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Part I
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IEEE754 Floating Point Numbers

Special values: �0,+0,�1,1,NaN
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The Pitfalls of FP
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Is this program correct?

8

(We will ignore the case x=NaN)
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What does correctness mean?

Three possible meanings:

• Result is sufficiently close to the real number result

• Result is sufficiently close to the sine function

• The assertion cannot be violated
9
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How can we check correctness?

Abstract Interpretation

Manual

Decision Procedures
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Requires experts,
expensive, powerful

Abstract Interpretation

Manual

Decision Procedures
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Abstract Interpretation

Error

• Instead of exploring all executions, explore a single abstract 
execution

• Abstract execution contains all concrete executions!

• Highly efficient and scalable, but imprecise

Abstract representationProgram traces

Error states do not overlap
abstract representation, 
hence program is safe

Program Abstract Interpreter
Program is safe

?
12

Thursday, 17 January 13



Interpreter Abstract 
Domain

An abstract interpreter modularly uses 
operations provided by an abstract domain.
Changing the domain changes the analysis.

Example Signs domain

y = +
x = +

z = +

safe!

Constants domain
{c | c 2 FP} [ {?}{+,�} [ {?}

y = 5
x = ?

z = ?

Possibly unsafe

Abstract Interpretation

13
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Interpreter Abstract 
Domain

An abstract interpreter modularly uses 
operations provided by an abstract domain.
Changing the domain changes the analysis.

Example

Abstract Interpretation

Interval Domain

{[l, u] | l, u 2 Int}
x, y 2 [min(Int),max(Int)]

x, y 2 [min(Int),�1]

x 2 [5, 5], y 2 [min(Int),max(Int)]

x 2 [min(Int), 5], y 2 [min(Int),max(Int)]
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Floating Point Intervals {[l, u] | l, u 2 FP} [ {?}

result 2 [�2.216760, 2.216760]

result 2 [�2.301135, 2.301135]

result 2 [�2.296453, 2.296453]

x 2 [�1.570796, 1.570796]

Potentially unsafe

Abstract Interpretation

15
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Astrée Abstract Interpreter

• Mature abstract interpreter by Cousot et. al

• Large number of domains

• Sold and supported by Absint GmbH

• Successful in proving correct large avionics control software: 100k 
lines of code in 1h -> highly scalable

• Various domains for floating point analysis:

ASTRÉE 5

a huge amount of work, if done by hand. Therefore the packing parameterization
is automatized using context-sensitive syntactic criteria. Experimentations show
that the average pack size is usually of order of 3 or 4 variables while the number
of packs grows linearly with the program size. It follows that precise abstractions
are performed only when needed, which is necessary to scale up.

Floating-Point Interval Linear Form Abstraction. A general problem
with relational numerical domains is that of floating point numbers. Considering
them as reals (as usually done with theorem provers) or fixed point numbers
(as in CBMC [11]) would not conform to the norm whence would be unsound.
Using rationals or other symbolic reals in the abstract domains would be too
costly. The general approach [7, 8] has been to define the concrete semantics
of floating point computations in the reals (taking the worst possible rounding
errors explicitly into account), to abstract with real numbers but to implement,
thanks to a further sound over-approximation, using floats. For example the float
expression (x + y) + z is evaluated as in the reals as x + y + z + ε1 + ε2 where
|ε1| ≤ εrel.|x+ y|+ εabs and |ε2| ≤ εrel.|x+ y + ε1 + z|+ εabs. The real ε1 encodes
rounding errors in the atomic computation (x + y), and the real ε2 encodes
rounding errors in the atomic computation (x + y + ε1) + z. The parameters εrel
and εabs depends on the floating-point type being used in the analyzed program.
This linearization [7, 8] of arbitrary expressions is a correct abstraction of the
floating point semantics into interval linear forms [a0, b0]+

∑n
k=1[ak, bk]Xk. This

approach separates the treatment of rounding errors from that of the numerical
abstract domains.

Fig. 2. Filter trace Ellipsoid abstraction Octagon abstraction Interval abstraction

The Simplified Filter Abstract Domains. The simplified filter abstract
domains [13] provide examples of domain-aware abstractions. A typical example
of simplified filter behavior is traced in Fig. 2 (tracing the sequence D1 in Fig. 3).
Interval and octagonal envelops are unstable because they are rotated and shrunk
a little at each iteration so that some corner always sticks out of the envelop.
However, the ellipsoid of Fig. 2 is stable. First, filter domains use dynamical linear
properties that are captured by the other domains such as the range of input
variables (x1 and y1 for the example of Fig. 3) and symbolic affine equalities
with interval coefficients (to model rounding errors) such as t1 ∈ [1 − ε1, 1 +
ε1].x1+[b1[0]−ε2, b1[0]+ε2].D1[0]− [b1[1]−ε3, b1[1]+ε3].D1[1]+[−ε, ε] for the
example of Fig. 3 (where ε1, ε2, and ε3 describe relative error contributions and ε
describes an absolute error contribution). These symbolic equalities are captured
either by linearization (see Sect. 6), or by symbolic constant propagation (see

