
How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Verifying the FreeRTOS Real-Time OS

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

Joint work with Sumesh Divakaran, Anirudh Kushwah, Prahlad Sampath, Jim
Woodcock, and others.

Project funded by UKIERI (2009-12)

10 January 2013

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Outline

1 How RTOS works

2 ADT’s and refinement in Z

3 RTOS as an ADT

4 Verification strategy

5 Bugs found

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

How interrupts are handled on an ARM processor

Various kinds of interrupts may be generated (hardware eg.
timer, software, instruction exceptions).

Corresponding mode bits are set in CPSR[4:0] (Eg. 10011 for
SWI).

Exception Resulting Mode IVT address Priority
Reset Supervisor 0x00000000 1
Undefined Inst. Undef 0x00000004 6
Software Interrupt Supervisor 0x00000008 6
Abort prefetch Abort 0x0000000C 2
Abort data Abort 0x00000010 2
IRQ IRQ 0x00000018 4
FIQ FIQ 0x0000001C 3

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

What the processor does on an interrupt

Saves current PC in
LR’, CPSR in CPSR’.

Changes to “super”
mode.

Disables lower
priority interrupts.

Branches to
appropriate IVT
entry.

IVT Code

ISR Code

App Code

Stack/Heap

Memory

R0

R1

(SP) R13

(LR) R14

(PC) R15

CPSR

SPSR

Registers

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

What RTOS provides the programmer

Ways to:

Create and manage multiple tasks.

Schedule tasks based on priority-based pre-emption.

Let tasks communicate (via message queues, semaphores,
mutexes).

Let tasks delay and timeout on blocking operations.

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Example application that uses RTOS

Sample RTOS application

int main(void){

xTaskCreate(foo, "Task 1", 1000, NULL, 1, NULL);

xTaskCreate(bar, "Task 2", 1000, NULL, 2, NULL);

vTaskStartScheduler();

}

void foo(void* params){

for(;;);

}

void bar(void* params){

for(;;){

vTaskDelay(2);

}

}

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Task execution in example application

int main(void){

xTaskCreate(foo, "Task 1", ...);

xTaskCreate(bar, "Task 2", ...);

vTaskStartScheduler();

}

void foo(void* params){

for(;;);

}

void bar(void* params){

for(;;){

vTaskDelay(2);

}

}

Task 1

Task 2

Time (tick interrupts)

t1 t2 t3 t4 t5

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Example application: execution sequence

main
vtaskCreate(1)
vtaskCreate(2)
vtaskStartScheduler()

create Idle task
task2

vtaskdelay()
yield()

task1
timer interrupt
timer interrupt

task2

ISR Code

Memory

R0

R1

(SP) R13

(LR) R14

(PC) R15

CPSR

SPSR

Registers

Scheduler

startscheduler

taskcreate

App Code
main

foo

Stack/Heap

IVT Code branch instr

TCB2

Stack2

TCB1

Stack1

bar

1

2

2 5

ReadyQ

DelayedQ

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

About RTOS implementation

Written mostly in C.

Assembly language for processor-specific code.

Portable:

Processor independent code is in 3 C files.
Processor dependent code (called a “port” in RTOS) is
organised by Compiler-Processor pairs.
(19 compilers, 27 processors supported).

Small footprint (≈3,000 lines), engineered for efficiency.

Well-written, and well-documented through comments.

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Key data structures: Task Control Block

uxPriority

pxStack

priority of the task

pxTopOfStack

xMPUSettings

xGenericListItem

xEventListItem

pcTaskName

pxEndOfStack

uxCriticalNesting

uxTCBNumber

uxBasePriority

pxTaskTag

ulRunTimeCounter

MPU setting − part of port layer

points to the start of the stack

points to the top element in stack

descriptive name for task − for debugg

points to the end of stack − for checking overflows

for critical section nesting

for tracing the scheduler − the task count

for priority inheritance − last assigned priority

task hook function

MPU time used by the task

to place the Task in READY and BLOCKED lists

to place the Task in event lists

Task Control Block (TCB)

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Key data structures: xList

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

1004

1 2 2

Task1 Task2 Task3 Task4

readyQ:

3 100

Operations it provides: initialize, insert at end, insert ordered
by itemvalue, remove a node, set itemvalue of a node, etc.
(some 13 operations).

xList is used to implement

FIFO queues (ReadyQ),
priority queues (Delayed list, Event lists).

