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Program verification

1:  x = y = 0;
2:  while (*)
3:    x++; y++;
4:  while (x != 0)
5:    x--; y--;
6:  assert (y == 0);

1:  gcd(int x, int y)
2:  {
3:    assume(x>0 && y>0);
4:    while (x !=y ) {
5:      if (x > y) x = x-y;
6:      if (y > x) y = y-x;
7:    }
8:    return x;
9   }Question

Is the assertion satisfied for all 

possible inputs? Question
Does gcd terminate for all inputs 𝑥, 𝑦?



Current state of affairs

• Precision

• Scalability

• Testing is still the dominant technique for establishing software 
quality



Question …

• Most applications are associated with test suites, primarily used 
for regression or fuzz testing

• Can we use these test suites profitably for proving program 
correctness?



Here’s the plan …

• Guess: analyse  data from tests in order to 
infer a candidate invariant (use ML 
techniques)

• Check: validate candidate invariant using 
sound program analysis techniques
• If check succeeds, then we have a proof!
• If check fails, use failure to generate more data 

and repeat guess+check

• Why is this nice?
• Program analysis not so good at guessing 

invariants
• Program analysis is good at checking invariants 
• Able to make use of data generated from 

programs and existing ML algorithms for 
analysis

program

Guess

Check

𝜄𝑡



Instantiations of Guess

• Classification
Interpolants as Classifiers. Sharma, N, Aiken, Computer-Aided Verification (CAV 

2012)

Program Verification as Learning Geometric Concepts. Sharma, Gupta, 
Hariharan, Aiken, N.  Submitted

• Linear algebra
A Data Driven Approach for Algebraic Loop Invariants. Sharma, Gupta, 

Hariharan, Aiken, N.  European Symposium on Programming (ESOP 2012)

• Regression
Termination proofs from tests. N, Sharma. submitted



Interpolants

• An interpolant for a pair of formulas 𝐴, 𝐵 s.t. (𝐴 ∧ 𝐵 =⊥) is a 
formula 𝐼 satisfying:
• 𝐴 ⇒ 𝐼

• 𝐼 ∧ 𝐵 =⊥

• 𝑣𝑎𝑟𝑠 𝐼 ⊆ 𝑣𝑎𝑟𝑠 𝐴 ∩ 𝑣𝑎𝑟𝑠 𝐵

• An interpolant is a “simple” proof



Example

• 𝐴 = 𝑥 ≥ 𝑦

• 𝐵 = 𝑦 ≥ 𝑥 + 1

• 𝐼 = 2𝑥 + 1 ≥ 2𝑦

x

y



Binary classification

• Input: a set of points 𝑋 with labels 𝑙 ∈ +1,−1

• Goal: find a classifier 𝐶: X → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} such that:
• 𝐶 𝑎 = 𝑡𝑟𝑢𝑒, ∀𝑎 ∈ 𝑋 . 𝑙𝑎𝑏𝑒𝑙 𝑎 = +1, and

• 𝐶 𝑏 = 𝑓𝑎𝑙𝑠𝑒, ∀𝑏 ∈ X . 𝑙𝑎𝑏𝑒𝑙 𝑏 = −1



Verification & Machine-learning

• Interpolant: separates formula 𝐴 from formula 𝐵

• Classifier: separates positive examples from negative examples

Is there a connection?



Yes!

• Main result: view interpolants as classifiers which distinguish “+” 
examples from “−” examples

• Use state-of-the-art classification algorithms (SVMs) for 
computing invariants

• SVMs are predictive → generalized predicates for verification



Verification & Machine-learning

Unroll the loops
• Find interpolants

• Get general proofs (loop 
invariants)

Get positive and negative 
examples

• Find a classifier 

• This is a predicate which 
generalizes to test data



Example

1:  x = y = 0;
2:  while (*)
3:    x++; y++;
4:  while (x != 0)
5:    x--; y--;
6:  assert (y == 0);



Example …

1:  x = y = 0;
2:  while (*)
3:    x++; y++;
4:  while (x != 0)
5:    x--; y--;
6:  assert (y == 0);

• 𝐴 ≡ 𝑥1 = 0 ∧ 𝑦1 = 0 ∧ 𝑖𝑡𝑒(𝑏, 𝑥 = 𝑥1 + 1 ∧ 𝑦 =
𝑦1 + 1, 𝑥 = 𝑥1 ∧ 𝑦 = 𝑦1)

• 𝐵 ≡ 𝑖𝑡𝑒(𝑥 = 0, 𝑥2 = 𝑥 − 1 ∧ 𝑦2 = 𝑦 − 1, 𝑥2 =
𝑥 ∧ 𝑦2 = 𝑦) ∧ 𝑥2 = 0 ∧ 𝑦2 ≠ 0

• 𝐴 ∧ 𝐵 =⊥

• 𝐼 𝑥, 𝑦 ≡ 𝑥 = 𝑦

𝐴

𝐵



Example

x

y

(0,0)
+

+ (1,1)

 𝐴 ≡ 𝑥1 = 0 ∧ 𝑦1 = 0 ∧ 𝑖𝑡𝑒(𝑏, 𝑥 = 𝑥1 + 1 ∧
𝑦 = 𝑦1 + 1, 𝑥 = 𝑥1 ∧ 𝑦 = 𝑦1)

 𝐵 ≡ 𝑖𝑡𝑒(𝑥 = 0, 𝑥2= 𝑥 − 1 ∧ 𝑦2 = 𝑦 −
1, 𝑥2 = 𝑥 ∧ 𝑦2 = 𝑦) ∧ 𝑥2 = 0 ∧ 𝑦2 ≠ 0

 𝐼1 ≡ 2𝑦 ≤ 2𝑥 + 1



Example

x

y

(0,0)
+

+ (1,1)

Interpolant!

