
Reasoning about
floating-point arithmetic

with ACDCL
Unifying Abstract Interpretation and

Decision Procedures

Daniel Kroening

9 January 2013

(joint work with Leopold Haller, Vijay D’Silva, Michael Tautschnig, Martin Brain)

1

Thursday, 17 January 13

2

Leopold
Haller

Vijay
D’Silva

Michael
Tautschnig

+ Martin Brain
(no photo)

Thursday, 17 January 13

References

• TACAS 2012: paths in floating-point
programs with intervals

• POPL 2013: Framework

• VMCAI 2013: DPLL(T)

• FMCAD 2012: Learning for intervals

• SAS 2012: propositional SAT

3

Thursday, 17 January 13

Abstract Satisfiability

Presentation Outline

Existing approaches to FP - Verification

Manual,
Semi-automated

Decision
Procedures

Decision
Procedures

ScalablePrecise

Abstract
Interpretation

Abstract
Interpretation

Our research

Part I

Part II

4

Thursday, 17 January 13

Part I

5

Thursday, 17 January 13

IEEE754 Floating Point Numbers

Special values: �0,+0,�1,1,NaN

6

Thursday, 17 January 13

The Pitfalls of FP

I II

III IV

V

7

Thursday, 17 January 13

Is this program correct?

8

(We will ignore the case x=NaN)

Thursday, 17 January 13

What does correctness mean?

Three possible meanings:

• Result is sufficiently close to the real number result

• Result is sufficiently close to the sine function

• The assertion cannot be violated
9

Thursday, 17 January 13

How can we check correctness?

Abstract Interpretation

Manual

Decision Procedures

10

Thursday, 17 January 13

Requires experts,
expensive, powerful

Abstract Interpretation

Manual

Decision Procedures

11

Thursday, 17 January 13

Abstract Interpretation

Error

• Instead of exploring all executions, explore a single abstract
execution

• Abstract execution contains all concrete executions!

• Highly efficient and scalable, but imprecise

Abstract representationProgram traces

Error states do not overlap
abstract representation,
hence program is safe

Program Abstract Interpreter
Program is safe

?
12

Thursday, 17 January 13

Interpreter Abstract
Domain

An abstract interpreter modularly uses
operations provided by an abstract domain.
Changing the domain changes the analysis.

Example Signs domain

y = +
x = +

z = +

safe!

Constants domain
{c | c 2 FP} [{?}{+,�} [{?}

y = 5
x = ?

z = ?

Possibly unsafe

Abstract Interpretation

13

Thursday, 17 January 13

Interpreter Abstract
Domain

An abstract interpreter modularly uses
operations provided by an abstract domain.
Changing the domain changes the analysis.

Example

Abstract Interpretation

Interval Domain

{[l, u] | l, u 2 Int}
x, y 2 [min(Int),max(Int)]

x, y 2 [min(Int),�1]

x 2 [5, 5], y 2 [min(Int),max(Int)]

x 2 [min(Int), 5], y 2 [min(Int),max(Int)]

14

Thursday, 17 January 13

Floating Point Intervals {[l, u] | l, u 2 FP} [{?}

result 2 [�2.216760, 2.216760]

result 2 [�2.301135, 2.301135]

result 2 [�2.296453, 2.296453]

x 2 [�1.570796, 1.570796]

Potentially unsafe

Abstract Interpretation

15

Thursday, 17 January 13

Astrée Abstract Interpreter

• Mature abstract interpreter by Cousot et. al

• Large number of domains

• Sold and supported by Absint GmbH

• Successful in proving correct large avionics control software: 100k
lines of code in 1h -> highly scalable

• Various domains for floating point analysis:

ASTRÉE 5

a huge amount of work, if done by hand. Therefore the packing parameterization
is automatized using context-sensitive syntactic criteria. Experimentations show
that the average pack size is usually of order of 3 or 4 variables while the number
of packs grows linearly with the program size. It follows that precise abstractions
are performed only when needed, which is necessary to scale up.