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

RTOS data structures using xList

Task2

Task2

Task1

idle

NULL

21

1

0

2

NULL

currentTask

pxReadyTasksLists

n−1

3

4

delayedTasks

NULL

xQueue

waitingToSnd

waitingToRcv NULL

NULL

NULL

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Extracts from code: macro to add task to ready queue

/* Place the task represented by pxTCB into the appropriate

ready queue for the task. It is inserted at the end of the

list. */

#define prvAddTaskToReadyQueue(pxTCB){

if(pxTCB->uxPriority > uxTopReadyPriority){

uxTopReadyPriority = pxTCB->uxPriority;

}

vListInsertEnd((xList*) &(pxReadyTasksLists[pxTCB->uxPriority]),

&(pxTCB->xGenericListItem));

}

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Extracts from code: vTaskDelay()

void vTaskDelay(portTickType xTicksToDelay){

portTickType xTimeToWake;

signed portBASE_TYPE xAlreadyYielded = pdFALSE;

if(xTicksToDelay > (portTickType) 0){

vTaskSuspendAll();

/* Calculate the time to wake - this may overflow but this

is not a problem. */

xTimeToWake = xTickCount + xTicksToDelay;

/* We must remove ourselves from the ready list before adding

ourselves to the blocked list as the same list item is used

for both lists. */

vListRemove((xListItem *) &(pxCurrentTCB->xGenericListItem));

/* The list item will be inserted in wake time order. */

listSET_LIST_ITEM_VALUE(&(pxCurrentTCB->xGenericListItem),

xTimeToWake);

....

portYIELD_WITHIN_API();

}

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Extracts from code: vPortYieldProcessor()

/* ISR to handle manual context switches like taskYIELD()). */

void vPortYieldProcessor(void) __attribute__((interrupt("SWI"), naked));

void vPortYieldProcessor(void){

/* Within an IRQ ISR the link register has an offset from

the true return address... */

__asm volatile ("ADD LR, LR, #4");

/* Perform the context switch. First save the context of

the current task. */

portSAVE_CONTEXT();

/* Find the highest priority task that is ready to run. */

__asm volatile ("BL vTaskSwitchContext");

/* Restore the context of the new task. */

portRESTORE_CONTEXT();

}

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Extracts from code: portSAVECONTEXT()

#define portSAVE_CONTEXT() {

extern volatile void * volatile pxCurrentTCB;

/* Push R0 as we are going to use the register. */ __asm volatile ("STMDB SP!, {R0}’’

/* Set R0 to point to the task stack pointer. */

"STMDB SP,{SP}^"

"SUB SP, SP, #4"

"LDMIA SP!,{R0}"

/* Push the return address onto the stack. */

"STMDB R0!, {LR}"

/* Now we have saved LR we can use it instead of R0. */

"MOV LR, R0"

/* Pop R0 so we can save it onto the system mode stack. */ "LDMIA SP!, {R0}" /* Push all the system mode registers onto the task stack. */

"STMDB LR,{R0-LR}"

/* Store the new top of stack for the task. */

"LDR R0, =pxCurrentTCB"

"LDR R0, [R0]"

"STR LR, [R0]"

)

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Extracts from code: Critical section / Disabling interrupts

void vTaskEnterCritical(void){ /* in task.c */

...

portDISABLE_INTERRUPTS();

}

#define portDISABLE_INTERRUPTS()

__asm volatile (

"STMDB SP!, {R0}" /* Push R0.*/

"MRS R0, CPSR " /* Get CPSR.*/

"ORR R0, R0, #0xC0" /* Disable IRQ, FIQ.*/

"MSR CPSR, R0" /* Write back modified value. */

"LDMIA SP!, {R0}" /* Pop R0.*/

)

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Main functionality of RTOS

Implement its stated scheduling policy (fixed priority
pre-emptive scheduling).

Trap SWI interrupts

Find highest priority ready task to run.
Save context of yielding task.
Restore context of new task.

Trap timer IRQ interrupt

Update tickcount,
Check delayed tasks, and move to ready if required,
Switch context if required.

Provide API’s for:

Task creation, deletion, set priority, etc.
Inter-task communication through queues, semaphores, and
mutexes.

