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Church Synthesis Problem

» Input: A specification L C {0,1}* x {0,1}*
» Task: Find a program P which implements L, i.e.,
VIN € {0,1}*, (IN,OUT = P(IN)) € L
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Gale-Stewart Game

v

Two players game.
Specification L C {0,1}* x {0,1}*.
In every round

» Player INPUT plays with 0 or 1
» Player OUTPUT responds with 0 or 1

Infinite play forms two w words IN, OUT.
OUTPUT wins if (IN,OUT) € L.
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Two players game.
Specification L C {0,1}* x {0,1}*.
In every round

» Player INPUT plays with 0 or 1
» Player OUTPUT responds with 0 or 1

Infinite play forms two w words IN, OUT.
OUTPUT wins if (IN,OUT) € L.
OUTPUT winning strategy is a program for specification L.
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Gale-Stewart Game

» Two players game.
» Specification L C {0,1}* x {0,1}~.
> In every round
» Player INPUT plays with 0 or 1
» Player OUTPUT responds with 0 or 1

> Infinite play forms two w words IN, OUT.
» OUTPUT wins if (IN,OUT) € L.

» OUTPUT winning strategy is a program for specification L.
» Theorem Biichi-Landweber theorem 1969
» Assume that L is w regular.

> It is decidable who is the winner.
> A finite memory strategy for the winner can be constructed.
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Extensions of Buchi-Landweber theorem

» Non regular winning conditions

» Mean payoff condition Ehrenfeucht & Mycielski 1979
» Context free w language
> .

» Conjunction of winning conditions

» Mean payoff parity game Chatterjee, Henzinger & Jurdzinski
05

» Energy parity game Chatterjee & Doyen 10

» A MultiDimensionalMeanPayoff game - partially solved
Chatterjee, Doyen, Henzinger & Raskin 10

» Games with lookahead degree Holtmann, Kaiser & Thomas 10

» Possibility to get a lookahead on the moves of the opponent.
» Games with imperfect information

» Observation based strategies.
» Games with errors.
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Synthesis problem for noisy input.
Games with (detected) errors.

Regular games with errors.
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Mean payoff games with errors and a reduction to
/\ MultiDimensionalMeanPayoff games.

5. How to determine the winner of
/\ MultiDimensionalMeanPayoff games.

6. Games with (undetected) errors.

7. Conclusion & open questions.



Synthesis for noisy input
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» The input signal is noisy
» We consider two kinds of errors (noises) in the input signal
> Detected error - The received signal is z ¢ {0,1}. The real
signal may be any a € {0,1}.
» Undetected error - The received signal is a € {0,1}. The real
signal is b € {0,1} — {a}. The program cannot detect
whether the signal has an error.
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Synthesis for noisy input

. alzl 0:0:0s ...
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» The input signal is noisy
» We consider two kinds of errors (noises) in the input signal

> Detected error - The received signal is z ¢ {0,1}. The real
signal may be any a € {0,1}.

» Undetected error - The received signal is a € {0,1}. The real
signal is b € {0,1} — {a}. The program cannot detect
whether the signal has an error.

» The program must produce an output which correspond the
real input signal
» However, the amount of allowed errors is limited.
» If there are "too many"” errors in the input signal the program
behavior is undefined.
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Two players game.
Specification L C {0,1}* x {0,1}¥
In every round

» Player INPUT plays with 0, 1 or z (detected error).
» Player OUTPUT responds with 0 or 1
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Games with detected errors

v

Two players game.

Specification L C {0,1}* x {0,1}¥

In every round
» Player INPUT plays with 0, 1 or z (detected error).
» Player OUTPUT responds with 0 or 1

Infinite play forms (IN, OUT).

OUTPUT wins if one the following holds

» IN has "too many” errors.
» VX generated from IN by replacing every z with 0 or 1, we
have (X, OUT) € L.
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Games with detected errors - cont

How many errors are "too many”?
» Scales
» Error count: EC(X, n) = number of zs in X until position n.
> Error rate: ER(X) = limsup,_,. 2EC(X, n)
» Error thresholds
» Error rate (most interesting):
» DE;s are games with detected errors, with error rate threshold
6 €10,1]
» Finite number of errors:
» DEy, - number of errors must be finite.
» Fixed number of errors:
» DE, - at most n errors in input.
» Bounded number of errors problem:
> Is there exists n € N s.t INPUT is the winner of DE,,?
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Regular games with detected errors

Theorem

» |t is decidable who is the winner of DEs, DEy, and DE,
games.