Ellipses Octagons IntervalsOriginal traces
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Abstract Domains for Floating Point

• Abstract domains are typically formulated over the real or 
rational numbers

• Numeric domains rely on mathematical properties such as 
associativity which do not hold over floating point numbers

(a+ b) + c = a+ (b+ c)

• Solution (Mine 2004): Interpret operations over floating point 
numbers as real number operations + error terms

17
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Imprecision in Abstract Interpretation

• The efficiency of abstract interpreters comes at the cost of 
precision. Imprecision is accumulated from three sources:

• Statements

• Control-flow

• Loops

x 2 [�5, 5] y 2 [�25, 25]

x 2 [0, 1] x, y 2 [0, 1]

x 2 [�1, 1]

x, y 2 [1, 1] x 2 [100001,max(Int)]

y 2 [min(Int),max(Int)]

18
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Imprecision in Abstract Interpretation

• For efficiency reasons, most numeric abstract domains 
are convex

ASTRÉE 5

a huge amount of work, if done by hand. Therefore the packing parameterization
is automatized using context-sensitive syntactic criteria. Experimentations show
that the average pack size is usually of order of 3 or 4 variables while the number
of packs grows linearly with the program size. It follows that precise abstractions
are performed only when needed, which is necessary to scale up.

Floating-Point Interval Linear Form Abstraction. A general problem
with relational numerical domains is that of floating point numbers. Considering
them as reals (as usually done with theorem provers) or fixed point numbers
(as in CBMC [11]) would not conform to the norm whence would be unsound.
Using rationals or other symbolic reals in the abstract domains would be too
costly. The general approach [7, 8] has been to define the concrete semantics
of floating point computations in the reals (taking the worst possible rounding
errors explicitly into account), to abstract with real numbers but to implement,
thanks to a further sound over-approximation, using floats. For example the float
expression (x + y) + z is evaluated as in the reals as x + y + z + ε1 + ε2 where
|ε1| ≤ εrel.|x+ y|+ εabs and |ε2| ≤ εrel.|x+ y + ε1 + z|+ εabs. The real ε1 encodes
rounding errors in the atomic computation (x + y), and the real ε2 encodes
rounding errors in the atomic computation (x + y + ε1) + z. The parameters εrel
and εabs depends on the floating-point type being used in the analyzed program.
This linearization [7, 8] of arbitrary expressions is a correct abstraction of the
floating point semantics into interval linear forms [a0, b0]+

∑n
k=1[ak, bk]Xk. This

approach separates the treatment of rounding errors from that of the numerical
abstract domains.

Fig. 2. Filter trace Ellipsoid abstraction Octagon abstraction Interval abstraction

The Simplified Filter Abstract Domains. The simplified filter abstract
domains [13] provide examples of domain-aware abstractions. A typical example
of simplified filter behavior is traced in Fig. 2 (tracing the sequence D1 in Fig. 3).
Interval and octagonal envelops are unstable because they are rotated and shrunk
a little at each iteration so that some corner always sticks out of the envelop.
However, the ellipsoid of Fig. 2 is stable. First, filter domains use dynamical linear
properties that are captured by the other domains such as the range of input
variables (x1 and y1 for the example of Fig. 3) and symbolic affine equalities
with interval coefficients (to model rounding errors) such as t1 ∈ [1 − ε1, 1 +
ε1].x1+[b1[0]−ε2, b1[0]+ε2].D1[0]− [b1[1]−ε3, b1[1]+ε3].D1[1]+[−ε, ε] for the
example of Fig. 3 (where ε1, ε2, and ε3 describe relative error contributions and ε
describes an absolute error contribution). These symbolic equalities are captured
either by linearization (see Sect. 6), or by symbolic constant propagation (see
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We also define the cyclic unfold, denoted by (i, c,N ), as the one obtained
by initially unrolling i times the loop, and from then computing the fixpoint
of the loop functional iterated c times until convergence, this with at most N
iterations, after which a classical interval semantics is used [1]. As proved in [5],
and shown in Section 4, the cyclic unfold schemes together with the join operator
ensures termination with accurate fixpoint bounds for linear iterative schemes.

3 Implementation aspects

The APRON Project [2] provides a uniform high level interface for numerical
domains. For the time being, intervals, convex polyhedra, octagons, and congru-
ences abstract domains are interfaced. We enrich here the library with a domain
based on a�ne forms, called Taylor1+.