Floating-Point Interval Linear Form Abstraction. A general problem
with relational numerical domains is that of floating point numbers. Considering
them as reals (as usually done with theorem provers) or fixed point numbers
(as in CBMC [11]) would not conform to the norm whence would be unsound.
Using rationals or other symbolic reals in the abstract domains would be too
costly. The general approach [7, 8] has been to define the concrete semantics
of floating point computations in the reals (taking the worst possible rounding
errors explicitly into account), to abstract with real numbers but to implement,
thanks to a further sound over-approximation, using floats. For example the float
expression (x + y) + z is evaluated as in the reals as x + y + z + ε1 + ε2 where
|ε1| ≤ εrel.|x+ y|+ εabs and |ε2| ≤ εrel.|x+ y + ε1 + z|+ εabs. The real ε1 encodes
rounding errors in the atomic computation (x + y), and the real ε2 encodes
rounding errors in the atomic computation (x + y + ε1) + z. The parameters εrel
and εabs depends on the floating-point type being used in the analyzed program.
This linearization [7, 8] of arbitrary expressions is a correct abstraction of the
floating point semantics into interval linear forms [a0, b0]+

∑n
k=1[ak, bk]Xk. This

approach separates the treatment of rounding errors from that of the numerical
abstract domains.

Fig. 2. Filter trace Ellipsoid abstraction Octagon abstraction Interval abstraction

The Simplified Filter Abstract Domains. The simplified filter abstract
domains [13] provide examples of domain-aware abstractions. A typical example
of simplified filter behavior is traced in Fig. 2 (tracing the sequence D1 in Fig. 3).
Interval and octagonal envelops are unstable because they are rotated and shrunk
a little at each iteration so that some corner always sticks out of the envelop.
However, the ellipsoid of Fig. 2 is stable. First, filter domains use dynamical linear
properties that are captured by the other domains such as the range of input
variables (x1 and y1 for the example of Fig. 3) and symbolic affine equalities
with interval coefficients (to model rounding errors) such as t1 ∈ [1 − ε1, 1 +
ε1].x1+[b1[0]−ε2, b1[0]+ε2].D1[0]− [b1[1]−ε3, b1[1]+ε3].D1[1]+[−ε, ε] for the
example of Fig. 3 (where ε1, ε2, and ε3 describe relative error contributions and ε
describes an absolute error contribution). These symbolic equalities are captured
either by linearization (see Sect. 6), or by symbolic constant propagation (see

Ellipses Octagons IntervalsOriginal traces

16

Thursday, 17 January 13

Abstract Domains for Floating Point

• Abstract domains are typically formulated over the real or
rational numbers

• Numeric domains rely on mathematical properties such as
associativity which do not hold over floating point numbers

(a+ b) + c = a+ (b+ c)

• Solution (Mine 2004): Interpret operations over floating point
numbers as real number operations + error terms

17

Thursday, 17 January 13

Imprecision in Abstract Interpretation

• The efficiency of abstract interpreters comes at the cost of
precision. Imprecision is accumulated from three sources:

• Statements

• Control-flow

• Loops

x 2 [�5, 5] y 2 [�25, 25]

x 2 [0, 1] x, y 2 [0, 1]

x 2 [�1, 1]

x, y 2 [1, 1] x 2 [100001,max(Int)]

y 2 [min(Int),max(Int)]

18

Thursday, 17 January 13

Imprecision in Abstract Interpretation

• For efficiency reasons, most numeric abstract domains
are convex

ASTRÉE 5

a huge amount of work, if done by hand. Therefore the packing parameterization
is automatized using context-sensitive syntactic criteria. Experimentations show
that the average pack size is usually of order of 3 or 4 variables while the number
of packs grows linearly with the program size. It follows that precise abstractions
are performed only when needed, which is necessary to scale up.

Floating-Point Interval Linear Form Abstraction. A general problem
with relational numerical domains is that of floating point numbers. Considering
them as reals (as usually done with theorem provers) or fixed point numbers
(as in CBMC [11]) would not conform to the norm whence would be unsound.
Using rationals or other symbolic reals in the abstract domains would be too
costly. The general approach [7, 8] has been to define the concrete semantics
of floating point computations in the reals (taking the worst possible rounding
errors explicitly into account), to abstract with real numbers but to implement,
thanks to a further sound over-approximation, using floats. For example the float
expression (x + y) + z is evaluated as in the reals as x + y + z + ε1 + ε2 where
|ε1| ≤ εrel.|x+ y|+ εabs and |ε2| ≤ εrel.|x+ y + ε1 + z|+ εabs. The real ε1 encodes
rounding errors in the atomic computation (x + y), and the real ε2 encodes
rounding errors in the atomic computation (x + y + ε1) + z. The parameters εrel
and εabs depends on the floating-point type being used in the analyzed program.
This linearization [7, 8] of arbitrary expressions is a correct abstraction of the
floating point semantics into interval linear forms [a0, b0]+

∑n
k=1[ak, bk]Xk. This

approach separates the treatment of rounding errors from that of the numerical
abstract domains.