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Separate requirements: Scheduling-related and port-specific

Scheduling-related

Implement its stated scheduling policy (fixed priority
pre-emptive scheduling).
Provide API’s for:

Task creation, deletion, set priority, etc.
Inter-task communication through queues, semaphores, and
mutexes.

Handle timer event correctly

Update tickcount,
Check delayed tasks, and move to ready if required,

Port-specific

Trap SWI and timer interrupts correctly.
Perform context-switching (save and restore) correctly.
Provide correct “enterCritical” and “exitCritical”
implementation.

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Example Z model: Resource allocater

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Notion of refinement

Program using a Stack ADT:

init();

push(10);

x = pop();

if (x > 0)

 push(1);

else

 push(0);

...

Stack ADT

<pop(),10>

<push(10)>

Consider Stack’ which satisfies property:

Every sequence of operations on Stack’ can be
matched by a sequence on Stack.

Then Stack’ is said to refine Stack.
If a client program is happy with an ADT, it will also be
happy with a refinement of it.

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Refinement example: Resource allocater

A refinement of allocate:

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Refinement example: Resource allocater

A refinement of allocate:

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Sufficient condition for refinement

Init strengthening: every concrete init state is related to an
abstract init state.

Guard strengthening:

op′

op

c0 c1

a0 a1

If op is enabled in an abstract state then

the concrete op is also enabled in any

related concrete state.

Simulation:

e′

c0 c1

a0 a1

e

If ao and c0 are related, if op is

enabled in a0, and if a concrete op

op′ takes us from c0 to c1, then

there exists a1 related to c1, such

that op takes us from a0 to a1.

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Refinement conditions imply matching sequence property

The concrete is simulated-by the abstract.

Abstract

Concrete

a0 a1 a2 a3

c0 c1 c2 c3

op1 op2 op1

op1 op2 op1

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Viewing FreeRTOS as an ADT

Application

FreeRTOS

application

+

ADT

FreeRTOS

<taskcreate(t,3), t’>

<startscheduler, t’>

<tick, t’>

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

FreeRTOS as an ADT

The OS essentially services API calls from the running task.
View as a state machine with operations corresponding to API
calls.

delayed:

TaskCreate

TaskDelete

TaskDelay

TaskPrioritySet

TaskYield()

QueueSendtoFront

QueueSendtoBack

QueueReceive

QueuePeek

QueueCreate

SemaphoreCreateMutex

SemaphoreCreateBinary

portSWITCH_CONTEXT
taskEnter_CRITICAL

running:

queue1:

waitingOnq1:

MAX_SYSCALL_PRIORITY

Configuration

TaskStartScheduler

timer
Hardware Interrupt

RTOS

ready: 0:

1:

2:

API’s

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

RTOS as ADT in Z

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Specification of FreeRTOS

Application
<taskcreate(t,3), t’>

<startscheduler, t’>

<tick, t’>

C Implemention

of

FreeRTOS

Refinement

FreeRTOS

ADT

in Z

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Verification Strategy

For Z2 ↔ C1:

Import guards,
invariants, and BAP
from Z2.

Check validity of
model C1 in VCC.

Top−level Z model

RTOS C implementation

lists: arrays of (ptrs to) TCBs

Complemented priority,

arrays of listitem nodes

xlists of listitem nodes

Refinement

Refinement

Refinement

Refinement

overflow delayed, pending ready

Z1

C2

Z2

C1

C3

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Verification Strategy

For C1 ↔ C2, C2 ↔ C3:

Phrase and check
validity of models
C2 and C3 in VCC.

Check refinement
conditions in VCC.

Top−level Z model

RTOS C implementation

lists: arrays of (ptrs to) TCBs

Complemented priority,

arrays of listitem nodes

xlists of listitem nodes

Refinement

Refinement

Refinement

Refinement

overflow delayed, pending ready

Z1

C2

Z2

C1

C3

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Verification in VCC: xList data structure

Verified that xList is a refinement of a simple array (ghost
map in VCC) based implementation.

original code 500 lines, VCC annotations 600 lines.