As we represent coe�cients of a�ne forms by double precision floating-point
numbers instead of real numbers, we have to adapt our transfer functions. For
instance, instruction z = x + y; is abstracted by

ẑ = x̂� ŷ = float(↵x

0 + ↵
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!
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where float(x) is the nearest double-precision floating-point number to the real
number x and dev(x) := .(|x� float(x)|), (. being rounding towards +1).

We are working on some techniques, namely those used in [8] and [10], to
control the potential increase of the number of noise symbols during analysis.
However, in practise, the number of symbols reaches high levels very scarcely,
since our join operator has the e↵ect of reducing the number of noise symbols
by collapsing some of them into a join symbol.

Zonotope
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Imprecision in Abstract Interpretation

What if convex abstractions are too weak?

Error Error

Very common scenario

20
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Conclusion:

• Very scalable

• Imprecise

• Precise results require experts and research effort

• Expert created domains are moderately reusable

• Feasible for programs with homogenous structure and 
behaviour (success in avionics)

Abstract Interpretation

21
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Requires experts,
expensive, powerful

Abstract Interpretation

Manual

Decision Procedures

Scalable and efficient.
Precise analysis requires experts
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Error

Decision Procedures

• Precisely explore a large set of program traces

• For efficiency, represent problem symbolically as satisfiability of a 
logical formula

Program traces

Program is safe exactly if isTrace(t) ^ error(t) is satisfied by some t

25
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Propositional SAT

' = (a _ ¬b) ^ (¬a _ b) ^ ¬bPropositional formula:

Is there an assignment to a,b that makes the formula true? 

S A T S o l v e r s a r e E � c i e n t

2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7

1 s

1 0 s

1 0 0 s

(Malik and Zhang 2009)

L e o p o l d H a l l e r ( O U D C S ) D P L L i s A b s t r a c t I n t e r p r e t a t i o n 3 / 3 3

Decrease in SAT solving time for SAT algorithms 
2000-2007
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Why are SAT solvers so efficient

Probe for solution Learn from failure

failure

• SAT solvers learn from failure

• SAT solvers spot relevance

27
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Example

c ! (r = a/32b)

^ ¬c ! (r = a ⇤32 b)
^ a > 0 ^ b > 0 ^ r < 0

Can be translated to propositional logic using divider and 
multiplier circuits

The formula evaluates to true 
under the following assignment:

a, b 7! 123456789

r 7! �1757895751

c 7! false

Decision Procedures

Counterexample!28
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Bounded Model Checking

Loops require unrolling 
before translation

If the loop does not have a known fixed bound,  
the result is unrolled up to a chosen depth.  

29
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Bounded Model Checking

Decision Procedure
Program has bug,
counter-example is returned

?

Satisfiable

Unsatisfiable

30
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FP support in CBMC (2008)

• CBMC implements bit-precise reasoning over floating-point 
numbers using a propositional encoding

• Uses IEEE-754 semantics with support various rounding-modes

• Allows proofs of complex, bit-level properties

Thursday, 17 January 13



Scalability of Propositional 
Encoding

• Floating-point arithmetic is flattened to propositional logic

• Requires instantiation of large floating point arithmetic circuits

N Nr. Variables Memory use

5 ~130000 ~90MB

10 ~260000 ~180MB

• Resulting formulas are hard for SAT solvers and take up large 
amounts of memory

32
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Requires experts,
scalable, precise

Abstract Interpretation

Manual

Decision Procedures

Scalable.
Precision requires experts

Precise.
Scalability requires experts
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Questions so far?
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Part II
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Automatic
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We are interested in techniques that are
• scalable
• sufficiently precise to prove safety
• fully automatic

Central insight: 
Modern decision procedures are abstract interpreters!
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Manually adjusting analysis precision
by abstract partitioning

Error Error

y 2 [�1, 1]

Potentially unsafe! Safe!39
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How do we find the partition automatically?
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SAT solving by example

Their main data structure is a partial variable assignment 
which represents a solution candidate

V ! {t, f}

clauses

literals

| {z } | {z }' = (p _ ¬q) ^ . . . ^ (¬r _ w _ q)

SAT solvers accept formulas in conjunctive normal form

41

Thursday, 17 January 13



SAT solving: Deduction

' = p ^ (¬p _ ¬q) ^ (q _ r _ ¬w) ^ (q _ r _ w)

SAT deduces new facts from clauses:

p 7! t p 7! t

q 7! f

At this point, clauses yield no further information

42
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SAT is Abstract Analysis: Deduction

' = p ^ (¬p _ ¬q) ^ (q _ r _ ¬w) ^ (q _ r _ w)

p 2 [1, 1]
q 2 [0, 0]

p 7! t p 7! t

q 7! f

The result of deduction is 
identical to applying interval 

analysis to the program:

Deduction in a SAT solver is abstract analysis
43
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SAT solving: Decisions

' = p ^ (¬p _ ¬q) ^ (q _ r _ ¬w) ^ (q _ r _ w)

Pick an unassigned variable and assign a truth value

p 7! t

q 7! f

p 7! t

q 7! f

r 7! f

SAT solver makes a “guess”

Now new deductions are possible
44
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SAT solving: Learning

' = p ^ (¬p _ ¬q) ^ (q _ r _ ¬w) ^ (q _ r _ w)

The variable w would have to be both true and false.