» The bounded number of errors problem is decidable.

» Sketch of proof
» Immediate reduction from DE, and DEg, to regular games,
and from DEs to mean payoff parity games.
> It is decidable who is the winner in mean payoff parity game
Chatterjee, Henzinger & Jurdzinski 05
» There exists a computable m € N s.t: INPUT wins DEg, <
INPUT wins DE,,
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» Game arena G = (V,E,w: E = 7Z)
» Finite path has a total payoff value.
» For finite path m = ege; ... €.
> TP(r) = Y0, wle)
> Infinite path has a mean payoff value.
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Mean payoff games (reminder)

v

Game arena G = (V, E,w: E - Z)
Finite path has a total payoff value.
» For finite path m = ege; ... €.
> TP(r) = Y0, wle)
Infinite path has a mean payoff value.
» For infinite path w
> MP(7) = limn_ o sup{+ TP(x[0, k])|k > n}
> MP(r) = limy_o0 inf{ TP(x[0, k]) |k > n}
Mean payoff condition
» MeanPayoffSup=(0) - MP value of play > 0
» MeanPayoffInf=(0) - MP value of play > 0

v
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Mean payoff games with detected errors

Decidability results

» |t is decidable who is the winner of DE,, DEg, and of DE;
for § = 0.

» Sketch of proof

» INPUT is the winner of DEs for § = 0 < INPUT is the winner
of DEf,‘,,.

» INPUT is the winner of DEg, < INPUT is the winner of DE,,
for n = 2!V

» Reduction from DE, game to A MultiDimensionalMeanPayoff
game.

Undecidability result

» For § > 0, it is undecidable who is the winner of DE;.

» Immediate reduction to universality problem of non
deterministic mean payoff automaton.



/\ MultiDimensionalMeanPayoff games

> The game arena is a graph with multi dimensional weight
function.

» w: E— 7k
» Every play 7 has 2k dimensional mean payoff vector
MP = (M(ﬂ')l,...,M(ﬂ')k,MP(ﬂ')l,...,MP(T{')k)
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/\ MultiDimensionalMeanPayoff games

> The game arena is a graph with multi dimensional weight
function.

» w: E— Zk
» Every play 7 has 2k dimensional mean payoff vector
MP = (M(Tr)l, cee ,M(ﬂ')k,W(ﬂ')l, ce ,W(Tr)k)
» Winning conditions
» A MeanPayoffInf=(0) games
» OUTPUT must ensure \*_ (MP(x); > 0).
» A MeanPayoffSup= (0) games
» OUTPUT must ensure A, (MP(r); > 0).
» A MeanPayoffInf=(0)A A\ MeanPayoffSup=(0) games
» For SC{1,...,k} OUTPUT must ensure
Nies(MP(m); > 0) A \ies(MP(x); > 0).



A\ MultiDimensionalMeanPayoff games - cont

» Chatterjee, Doyen, Henzinger & Raskin 10:
» When OUTPUT is restricted to finite memory strategy
> Objectives A MeanPayoffInf=(0) and A MeanPayoffSup=(0)
coincide.

» Deciding whether OUTPUT is the winner is coNP complete.
» If INPUT is the winner, he has a memoryless winning
strategy.
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» Chatterjee, Doyen, Henzinger & Raskin 10:
» When OUTPUT is restricted to finite memory strategy
> Objectives A MeanPayoffInf=(0) and A MeanPayoffSup=(0)
coincide.
» Deciding whether OUTPUT is the winner is coNP complete.
» If INPUT is the winner, he has a memoryless winning
strategy.
» Open question: Decidability and complexity of who is the
winner of A\ MultiDimensionalMeanPayoff (when strategy of
OUTPUT is not restricted).