_(ghost xListItem * xArray[portTickType])

/* map is used as an ARRAY. */

/* ADT that is maintained as a shadow copy. */

_(ghost portTickType xArrayIndex[xListItem *])

/* map that stores the index of element in the array. */

....

void vListInsertEnd(xList *pxList, xListItem *pxNewListItem){

xListItem *pxIndex;

pxIndex = pxList->pxIndex;

_(assert pxIndex->pxNext \in pxList->\owns)

_(assert pxIndex->pxPrevious \in pxList->\owns)

_(unwrap pxNewListItem)

pxNewListItem->pxNext = pxIndex->pxNext;

pxNewListItem->pxPrevious = pxList->pxIndex;

_(wrap pxNewListItem)

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Verification in VCC: taskdelay API

void vTaskDelay(portTickType xTicksToDelay)

{

portTickType xTimeToWake;

signed portBASE_TYPE xAlreadyYielded = pdFALSE;

if(xTicksToDelay > (portTickType) 0)

{

_(unwrap (&SCR))

_(assert \forall int i ; ((i >= 0) && (i < configMAX_PRIORITIES)) ==> (

\wrapped(&pxReadyTasksLists[i])))

uxSchedulerSuspended++;

xList *list = (pxReadyTasksLists + uxTopReadyPriority);

_(unchecked)xTimeToWake = xTickCount + xTicksToDelay;

_(unwrapping pxCurrentTCB){

_(assert (&(pxCurrentTCB->xGenericListItem)) \in (&SCR)->\owns)

vListRemove((&(pxCurrentTCB->xGenericListItem)) _(ghost (pxReadyTasksLists +

uxTopReadyPriority)));

_(assert \wrapped(pxReadyTasksLists + uxTopReadyPriority))

_(assert (pxReadyTasksLists +uxTopReadyPriority)->uxNumberOfItems ==

(pxReadyTasksLists +uxTopReadyPriority)->tSize)

_(unwrapping (&(pxCurrentTCB->xGenericListItem))){

listSET_LIST_ITEM_VALUE(&(pxCurrentTCB->xGenericListItem), xTimeToWake);

}

/* Fair Assumption */

_(ghost SCR.taskGenList[pxCurrentTCB] = NULL)

}

if(xTimeToWake < xTickCount){

_(unwrapping pxCurrentTCB){

vListInsert(pxOverflowDelayedTaskList, &(pxCurrentTCB->xGenericListItem));

_(ghost SCR.taskGenList[pxCurrentTCB] = pxOverflowDelayedTaskList)

_(ghost pxCurrentTCB->state = SLEEPING_OVF)

}

}else{

_(unwrapping pxCurrentTCB){

vListInsert(pxDelayedTaskList, &(pxCurrentTCB->xGenericListItem));

_(ghost SCR.taskGenList[pxCurrentTCB] = pxDelayedTaskList)

_(ghost pxCurrentTCB->state = SLEEPING)

}

}

//_(assume itemsAreGenericListItem(pxReadyTasksLists + uxTopReadyPriority))

_(ghost unsigned portBASE_TYPE sPriority = uxTopReadyPriority)

while(listLIST_IS_EMPTY(pxReadyTasksLists + uxTopReadyPriority))

_(writes &uxTopReadyPriority)

_(invariant (pxReadyTasksLists + 0)->tSize > 0)

_(invariant \wrapped(pxReadyTasksLists + uxTopReadyPriority))

_(invariant (pxReadyTasksLists + uxTopReadyPriority) \in (&SCR)->\owns)

_(invariant !(pxReadyTasksLists +

uxTopReadyPriority)->tasksInArray[pxCurrentTCB])

_(invariant (pxReadyTasksLists +uxTopReadyPriority)->uxNumberOfItems ==

(pxReadyTasksLists +uxTopReadyPriority)->tSize)

_(invariant (!listLIST_IS_EMPTY(pxReadyTasksLists + \old(uxTopReadyPriority)))

==> (uxTopReadyPriority == (\old(uxTopReadyPriority))))

_(invariant (uxTopReadyPriority >= 0) && (uxTopReadyPriority <

configMAX_PRIORITIES))

_(invariant \forall unsigned portBASE_TYPE i ; ((i < configMAX_PRIORITIES) &&

(i > uxTopReadyPriority)) ==>

(((pxReadyTasksLists +i) \in (&SCR)->\owns) && ((pxReadyTasksLists +i)->tSize

== 0)))

{

_(assert uxTopReadyPriority > 0)

--uxTopReadyPriority;

}

_(assert ! (pxReadyTasksLists[uxTopReadyPriority].tasksInArray[pxCurrentTCB]))

pxCurrentTCB = listGET_OWNER_OF_NEXT_ENTRY(&(pxReadyTasksLists[

uxTopReadyPriority]));

_(assert (pxReadyTasksLists[uxTopReadyPriority].tasksInArray[pxCurrentTCB]))

/* Assert required */

_(assert pxCurrentTCB \in (&SCR)->\owns)

_(unwrapping pxCurrentTCB){

_(ghost pxCurrentTCB->state = RUNNING)

}

}

uxSchedulerSuspended--;

_(wrap &SCR)

//xAlreadyYielded = xTaskResumeAll();

//}

}

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Problem with taskPrioritySet() function in RTOS

Problem found by Sumesh Divakaran while trying to understand
code in detail.