Fig. 2. Filter trace Ellipsoid abstraction Octagon abstraction Interval abstraction

The Simplified Filter Abstract Domains. The simplified filter abstract
domains [13] provide examples of domain-aware abstractions. A typical example
of simplified filter behavior is traced in Fig. 2 (tracing the sequence D1 in Fig. 3).
Interval and octagonal envelops are unstable because they are rotated and shrunk
a little at each iteration so that some corner always sticks out of the envelop.
However, the ellipsoid of Fig. 2 is stable. First, filter domains use dynamical linear
properties that are captured by the other domains such as the range of input
variables (x1 and y1 for the example of Fig. 3) and symbolic affine equalities
with interval coefficients (to model rounding errors) such as t1 ∈ [1 − ε1, 1 +
ε1].x1+[b1[0]−ε2, b1[0]+ε2].D1[0]− [b1[1]−ε3, b1[1]+ε3].D1[1]+[−ε, ε] for the
example of Fig. 3 (where ε1, ε2, and ε3 describe relative error contributions and ε
describes an absolute error contribution). These symbolic equalities are captured
either by linearization (see Sect. 6), or by symbolic constant propagation (see

Ellipses Octagons IntervalsOriginal traces

Convex polyhedra

the union of interval concretisations of x̂ and ŷ :

↵

z

0 = mid(�(x̂) [�(ŷ)) (central value of ẑ)
↵

z

i

= argmin
min(↵x

i

,↵

y

i

)↵max(↵x

i

,↵

y

i

)
(|↵|),8i � 1 (coe↵. of ✏

i

)

�

z = sup(�(x̂) [�(ŷ))� ↵

z

0 �
P

i�1 |↵z

i

| (coe↵. of ✏

U

)

where the � function returns the interval concretisation of an a�ne form and

mid([a, b]) := 1
2 (a + b) and argmin

axb

(|x|) := {x 2 [a, b], |x| is minimal }.

Example 1. By the formula of definition 1:✓
x̂ = 3 +✏1 +2✏2

û = 0 +✏1 +✏2

◆
[

✓
ŷ = 1 �2✏1 +✏2

û = 0 +✏1 +✏2

◆
=
✓

x̂ [ŷ = 2 +✏2 +3✏

U

û [û = 0 +✏1 +✏2

◆

x̂

û

2 4 6

�2

2

[
ŷ

û

�2 1 4

�2

2

=
6�2 2

�2

2

x̂[ŷ

û

We also define the cyclic unfold, denoted by (i, c,N), as the one obtained
by initially unrolling i times the loop, and from then computing the fixpoint
of the loop functional iterated c times until convergence, this with at most N
iterations, after which a classical interval semantics is used [1]. As proved in [5],
and shown in Section 4, the cyclic unfold schemes together with the join operator
ensures termination with accurate fixpoint bounds for linear iterative schemes.

3 Implementation aspects

The APRON Project [2] provides a uniform high level interface for numerical
domains. For the time being, intervals, convex polyhedra, octagons, and congru-
ences abstract domains are interfaced. We enrich here the library with a domain
based on a�ne forms, called Taylor1+.

As we represent coe�cients of a�ne forms by double precision floating-point
numbers instead of real numbers, we have to adapt our transfer functions. For
instance, instruction z = x + y; is abstracted by

ẑ = x̂� ŷ = float(↵x

0 + ↵

y

0) +
nX

i=1

float(↵x

i

+ ↵

y

i

)✏
i

+

nX

i=0

dev(↵x

i

+ ↵

y

i

)

!
✏

n+1

where float(x) is the nearest double-precision floating-point number to the real
number x and dev(x) := .(|x� float(x)|), (. being rounding towards +1).

We are working on some techniques, namely those used in [8] and [10], to
control the potential increase of the number of noise symbols during analysis.
However, in practise, the number of symbols reaches high levels very scarcely,
since our join operator has the e↵ect of reducing the number of noise symbols
by collapsing some of them into a join symbol.

Zonotope

19

Thursday, 17 January 13

Imprecision in Abstract Interpretation

What if convex abstractions are too weak?

