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Church Synthesis Problem

I Input: A specification L ⊆ {0, 1}ω × {0, 1}ω

I Task: Find a program P which implements L, i.e.,

∀IN ∈ {0, 1}ω, (IN,OUT = P(IN)) ∈ L



Gale-Stewart Game

I Two players game.

I Specification L ⊆ {0, 1}ω × {0, 1}ω.
I In every round

I Player INPUT plays with 0 or 1
I Player OUTPUT responds with 0 or 1

I Infinite play forms two ω words IN, OUT .

I OUTPUT wins if (IN,OUT ) ∈ L.

I OUTPUT winning strategy is a program for specification L.
I Theorem Büchi-Landweber theorem 1969

I Assume that L is ω regular.
I It is decidable who is the winner.
I A finite memory strategy for the winner can be constructed.



Gale-Stewart Game

I Two players game.

I Specification L ⊆ {0, 1}ω × {0, 1}ω.
I In every round

I Player INPUT plays with 0 or 1
I Player OUTPUT responds with 0 or 1

I Infinite play forms two ω words IN, OUT .

I OUTPUT wins if (IN,OUT ) ∈ L.

I OUTPUT winning strategy is a program for specification L.
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Extensions of Büchi-Landweber theorem

I Non regular winning conditions
I Mean payoff condition Ehrenfeucht & Mycielski 1979
I Context free ω language
I . . .

I Conjunction of winning conditions
I Mean payoff parity game Chatterjee, Henzinger & Jurdzinski

05
I Energy parity game Chatterjee & Doyen 10
I

∧
MultiDimensionalMeanPayoff game - partially solved

Chatterjee, Doyen, Henzinger & Raskin 10

I Games with lookahead degree Holtmann, Kaiser & Thomas 10

I Possibility to get a lookahead on the moves of the opponent.

I Games with imperfect information
I Observation based strategies.
I Games with errors.
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Extensions of Büchi-Landweber theorem

I Non regular winning conditions
I Mean payoff condition Ehrenfeucht & Mycielski 1979
I Context free ω language
I . . .

I Conjunction of winning conditions
I Mean payoff parity game Chatterjee, Henzinger & Jurdzinski

05
I Energy parity game Chatterjee & Doyen 10
I

∧
MultiDimensionalMeanPayoff game - partially solved

Chatterjee, Doyen, Henzinger & Raskin 10

I Games with lookahead degree Holtmann, Kaiser & Thomas 10

I Possibility to get a lookahead on the moves of the opponent.

I Games with imperfect information
I Observation based strategies.

I Games with errors.
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Plan

1. Synthesis problem for noisy input.

2. Games with (detected) errors.

3. Regular games with errors.

4. Mean payoff games with errors and a reduction to∧
MultiDimensionalMeanPayoff games.

5. How to determine the winner of∧
MultiDimensionalMeanPayoff games.

6. Games with (undetected) errors.

7. Conclusion & open questions.



Synthesis for noisy input

I The input signal is noisy
I We consider two kinds of errors (noises) in the input signal

I Detected error - The received signal is z /∈ {0, 1}. The real
signal may be any a ∈ {0, 1}.

I Undetected error - The received signal is a ∈ {0, 1}. The real
signal is b ∈ {0, 1} − {a}. The program cannot detect
whether the signal has an error.

I The program must produce an output which correspond the
real input signal

I However, the amount of allowed errors is limited.
I If there are ”too many” errors in the input signal the program

behavior is undefined.
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Games with detected errors

I Two players game.

I Specification L ⊆ {0, 1}ω × {0, 1}ω
I In every round

I Player INPUT plays with 0, 1 or z (detected error).
I Player OUTPUT responds with 0 or 1

I Infinite play forms (IN,OUT ).
I OUTPUT wins if one the following holds

I IN has ”too many” errors.
I ∀X generated from IN by replacing every z with 0 or 1, we

have (X ,OUT ) ∈ L.
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Games with detected errors - cont

How many errors are ”too many”?

I Scales
I Error count: EC (X , n) = number of zs in X until position n.
I Error rate: ER(X ) = lim supn→∞

1
n EC (X , n)

I Error thresholds
I Error rate (most interesting):

I DEδ are games with detected errors, with error rate threshold
δ ∈ [0, 1]

I Finite number of errors:
I DEfin - number of errors must be finite.

I Fixed number of errors:
I DEn - at most n errors in input.

I Bounded number of errors problem:
I Is there exists n ∈ N s.t INPUT is the winner of DEn?
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Regular games with detected errors

Theorem

I It is decidable who is the winner of DEδ, DEfin and DEn

games.

I The bounded number of errors problem is decidable.
I Sketch of proof

I Immediate reduction from DEn and DEfin to regular games,
and from DEδ to mean payoff parity games.

