition

Environment,
Driver E E | uv
] B
$ Assertlons
Propertles
]]

RuleBase
SixthSense

|

" [1:n]

Fail Pass Pass vacuously Bounded pass
+ +

Counter example Witness

22 © 2013 IBM Corporation

Hardware description languages
— Verilog, VHDL, Mixed
— GDL (mainly for protocol verification)

Assertion languages
— PSL: standalone checker or embedded in HDL
— SVA

Verification directives
— Assertions, Coverage points
— Assumptions
— Full liveness, fairness, restrict support

Support for various trace browsers

High capacity via Transformation-Based Verification

23

$IEEE

IEEE Standard for
Property Specification Language (PSL)

IEEE Computer Society

Sponsored by the
Design Automation Standards Committee

and the
IEEE Standards Association Corporate Advisory Group

IEEE Std 1850™-2010
Revision of

ow List

Fio Edi W
=E e)
Goto:

Wavos Operaions Markers Annotation Windows Help
BRB® AL DG 0F PE 2« xa

Start 0 cycles Interval

24

Problem J

Results J Problem J+1

Encapsulates engines against a modular API Results J +1

— Transformation engines, proof engines, falsification engines

Modular API enables maximal synergy between engines
— Each (sub)problem may be addressed with an arbitrary sequence of algos
— Motivation: every problem is different; different algorithm sequences may be
exponentially more / less effective on a given problem

Incrementally chop complex problems into simpler problems, until tractable for
core verification algos

S

© 2013 IBM Corporation

Example Transformations

— Retiming = Redundancy removal
n Forward
—
Backward
— Localization = Logic Rewriting

Localization cut—points

A
*
*
L)
.
.
L)
.
L]
1
]
q
1 4
Ll
¥
’
2
*
*»
*

Transformation-Based Verification

140627 [Desion*
_ Driver +
registers Checker

Counterexample
consistent with
original design

119147 Combinational

Optimization imiz
regs Engine ee ed
trace
Problem
decomposition
via synergistic : ontimized
transformations Phase Abstraction p ’

Engine phase abstracted

/ trace
optimized,
phase abstracted,
localized trace
> exploration,
(sub)problem

:IParallel algo

solution
26 © 2013 IBM Corporation

140627 [Desian+

i Driver +
registers Checker

Counterexample
consistent with
original design

119147 Combinational

Optimization
regs Engine

Problem
decomposition
via synergistic

transformations

Transformations are completely
transparent to the user — internally
enable exponential
speedups!

All verification results are in terms ’

of original design racted,
localized trace

:IParallel algo

> exploration, ‘etiming Engine
(sub)problem

solution
27 © 2013 IBM Corporation

= Combinational rewriting

= Sequential redundancy removal

» Min-area retiming

= Sequential rewriting

* |nput reparameterization

= | ocalization

= Target enlargement

= State-transition folding

= Circuit quantification

= Temporal shifting + decomposition

» |somorphic property decomposition

Unfolding

Speculative reduction
Symbolic sim: SAT+BDDs
Semi-formal search
Random simulation
Bit-parallel simulation
Symbolic reachability
Property-directed reachability
Induction

Interpolation

Invariant generation

Array abstraction

= Expert System Engine orchestrates parallel optimal engine selection

= [f there is a useful verification algorithm, RuleBase SixthSense Edition likely has it!

=Much Innovation: necessity is the mother of invention; IBM has deep verification needs!

sAlso much collaboration!

© 2013 IBM Corporation

= Hardware Verification Basics
= Verification at IBM .’
SixthSense Edition

= Formal Verification at IBM

» Formal Verification: Past, Present, and Future Directions

29 © 2013 IBM Corporation

Invariant-Based IC3

o
>
©
(D)
Q
(@)]
c - @) 88|
1000000 - 2 < c = & S
o
'z &) Q 0 o =
O o - o= ©
@ =) o © re)
< O < o S Q.
100000 - O T 5 S 5 3
9 3 X =2 =
Q = o < ©
10000 - = 3 g N
% % 3 g @
: ANELNE s
= ()
g s : -
I LL] T C O
- e 0
100 a = S 2
m o n %
3 + 2
- >
10 5 5 =
= 7 L
G
1 1 1 D_ 1 1 1 1 1

1980 1985 1990 1995 2000 2005 2010 2015
Design size at which some useful results could be expected from FV tool

Caveat: not guaranteed capacity;1) some tiny problems are unsolvable! 2) includes bounded proofs
Very incomplete list; cumulative capacity trend leverages earlier innovations + SW engineering

ﬁ The Future...

Middle Ages

Early Times Modern Era

4----—-=-=-=-=

*_____
<
<4+-----

12000 2002 | 2006 | 2012
Advent of . Parallel, SEC Avoid duplicate work

. higher coverage . .
J g Automation, automation...