Error Error

Very common scenario

20

Thursday, 17 January 13

Conclusion:

• Very scalable

• Imprecise

• Precise results require experts and research effort

• Expert created domains are moderately reusable

• Feasible for programs with homogenous structure and
behaviour (success in avionics)

Abstract Interpretation

21

Thursday, 17 January 13

References

A. Chapoutot. Interval slopes as a numerical abstract domain for floating-point variables. SAS 2010

L. Chen, A. Miné and P. Cousot. A sound floating-point polyhedra abstract domain. APLAS 2008

A. Miné. Relational abstract domains for the detection of floating-point run-time errors. ESOP 2004

L. Chen, A. Miné, J. Wang and P. Cousot. An abstract domain to discover interval Linear Equalities. VMCAI 2010

L. Chen, A. Miné, J. Wang and P. Cousot. Interval polyhedra: An Abstract Domain to Infer Interval Linear Relationships. SAS 2009

K. Ghorbal, E. Goubault and S. Putot. The zonotope abstract domain Taylor1. CAV 2009

B. Jeannet, and A. Miné. Apron: A library of numerical abstract domains for static analysis. CAV 2009

D. Monniaux. Compositional analysis of floating-point linear numerical filters. CAV 2005

J. Feret. Static analysis of digital filters. ESOP 2004

F. Alegre, E. Feron and S. Pande. Using ellipsoidal domains to analyze control systems software. CoRR 2009

E. Goubault and S. Putot. Weakly relational domains for floating-point computation analysis. NSAD 2005

E. Goubault. Static analyses of the precision of floating-point operations. SAS 2001

Floating point abstract domains

22

Thursday, 17 January 13

http://academic.research.microsoft.com/Author/3610931/liqian-chen
http://academic.research.microsoft.com/Author/3610931/liqian-chen
http://academic.research.microsoft.com/Author/3313090/antoine-mine
http://academic.research.microsoft.com/Author/3313090/antoine-mine
http://academic.research.microsoft.com/Author/1140524/patrick-cousot
http://academic.research.microsoft.com/Author/1140524/patrick-cousot
http://academic.research.microsoft.com/Author/3610931/liqian-chen
http://academic.research.microsoft.com/Author/3610931/liqian-chen
http://academic.research.microsoft.com/Author/3313090/antoine-mine
http://academic.research.microsoft.com/Author/3313090/antoine-mine
http://academic.research.microsoft.com/Author/530160/ji-wang
http://academic.research.microsoft.com/Author/530160/ji-wang
http://academic.research.microsoft.com/Author/1140524/patrick-cousot
http://academic.research.microsoft.com/Author/1140524/patrick-cousot
http://academic.research.microsoft.com/Author/3610931/liqian-chen
http://academic.research.microsoft.com/Author/3610931/liqian-chen
http://academic.research.microsoft.com/Author/3313090/antoine-mine
http://academic.research.microsoft.com/Author/3313090/antoine-mine
http://academic.research.microsoft.com/Author/530160/ji-wang
http://academic.research.microsoft.com/Author/530160/ji-wang
http://academic.research.microsoft.com/Author/1140524/patrick-cousot
http://academic.research.microsoft.com/Author/1140524/patrick-cousot
http://academic.research.microsoft.com/Author/3825889/khalil-ghorbal
http://academic.research.microsoft.com/Author/3825889/khalil-ghorbal
http://academic.research.microsoft.com/Author/1129804/eric-goubault
http://academic.research.microsoft.com/Author/1129804/eric-goubault
http://academic.research.microsoft.com/Author/3356982/sylvie-putot
http://academic.research.microsoft.com/Author/3356982/sylvie-putot
http://academic.research.microsoft.com/Author/3317026/bertrand-jeannet
http://academic.research.microsoft.com/Author/3317026/bertrand-jeannet
http://academic.research.microsoft.com/Author/3313090/antoine-mine
http://academic.research.microsoft.com/Author/3313090/antoine-mine
http://academic.research.microsoft.com/Author/905829/fernando-alegre
http://academic.research.microsoft.com/Author/905829/fernando-alegre
http://academic.research.microsoft.com/Author/1063340/eric-feron
http://academic.research.microsoft.com/Author/1063340/eric-feron
http://academic.research.microsoft.com/Author/1977221/santosh-pande
http://academic.research.microsoft.com/Author/1977221/santosh-pande
http://academic.research.microsoft.com/Author/1129804/eric-goubault
http://academic.research.microsoft.com/Author/1129804/eric-goubault
http://academic.research.microsoft.com/Author/3356982/sylvie-putot
http://academic.research.microsoft.com/Author/3356982/sylvie-putot

References
Industrial Case Studies

E. Goubault, S. Putot, P. Baufreton, J. Gassino. Static analysis of the accuracy in control systems: principles and experiments.
FMICS 2007

D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, F. Védrine. Towards an industrial use of FLUCTUAT on safety-critical
avionics software. FMICS 2009