 𝐴 ≡ 𝑥1 = 0 ∧ 𝑦1 = 0 ∧ 𝑖𝑡𝑒(𝑏, 𝑥 = 𝑥1 + 1 ∧
𝑦 = 𝑦1 + 1, 𝑥 = 𝑥1 ∧ 𝑦 = 𝑦1)

 𝐵 ≡ 𝑖𝑡𝑒(𝑥 = 0, 𝑥2= 𝑥 − 1 ∧ 𝑦2 = 𝑦 −
1, 𝑥2 = 𝑥 ∧ 𝑦2 = 𝑦) ∧ 𝑥2 = 0 ∧ 𝑦2 ≠ 0

 𝐼2 ≡ 2𝑦 ≤ 2𝑥 + 1 ∧ 2𝑦 ≥ 2𝑥 − 1



The algorithm

𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑛𝑡(𝐴, 𝐵)

(𝑋+, 𝑋−) = 𝐼𝑛𝑖𝑡(𝐴, 𝐵)
while(true)
{
𝐻 = 𝑆𝑉𝑀𝐼(𝑋+, 𝑋−) Find candidate interpolant

if (𝑆𝐴𝑇 𝐴 ∧ ¬𝐻 )                                𝐴 ⇒ 𝐼
Add 𝑠 to 𝑋+and continue;

if (𝑆𝐴𝑇 𝐵 ∧ ¬𝐻 )                               𝐼 ∧ 𝐵 =⊥
Add 𝑠 to 𝑋−and continue;

break;                                                Exit if interpolant found
}
return 𝐻; 

Theorem: 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑛𝑡(𝐴, 𝐵) terminates only if

output 𝐻 is an interpolant between 𝐴 and 𝐵



Evaluation

• 1000 lines of C++ 
• LIBSVM for SVM queries

• Z3 theorem prover



Proving termination

• For every loop, guess a bound on the number of iterations

• Check the bound with a safety checker



Example: GCD

1:  gcd(int x, int y)
2:  {
3:    assume(x>0 && y>0);
4:    while (x !=y ) {
5:      if (x > y) x = x-y;
6:      if (y > x) y = y-x;
7:    }
8:    return x;
9   }



Example: Instrumented GCD

• Inputs 
𝑥, 𝑦 = { 1,2 , 2,1 , 1,3 , 3,1 }

• 𝐴 =

1 𝑎 𝑏
1 1 2
1 2 1
1 1 3
1 1 3
1 3 1
1 3 1

, C =

𝑐
1
1
1
2
1
2

• Find 𝑐 ≈ 𝑤1𝑎 + 𝑤2𝑏 + 𝑤3 (linear regression)

1:  gcd(int x, int y)
2:  {
3:    assume(x>0 && y>0);
4:    // instrumented code
5:    a = x; b = y; c = 0;
6:    while (x !=y ) {
7: // instrumented code
8: c = c+1;
9: writeLog(a, b, c, x, y);
10:  if (x > y) x = x-y;
11:     if (y > x) y = y-x;
12:   }
13:   return x;
14:  }



Linear regression

• min 𝑖(𝑤1𝑎 + 𝑤2𝑏 + 𝑤3 − 𝑐𝑖)
2



Quadratic programming

• min 𝑖(𝑤1𝑎 + 𝑤2𝑏 + 𝑤3 − 𝑐𝑖)
2

𝑠. 𝑡. 𝐴𝑤 ≥ 𝐶

• Guess is 𝜏 𝑎, 𝑏 = 𝑎 + 𝑏 − 2



Example: Annotated GCD

• Check with a safety checker

• Free invariant to aid checker
𝑐 ≤ 𝑎 + 𝑏 − 𝑥 − 𝑦 ∧ 𝑥 > 0 ∧ 𝑦 > 0

• Corrective measures
• Sound rounding for polynomials 

with integer coefficients

• Partitioning of tests for 
discovering disjunctive loop 
bounds

1:  gcd(int x, int y)
2:  {
3:    assume(x>0 && y>0);
4:    a = x; b = y; c = 0;
5:    while (x !=y ) {
6: // annotation
7: free_invariant(c <= a+b-x-y);
8:      // annotation
9:      assert(c <= a+b-2);
10:  if (x > y) x = x-y;
11:     if (y > x) y = y-x;
12:   }
13:   return x;
14:  }



Evaluation



Summary

• Classification based algorithms can be used for computing proofs 
in program verification

• Follow-up work on using techniques from linear algebra and PAC 
learning for scalable proofs 

• Proving program termination via linear regression

• Data Driven Program Analysis