» We answer this question.
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/\ MultiDimensionalMeanPayoff games

Theorem
» For A\ MeanPayoffSup=(0) games
» Deciding whether OUTPUT is the winner is in NP N coNP.
» For A\ MeanPayoffInf=(0) games
» Deciding whether OUTPUT is the winner is coNP complete.
» For A\ MeanPayoffInf=(0)A A MeanPayoffSup=(0) games
» Deciding whether OUTPUT is the winner is coNP complete.
» For all above games
» If INPUT is the winner, he has a memoryless winning strategy.
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Atrr(W{N U Wiy

(o)
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Determine the winner of /\ MeanPayoffSup~(0) game

Proof by example for 2 dimensions MP game

V — Atrr(W{N U wiV)
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WJN _ INPUT winning region for dimension 2
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Determine the winner of /\ MeanPayoffSup~(0) game

Proof by example for 2 dimensions MP game

V — Atrr(W{N U wiV)

Wl’N - INPUT winning region for dimension 1
WJN _ INPUT winning region for dimension 2
INPUT wins in Atrr(W{N U WJV)

Continue computation on subgame V — Atrr(W/N U WJN)
> If Atrr(W/N U WJN) = 0, OUTPUT wins in V

v v v v
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Determine the winner of /A MeanPayoffInf~(0) game

» Lemma 1: OUTPUT is the winner of A MeanPayoffInf=(0)
< For every a@ > 0, OUTPUT has a finite memory wining
strategy in /A MeanPayoffInf=(—a).

» When OUTPUT is restricted to finite memory strategies

» Lemma 2: If INPUT is the winner he has a memoryless
winning strategy Chatterjee, Doyen, Henzinger & Raskin 10.

» Lemma 3: If INPUT is the winner of A\ MeanPayoffInf=(0),

it has a memoryless winning strategy.

» Lemma 4: One can verify in polynomial time if INPUT
memoryless strategy is a winning strategy in
A\ MeanPayoffInf=(0).

» Corollaries:

» Deciding whether OUTPUT is the winner is in coNP
» coNP hardness follows from Chatterjee, Doyen, Henzinger &
Raskin 10 = The problem is coNP complete.



Restricted weights

When weights are restricted to {—1,0,+1}
» Deciding whether OUTPUT is the winner for
A\ MeanPayoffSup=(0) condition is in P
» Deciding whether OUTPUT is the winner for
A\ MeanPayoffInf=(0) condition is coNP hard
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Games with undetected errors

v

Two players game.
w language L C {0,1}* x {0,1}¥
In every round
» Player INPUT plays with 0, 1 (every move is possibly an

undetected error).
» Player OUTPUT responds with 0 or 1

Infinite play forms (IN, OUT).
» OUTPUT wins if for every X € {0, 1}“:

» X has "too many errors” (X(i) has error if X(i) # IN(7)).
» (X,0UT)elL

v

v

v



Games with undetected errors - cont

v

Error count: EC(IN, X, n) number of positions until position
n where X (i) # IN(i)

Error rate: ER(IN, X) = limp_,o sup{% EC(IN, X, k)| k}
Thresholds

» UDEg - error rate §
» UDEyg, - finite number of errors
» UDE, - up to n errors

v

v

v

Bounded number of errors problem - is there exists n € N s.t
INPUT is the winner of UDE ,?
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Regular games with undetected errors

» Theorem
» It is decidable who is the winner of UDE, and UDE,
» Immediate reduction to regular games.
» For § > 0 it is undecidable who is the winner of UDE
> Reduction to the universality problem of non deterministic
mean payoff automaton.
» Open questions

» Deciding the winner of UDE; for § =0
» The bounded number of errors problem.



Conclusion

1. We proved decidability and complexity of who is the winner of
/\ MultiDimensionalMeanPayoff games.

2. We obtained the following results for error games:

Bounded Fin =0 5 €(0,1) o=

Par | MP || Par | MP || Par | MP || Par | MP || Par | MP

DE v Y v oY v oY v | X v I X

UDE || 7 ? v o7 7 7 X | X v I X

v’ - decidable. X - undecidable. 7 - Open.
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