J. Souyris and D. Delmas. Experimental assessment of Astrée on safety-critical avionics software. SAFECOMP 2007

J. Souyris. Industrial experience of abstract interpretation-based static analyzers. IFIP 2004

P. Cousot. Proving the absence of run-time errors in safety-critical avionics code. EMSOFT 2007

FP Static Analysers

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux and X. Rival. A static analyzer for large safety-
critical software. SIGPLAN 38(5), 2003

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux and Xavier Rival. The ASTREÉ analyzer. ESOP 2005

E. Goubault, M. Martel and S. Putot. Asserting the precision of floating-point computations: a simple abstract interpreter. ESOP
2002

23

Thursday, 17 January 13

http://academic.research.microsoft.com/Author/1129804/eric-goubault
http://academic.research.microsoft.com/Author/1129804/eric-goubault
http://academic.research.microsoft.com/Author/3356982/sylvie-putot
http://academic.research.microsoft.com/Author/3356982/sylvie-putot
http://academic.research.microsoft.com/Author/1909308/philippe-baufreton
http://academic.research.microsoft.com/Author/1909308/philippe-baufreton
http://academic.research.microsoft.com/Author/3606342/jean-gassino
http://academic.research.microsoft.com/Author/3606342/jean-gassino
http://academic.research.microsoft.com/Author/2765496/david-delmas
http://academic.research.microsoft.com/Author/2765496/david-delmas
http://academic.research.microsoft.com/Author/1129804/eric-goubault
http://academic.research.microsoft.com/Author/1129804/eric-goubault
http://academic.research.microsoft.com/Author/3356982/sylvie-putot
http://academic.research.microsoft.com/Author/3356982/sylvie-putot
http://academic.research.microsoft.com/Author/3474135/jean-souyris
http://academic.research.microsoft.com/Author/3474135/jean-souyris
http://academic.research.microsoft.com/Author/3825887/karim-tekkal
http://academic.research.microsoft.com/Author/3825887/karim-tekkal
http://academic.research.microsoft.com/Author/3641814/franck-vedrine
http://academic.research.microsoft.com/Author/3641814/franck-vedrine
http://academic.research.microsoft.com/Author/3474135/jean-souyris
http://academic.research.microsoft.com/Author/3474135/jean-souyris
http://academic.research.microsoft.com/Author/2765496/david-delmas
http://academic.research.microsoft.com/Author/2765496/david-delmas
http://academic.research.microsoft.com/Author/3474135/jean-souyris
http://academic.research.microsoft.com/Author/3474135/jean-souyris
http://academic.research.microsoft.com/Author/78353/bruno-blanchet
http://academic.research.microsoft.com/Author/78353/bruno-blanchet
http://academic.research.microsoft.com/Author/1140524/patrick-cousot
http://academic.research.microsoft.com/Author/1140524/patrick-cousot
http://academic.research.microsoft.com/Author/1145480/radhia-cousot
http://academic.research.microsoft.com/Author/1145480/radhia-cousot
http://academic.research.microsoft.com/Author/1528069/jerome-feret
http://academic.research.microsoft.com/Author/1528069/jerome-feret
http://academic.research.microsoft.com/Author/1319495/laurent-mauborgne
http://academic.research.microsoft.com/Author/1319495/laurent-mauborgne
http://academic.research.microsoft.com/Author/3313090/antoine-mine
http://academic.research.microsoft.com/Author/3313090/antoine-mine
http://academic.research.microsoft.com/Author/117321/david-p-monniaux
http://academic.research.microsoft.com/Author/117321/david-p-monniaux
http://academic.research.microsoft.com/Author/2406936/xavier-rival
http://academic.research.microsoft.com/Author/2406936/xavier-rival
http://academic.research.microsoft.com/Author/1140524/patrick-cousot
http://academic.research.microsoft.com/Author/1140524/patrick-cousot
http://academic.research.microsoft.com/Author/1145480/radhia-cousot
http://academic.research.microsoft.com/Author/1145480/radhia-cousot
http://academic.research.microsoft.com/Author/1528069/jerome-feret
http://academic.research.microsoft.com/Author/1528069/jerome-feret
http://academic.research.microsoft.com/Author/1319495/laurent-mauborgne
http://academic.research.microsoft.com/Author/1319495/laurent-mauborgne
http://academic.research.microsoft.com/Author/3313090/antoine-mine
http://academic.research.microsoft.com/Author/3313090/antoine-mine
http://academic.research.microsoft.com/Author/117321/david-p-monniaux
http://academic.research.microsoft.com/Author/117321/david-p-monniaux
http://academic.research.microsoft.com/Author/2406936/xavier-rival
http://academic.research.microsoft.com/Author/2406936/xavier-rival