SEC key to many newer methodologies Stay tuned!
Applied to (~100s of registers)
Manual Intensive w/
Required setting up of Integrated approach / DLV

Out-of-the-box methodologies
High speed, capacity tgolsets
s

SFV: Semi-formal verification
SEC: Sequential Equivalence Checking
DLV: Designer-level Verification

31 Corporation

RuleBase
SixthSense

» RuleBase PE (IBM Research)
— Robust algorithms for property checking
— Advanced usability features, rich language support

L
—_J_'
= SixthSense (IBM EDA)

— Focus on very high capacity via Transformation-Based Verification
— Robust support for property checking + sequential equivalence checking

» RuleBase: SixthSense Edition
— Usability, rich language support, diverse application domains
— Order of magnitude improvement in capacity
 Cited as the strongest model checker + sequential equivalence checker in the world

— World-class R&D team with a unified focus on continued capacity boosts

32 © 2013 IBM Corporation

RuleBase SixthSense Edition: R&D Team

= World-wide R&D team

Active development since 1993

Unique patented transformation-based verification architecture

>100 granted patents

>50 technical conference papers

Numerous key verification innovations developed through this project
— Equivalence checking, on-the-fly checking, And / Inverter Graphs,
time-sliced simplification vs SAT solving, Transformation Based Verification,
cone-of-influence reduction, speculative reduction, ...

— Incubator of PSL, IEEE 1850

33 © 2013 IBM Corporation

RuleBase: SixthSense Edition R&D Team

‘ Sweden
Massachusetts

e - ok — = Austria
“3
Pay Minnesota New York , o -
/8

California ‘ ‘m— q India
: : Austin,

i
". ‘I
Texas

External coIIaborations‘

Colorado

Ireland

NRRRe
\\\\\\w

34 © 2013 IBM Corporation

FV @ IBM: Impact Highlights

B This technology has become essential to IBM’s business

B Successful FV deployment mandates high capacity; drives R&D

E Tight synergy between formal and informal verification teams + design teams

B Spec reuse across teams
B Push for spec + methodology reuse across projects

E Continually finding new application domains where FV displaces simulation

B Approaching 200 FV users / month; >>100k sessions / month

FV @ IBM: Impact Highlights

B SEC has become a huge “commercial win”

E Technology remaps, “IP import” projects completely forgo functional verification
E Timing bringdown design phase greatly simplified by SEC capability

E Enables late / aggressive changes that otherwise would not be tolerated

B Designer-level applications are a huge “intangible win”

B Critical to shift bug-count left / first-time correct silicon mantra
B Accelerates successful higher-level verification bringup

B Also used for exploration of design optimization opportunities

FV @ IBM: Impact Highlights

B Verification teams migrating from small blocks to larger blocks / units

B Scalability is enabling FV to verify functionality vs verify small-enough blocks

B Verify against more stable and meaningful design interfaces

B Less testbench bringup effort
B Fewer testbench bugs vs design bugs

B Silicon failures almost 100% addressed with FV (if logical failures)

E An additional driving force to establish early formal testbenches

Open Problems: Call for Research Focus

B Many open problems in design + verification

B HW verification is not a solved problem
B Many unsolvable problems; manually-intensive to cope with these

B Old open problems:

B Improve bit-level verification, falsification algorithms !
B Improve bit-level synthesis algorithms !
B Improve equivalence checking techniques !

B Bit-level techniques remain primary workhorse in industrial HW verification
E Verification of bit-optimized arithmetic circuits is particularly troublesome
B The remaining achilles-heel of CEC

Open Problems: Call for Research Focus

B Newer open problems

B Improve higher-level verification algorithms (e.g. SMT) !
E Improve higher-level synthesis techniques !!

E Optimize integrated theory solvers due to heterogenous nature of HW
B Improve higher-level equivalence checking techniques !!

B Goal — enable higher-level design without manually-derived ref model
B Grand challenge: application of higher-level algos to bit-level designs

B “Someday Moore’s Law will work for, not against, the
verification community” Allen Emerson

B Requires substantial innovation! Help us achieve this goal !!!!

References

» Project homepage
— http://www.haifa.il.ibm.com/projects/verification/RB Homepage

» Technical publications
— https://www.research.ibm.com/haifa/projects/verification/SixthSense
— https://www.research.ibm.com/haifa/projects/verification/RB Homepage/publications.html

= Contact:
— Jason Baumgartner baumgarj@us.ibm.com
— Viresh Paruthi vparuthi@us.ibm.com
— Ambar Gadkari ambar.gadkari@in.ibm.com
— Pradeep Nalla pranalla@in.ibm.com
— Sivan Rabinovich sivanr@il.ibom.com

40 © 2013 IBM Corporation

http://www.haifa.il.ibm.com/projects/verification/RB_Homepage
https://www.research.ibm.com/haifa/projects/verification/SixthSense
http://www.research.ibm.com/haifa/projects/verification/RB_Homepage/publications.html
mailto:baumgarj@us.ibm.com
mailto:vparuthi@us.ibm.com
mailto:ambar.gadkari@in.ibm.com
mailto:pranalla@in.ibm.com
mailto:sivanr@il.ibm.com