I It is decidable who is the winner in mean payoff parity game
Chatterjee, Henzinger & Jurdzinski 05

I There exists a computable m ∈ N s.t: INPUT wins DEfin ⇔
INPUT wins DEm
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Mean payoff games (reminder)

I Game arena G = (V ,E ,w : E → Z)

I Finite path has a total payoff value.
I For finite path π = e0e1 . . . en.

I TP(π) =
∑n

i=0 w(ei )

I Infinite path has a mean payoff value.
I For infinite path π

I MP(π) = limn→∞ sup{ 1
k
TP(π[0, k])|k ≥ n}

I MP(π) = limn→∞ inf{ 1
k
TP(π[0, k])|k ≥ n}

I Mean payoff condition
I MeanPayoffSup≥(0) - MP value of play ≥ 0
I MeanPayoffInf≥(0) - MP value of play ≥ 0
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Mean payoff games with detected errors

Decidability results

I It is decidable who is the winner of DEn, DEfin and of DEδ
for δ = 0.

I Sketch of proof
I INPUT is the winner of DEδ for δ = 0 ⇔ INPUT is the winner

of DEfin.
I INPUT is the winner of DEfin ⇔ INPUT is the winner of DEn

for n = 2|V |

I Reduction from DEn game to
∧

MultiDimensionalMeanPayoff
game.

Undecidability result
I For δ > 0, it is undecidable who is the winner of DEδ.

I Immediate reduction to universality problem of non
deterministic mean payoff automaton.
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∧
MultiDimensionalMeanPayoff games

I The game arena is a graph with multi dimensional weight
function.

I w : E → Zk .

I Every play π has 2k dimensional mean payoff vector−−→
MP = (MP(π)1, . . . ,MP(π)k ,MP(π)1, . . . ,MP(π)k )

I Winning conditions
I

∧
MeanPayoffInf≥(0) games
I OUTPUT must ensure

∧k
i=1(MP(π)i ≥ 0).

I
∧

MeanPayoffSup≥(0) games
I OUTPUT must ensure

∧k
i=1(MP(π)i ≥ 0).

I
∧

MeanPayoffInf≥(0)∧
∧

MeanPayoffSup≥(0) games
I For S ⊆ {1, . . . , k} OUTPUT must ensure∧

i∈S (MP(π)i ≥ 0) ∧
∧

i∈S (MP(π)i ≥ 0).
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I Chatterjee, Doyen, Henzinger & Raskin 10:
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OUTPUT is not restricted).
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∧
MeanPayoffInf≥(−α).

I When OUTPUT is restricted to finite memory strategies
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I Corollaries:

I Deciding whether OUTPUT is the winner is in coNP
I coNP hardness follows from Chatterjee, Doyen, Henzinger &

Raskin 10 ⇒ The problem is coNP complete.
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Restricted weights

When weights are restricted to {−1, 0,+1}
I Deciding whether OUTPUT is the winner for∧

MeanPayoffSup≥(0) condition is in P

I Deciding whether OUTPUT is the winner for∧
MeanPayoffInf≥(0) condition is coNP hard



Games with undetected errors

I Two players game.

I ω language L ⊆ {0, 1}ω × {0, 1}ω
I In every round

I Player INPUT plays with 0, 1 (every move is possibly an
undetected error).

I Player OUTPUT responds with 0 or 1

I Infinite play forms (IN,OUT ).

I OUTPUT wins if for every X ∈ {0, 1}ω:
I X has ”too many errors” (X (i) has error if X (i) 6= IN(i)).
I (X ,OUT ) ∈ L
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Games with undetected errors - cont

I Error count: EC (IN,X , n) number of positions until position
n where X (i) 6= IN(i)

I Error rate: ER(IN,X ) = limn→∞ sup{ 1k EC (IN,X , k)|k}
I Thresholds

I UDE δ - error rate δ
I UDE fin - finite number of errors
I UDE n - up to n errors

I Bounded number of errors problem - is there exists n ∈ N s.t
INPUT is the winner of UDE n?



Regular games with undetected errors

I Theorem

I It is decidable who is the winner of UDE fin and UDE n

I Immediate reduction to regular games.

I For δ > 0 it is undecidable who is the winner of UDE δ

I Reduction to the universality problem of non deterministic
mean payoff automaton.

I Open questions
I Deciding the winner of UDE δ for δ = 0
I The bounded number of errors problem.
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Conclusion

1. We proved decidability and complexity of who is the winner of∧
MultiDimensionalMeanPayoff games.

2. We obtained the following results for error games:

Bounded Fin δ = 0 δ ∈ (0, 1) δ = 1
Par MP Par MP Par MP Par MP Par MP

DE X X X X X X X X X X

UDE ? ? X ? ? ? X X X X
X - decidable. X - undecidable. ? - Open.
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