Requires experts,
expensive, powerful

Abstract Interpretation

Manual

Decision Procedures

Scalable and efficient.
Precise analysis requires experts

24

Thursday, 17 January 13

Error

Decision Procedures

• Precisely explore a large set of program traces

• For efficiency, represent problem symbolically as satisfiability of a
logical formula

Program traces

Program is safe exactly if isTrace(t) ^ error(t) is satisfied by some t

25

Thursday, 17 January 13

Propositional SAT

' = (a _ ¬b) ^ (¬a _ b) ^ ¬bPropositional formula:

Is there an assignment to a,b that makes the formula true?

S A T S o l v e r s a r e E � c i e n t

2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7

1 s

1 0 s

1 0 0 s

(Malik and Zhang 2009)

L e o p o l d H a l l e r (O U D C S) D P L L i s A b s t r a c t I n t e r p r e t a t i o n 3 / 3 3

Decrease in SAT solving time for SAT algorithms
2000-2007

26

Thursday, 17 January 13

Why are SAT solvers so efficient

Probe for solution Learn from failure

failure

• SAT solvers learn from failure

• SAT solvers spot relevance

27

Thursday, 17 January 13

Example

c ! (r = a/32b)

^ ¬c ! (r = a ⇤32 b)
^ a > 0 ^ b > 0 ^ r < 0

Can be translated to propositional logic using divider and
multiplier circuits

The formula evaluates to true
under the following assignment:

a, b 7! 123456789

r 7! �1757895751

c 7! false

Decision Procedures

Counterexample!28

Thursday, 17 January 13

Bounded Model Checking

Loops require unrolling
before translation

If the loop does not have a known fixed bound,
the result is unrolled up to a chosen depth.

29

Thursday, 17 January 13

Bounded Model Checking

Decision Procedure
Program has bug,
counter-example is returned

?

Satisfiable

Unsatisfiable

30

Thursday, 17 January 13

FP support in CBMC (2008)

• CBMC implements bit-precise reasoning over floating-point
numbers using a propositional encoding

• Uses IEEE-754 semantics with support various rounding-modes

• Allows proofs of complex, bit-level properties

Thursday, 17 January 13

Scalability of Propositional
Encoding

• Floating-point arithmetic is flattened to propositional logic

• Requires instantiation of large floating point arithmetic circuits

N Nr. Variables Memory use

5 ~130000 ~90MB

10 ~260000 ~180MB

• Resulting formulas are hard for SAT solvers and take up large
amounts of memory

32

Thursday, 17 January 13

Related work

Constraint satisfaction

C. Michel, M. Rueher and Y. Lebbah: Solving constraints over floating-point numbers. CP2001

B. Botella, A. Gotlieb and C. Michel: Symbolic execution of floating-point computations. STVR2006

SMT
P. Ruemmer and T. Wahl. An SMT-LIB theory of binary floating-point arithmetic. SMT 2010

A. Brillout, D. Kroening and T. Wahl. Mixed abstractions for floating point arithmetic. FMCAD 2009

R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays. TACAS 2009

Incomplete Solvers
S. Boldo, J.-C. Filliâtre and G. Melquiond. Combining Coq and Gappa for Certifying Floating-Point Programs. Calculemus 2009.

33

Thursday, 17 January 13

http://www.springerlink.com/content/?Author=Sylvie+Boldo
http://www.springerlink.com/content/?Author=Sylvie+Boldo
http://www.springerlink.com/content/?Author=Jean-Christophe+Filli%c3%a2tre
http://www.springerlink.com/content/?Author=Jean-Christophe+Filli%c3%a2tre
http://www.springerlink.com/content/?Author=Guillaume+Melquiond
http://www.springerlink.com/content/?Author=Guillaume+Melquiond

Requires experts,
scalable, precise

Abstract Interpretation

Manual

Decision Procedures

Scalable.
Precision requires experts

Precise.
Scalability requires experts

34

Thursday, 17 January 13

Automatic

Scalable PreciseTheorem proving
D

ecision procedures
Ab

st
ra

ct
 in

te
rp

re
ta

tio
n

Conclusion Part I

Abstract Interpreter Decision Procedures

Safe

? Bug

?

35

Thursday, 17 January 13

Questions so far?