According to RTOS User Guide: When an unblocking event
occurs,

The task that is unblocked will always be the highest
priority task that is waiting for the event. If the
blocked tasks have equal priority, then the task that
has been waiting for the longest period will be
unblocked.

However, if taskPrioritySet is called on a blocked task, its new
priority is not considered while selecting the task to be
unblocked.

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Example to illustrate setpriority problem

RTOS application
int main(void){

xTaskCreate(vTask1,"Task1",configMINIMAL_STACK_SIZE,NULL,1,&xTask1Handle);

xTaskCreate(vTask2,"Task2",configMINIMAL_STACK_SIZE,NULL,2,&xTask2Handle);

xTaskCreate(vTask3,"Task3",configMINIMAL_STACK_SIZE,NULL,3,&xTask2Handle);

vTaskStartScheduler();

}

void vTask1(void *pvParameters){

long lData = 10;

xQueueSendToBack(xQueue,&lData,0);

for(;;);

}

void vTask2(void *pvParameters){

long lData = 20;

xQueueSendToBack(xQueue,&lData,0);

for(;;);

}

void vTask3(void *pvParameters){

long lData = 30;

xQueue = xQueueCreate(1,sizeof (long));

xQueueSendToBack(xQueue,&lData,0);

vTaskDelay(2);

vTaskPrioritySet(xTask1Handle,4);

xQueueReceive(xQueue,&lData,0);

vTaskPrioritySet(NULL,0);

for(;;);

}

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Sequence of events produced by application

Event sequence produced by test application

main, xTaskCreate(Task1,1)

main, xTaskCreate(Task2,2)

main, xTaskCreate(Task3,3)

Task3, xQueueCreate(xQueue,1)

Task3, xQueueSendToBack(xQueue,30)

Task3, vTaskDelay(2);

Task2, xQueueSendToBack(xQueue,20)_b;

Task1, xQueueSendToBack(xQueue,10)_b;

Task3, vTaskPrioritySet(Task1,4);

Task3, xQueueReceive(xQueue,30);

Task3, vTaskPrioritySet(Task3,0);

Task2, xQueueSendToBack(xQueue,20)_e;

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Other bugs found

Problem with priority inheritance mechanism.

Problem with vTaskSuspend and vTaskResume API’s.

Problem with scheduling newly created tasks.

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Benefits of verification technique

Finding bugs:

Problem with vTaskSuspend and vTaskResume API’s.
Problem with scheduling newly created tasks.
Problem with vTaskPrioritySet API in RTOS.

Gives us conditions for correct API usage:

vTaskDelay should not be called on sole ready task
(FreeRTOS crashes!).

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Other things to check: Absence of data-races

Tasks are essentially threads that can be interleaved in
execution.

API code called by tasks should not lead to a data-race when
interrupted and interleaved with an API call from another
task.

For example:

Task1 calls QueueSend API
Pointers start getting adjusted to insert new message in the
Queue
Tick interrupt occurs
Task2 runs and makes a call to QueueReceive.

Need to ensure that API’s use critical sections when they have
to.

Could use a data-race detection tool on suitably modified
RTOS code.

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

Port-specific aspects of correctness

Trap SWI and timer interrupts correctly.

Perform context-switching (save and restore) correctly.

SAVE CONTEXT saves the “necessary” information about the
swapped-out task on its stack.
RESTORE CONTEXT correctly restores this information from the
task’s stack.

Provide correct “enterCritical” and “exitCritical”
implementation.

Interrupts should be correctly disabled and re-enabled.

How RTOS works ADT’s and refinement in Z RTOS as an ADT Verification strategy Bugs found

The End

Thank you.

	How RTOS works
	ADT's and refinement in Z
	RTOS as an ADT
	Verification strategy
	Bugs found