The contradiction is the result of r being assigned to false as part of a 
decision.  The SAT solver therefore learns that r must be true:

p 7! t

q 7! f

r 7! f

' ' ^ r
45
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SAT solving: Learning

' = p ^ (¬p _ ¬q) ^ (q _ r _ ¬w) ^ (q _ r _ w)

The variable w would have to be both true and false.

The contradiction is the result of r being assigned to false as part of a 
decision.  The SAT solver therefore learns that r must be true:

p 7! t

q 7! f

r 7! f

p 7! t

q 7! f

r 7! f

w 7! f

conflict

' ' ^ r
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SAT is Abstract Analysis: Decisions & Learning

Decisions and learning in a SAT solver are abstract partitioning

' ' ^ r

46
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SAT is Abstract Analysis

• Deduction in SAT is abstract interpretation

• Decisions and learning are abstract partitioning 

• The SAT algorithm is really an automatic partition 
refinement algorithm.

Domain A

SAT(A)

Expanding the scope of SAT
47
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SAT is Abstract Analysis

• Deduction in SAT is abstract interpretation

• Decisions and learning are abstract partitioning 

• The SAT algorithm is really an automatic partition 
refinement algorithm.

Domain A

SAT(A)Rich logic,
e.g. FP Programs

Prop. Logic Boolean 
programs

Data

Control

Expanding the scope of SAT
47
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SAT for programsAbstract Implication Graph

n1

c2 c3c1 c4

n2

 

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0  : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2  : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE
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Prototype:
Abstract Conflict Driven Learning (ACDL)

• Implementation over floating-point intervals

• Automatically refines an analysis in a way that is

• Property dependent 

• Program dependent

• Uses learning to intelligently explore partitions

• Significantly more precise than mature abstract 
interpreters

• Significantly more efficient than floating-point decision 
procedures on short non-linear programs
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More results
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Fig. 3. E↵ects of learning and decision heuristics

several observations: on average, our analysis is 264 times faster than cbmc, if
cbmc terminates properly at all. The largest speed-up is a factor of 1595. Al-
though Astrée is often faster than our prototype, its precision is insu�cient in
many cases – we obtained 16 false alerts for the 33 safe benchmarks.

Decision Heuristics and Learning Figure 3 visualises the e↵ects of learning
and decision heuristics. Learning has a significant influence on runtime, as does
the choice of a decision heuristic. We compare a random heuristic, which picks
a restriction over a random variable, with a range-based one, which always aims
to restrict the least restricted variable. Random decision making outperforms
range-based. Activity-based heuristics common in sat may work as well in our
case.

Dynamic Precision Adjustment One of the main advantages of our pro-
cedure is that refinement is property-dependent. The precision of the analysis
dynamically adapts to match the precision required by the property. This is il-
lustrated in Figure 4 where we check bounds on the result of computing a sine
approximation under the input range [�⇡

2 ,
⇡

2 ]. The input value is shown on the
x-axis, the result of the computation on the y-axis. The bound we check against
is depicted as two red horizontal lines, boundaries of explored partitions are
shown as black vertical lines. The actual maximum of the function lies at about
1.00921. As the checked bound (Figure 4 shows bounds 1.2 and 1.01) approaches

Average speedup over CBMC ~270x
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Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Implementation
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Number of partitions vs. tightness of bound
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Current and Future Work

• Develop an SMT solver for floating point logic

• Model on the success of propositional SAT:

• Simple abstract domain

• Highly efficient data structures

S A T S o l v e r s a r e E � c i e n t

2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7

1 s

1 0 s

1 0 0 s

(Malik and Zhang 2009)

L e o p o l d H a l l e r ( O U D C S ) D P L L i s A b s t r a c t I n t e r p r e t a t i o n 3 / 3 3
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MathSAT + ACDCL
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Current and Future Work

• Reengineer prototype into a tool for floating point 
verification 

• Significantly improved efficiency

• Generic interface for integrating abstract domains

• Development and generalisation of heuristics and 
learning strategies
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Conclusion - Part II
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Thank you for your attention
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