36

Thursday, 17 January 13

Part II

37

Thursday, 17 January 13

Automatic

Scalable Precise

D
ecision procedures

Ab
st

ra
ct

 in
te

rp
re

ta
tio

n
We are interested in techniques that are
• scalable
• sufficiently precise to prove safety
• fully automatic

Central insight:
Modern decision procedures are abstract interpreters!

38

Thursday, 17 January 13

Manually adjusting analysis precision
by abstract partitioning

Error Error

y 2 [�1, 1]

Potentially unsafe! Safe!39

Thursday, 17 January 13

How do we find the partition automatically?

40

Thursday, 17 January 13

SAT solving by example

Their main data structure is a partial variable assignment
which represents a solution candidate

V ! {t, f}

clauses

literals

| {z } | {z }' = (p _ ¬q) ^ . . . ^ (¬r _ w _ q)

SAT solvers accept formulas in conjunctive normal form

41

Thursday, 17 January 13

SAT solving: Deduction

' = p ^ (¬p _ ¬q) ^ (q _ r _ ¬w) ^ (q _ r _ w)

SAT deduces new facts from clauses:

p 7! t p 7! t

q 7! f

At this point, clauses yield no further information

42

Thursday, 17 January 13

SAT is Abstract Analysis: Deduction

' = p ^ (¬p _ ¬q) ^ (q _ r _ ¬w) ^ (q _ r _ w)

p 2 [1, 1]
q 2 [0, 0]

p 7! t p 7! t

q 7! f

The result of deduction is
identical to applying interval

analysis to the program:

Deduction in a SAT solver is abstract analysis
43

Thursday, 17 January 13

SAT solving: Decisions

' = p ^ (¬p _ ¬q) ^ (q _ r _ ¬w) ^ (q _ r _ w)

Pick an unassigned variable and assign a truth value

p 7! t

q 7! f

p 7! t

q 7! f

r 7! f

SAT solver makes a “guess”

Now new deductions are possible
44

Thursday, 17 January 13

SAT solving: Learning

' = p ^ (¬p _ ¬q) ^ (q _ r _ ¬w) ^ (q _ r _ w)

The variable w would have to be both true and false.

The contradiction is the result of r being assigned to false as part of a
decision. The SAT solver therefore learns that r must be true:

p 7! t

q 7! f

r 7! f

' ' ^ r
45

Thursday, 17 January 13

SAT solving: Learning

' = p ^ (¬p _ ¬q) ^ (q _ r _ ¬w) ^ (q _ r _ w)

The variable w would have to be both true and false.

The contradiction is the result of r being assigned to false as part of a
decision. The SAT solver therefore learns that r must be true:

p 7! t

q 7! f

r 7! f

p 7! t

q 7! f

r 7! f

w 7! f

conflict

' ' ^ r
45

Thursday, 17 January 13

SAT is Abstract Analysis: Decisions & Learning

Decisions and learning in a SAT solver are abstract partitioning

' ' ^ r

46

Thursday, 17 January 13

SAT is Abstract Analysis

• Deduction in SAT is abstract interpretation

• Decisions and learning are abstract partitioning

• The SAT algorithm is really an automatic partition
refinement algorithm.

Domain A

SAT(A)

Expanding the scope of SAT
47

Thursday, 17 January 13

SAT is Abstract Analysis

• Deduction in SAT is abstract interpretation

• Decisions and learning are abstract partitioning

• The SAT algorithm is really an automatic partition
refinement algorithm.

Domain A

SAT(A)Rich logic,
e.g. FP Programs

Prop. Logic Boolean
programs

Data

Control

Expanding the scope of SAT
47

Thursday, 17 January 13

SAT for programsAbstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE

! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1

n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : >

n2 : b � 1 : ? SAFE ! Generalise!

! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

b  0

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1

n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : >

n2 : b � 1 : ? SAFE

! Generalise!

! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

48

Thursday, 17 January 13

Prototype:
Abstract Conflict Driven Learning (ACDL)

• Implementation over floating-point intervals

• Automatically refines an analysis in a way that is

• Property dependent

• Program dependent

• Uses learning to intelligently explore partitions

• Significantly more precise than mature abstract
interpreters

• Significantly more efficient than floating-point decision
procedures on short non-linear programs

49

Thursday, 17 January 13

More results

13

benchmark

ti
m
e
(s
)

0 5 10 15 20 25 30 35 40 45 50 55

0.1

1

10

100

1000 Astrée

CBMC

CDFL

Fig. 2. Execution times of Astrée, CBMC, and cdfl; wrong results set to 3600s

Learning disabled

W
it
h
le
ar
n
in
g

0.1 1 10 100 1000

0.1

1

10

100

1000

Range decisions

R
an

d
om

d
ec
is
io
n
s

0.1 1 10 100 1000

0.1

1

10

100

1000

Fig. 3. E↵ects of learning and decision heuristics

several observations: on average, our analysis is 264 times faster than cbmc, if
cbmc terminates properly at all. The largest speed-up is a factor of 1595. Al-
though Astrée is often faster than our prototype, its precision is insu�cient in
many cases – we obtained 16 false alerts for the 33 safe benchmarks.

Decision Heuristics and Learning Figure 3 visualises the e↵ects of learning
and decision heuristics. Learning has a significant influence on runtime, as does
the choice of a decision heuristic. We compare a random heuristic, which picks
a restriction over a random variable, with a range-based one, which always aims
to restrict the least restricted variable. Random decision making outperforms
range-based. Activity-based heuristics common in sat may work as well in our
case.

Dynamic Precision Adjustment One of the main advantages of our pro-
cedure is that refinement is property-dependent. The precision of the analysis
dynamically adapts to match the precision required by the property. This is il-
lustrated in Figure 4 where we check bounds on the result of computing a sine
approximation under the input range [�⇡

2 ,
⇡

2]. The input value is shown on the
x-axis, the result of the computation on the y-axis. The bound we check against
is depicted as two red horizontal lines, boundaries of explored partitions are
shown as black vertical lines. The actual maximum of the function lies at about
1.00921. As the checked bound (Figure 4 shows bounds 1.2 and 1.01) approaches

Average speedup over CBMC ~270x

50

Thursday, 17 January 13

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Implementation

51

Thursday, 17 January 13

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Number of partitions vs. tightness of bound

52

Thursday, 17 January 13

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Number of partitions vs. tightness of bound

53

Thursday, 17 January 13

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Number of partitions vs. tightness of bound

54

Thursday, 17 January 13

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Number of partitions vs. tightness of bound

55

Thursday, 17 January 13

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Number of partitions vs. tightness of bound

56

Thursday, 17 January 13

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Number of partitions vs. tightness of bound

57

Thursday, 17 January 13

Current and Future Work

• Develop an SMT solver for floating point logic

• Model on the success of propositional SAT:

• Simple abstract domain

• Highly efficient data structures

S A T S o l v e r s a r e E � c i e n t

2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7

1 s

1 0 s

1 0 0 s

(Malik and Zhang 2009)

L e o p o l d H a l l e r (O U D C S) D P L L i s A b s t r a c t I n t e r p r e t a t i o n 3 / 3 3

58

Thursday, 17 January 13

Current and Future Work

• Develop an SMT solver for floating point logic

• Model on the success of propositional SAT:

• Simple abstract domain

• Highly efficient data structures

Rich logic,
e.g. FP Programs

Prop. Logic Boolean
programs

S A T S o l v e r s a r e E � c i e n t

2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7

1 s

1 0 s

1 0 0 s

(Malik and Zhang 2009)

L e o p o l d H a l l e r (O U D C S) D P L L i s A b s t r a c t I n t e r p r e t a t i o n 3 / 3 3

58

Thursday, 17 January 13

MathSAT + ACDCL

59

FP-ACDCL

b
i
t
-
v
e
c
t
o
r
e
n
c
o
d
i
n
g
(
Z
3
)

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

(a)

FP-ACDCL

F
P
-
A
C
D
C
L
w
.
o
.
g
e
n
e
r
a
l
i
s
a
t
i
o
n

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

(b)

1

Thursday, 17 January 13

Current and Future Work

• Reengineer prototype into a tool for floating point
verification

• Significantly improved efficiency

• Generic interface for integrating abstract domains

• Development and generalisation of heuristics and
learning strategies

60

Thursday, 17 January 13

Current and Future Work

• Reengineer prototype into a tool for floating point
verification

• Significantly improved efficiency

• Generic interface for integrating abstract domains

• Development and generalisation of heuristics and
learning strategies

Rich logic,
e.g. FP Programs

Prop. Logic Boolean
programs

60

Thursday, 17 January 13

Conclusion - Part II

Automatic

Scalable PreciseTheorem proving
D

ecision procedures
Ab

st
ra

ct
 in

te
rp

re
ta

tio
n

Scalability ACDL Precision

Fully automatic

61

Thursday, 17 January 13

Thank you for your attention

62

Thursday, 17 January 13

