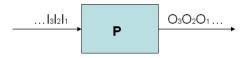
Church Synthesis Problem for Noisy Input

Yaron Velner ¹ The Blavatnik School of Computer Science Tel Aviv University, Israel

January 29, 2011

Church Synthesis Problem

- Input: A specification $L \subseteq \{0,1\}^{\omega} \times \{0,1\}^{\omega}$
- ► Task: Find a program *P* which implements *L*, i.e., $\forall IN \in \{0,1\}^{\omega}, (IN, OUT = P(IN)) \in L$



Gale-Stewart Game

- Two players game.
- Specification $L \subseteq \{0,1\}^{\omega} \times \{0,1\}^{\omega}$.
- In every round
 - Player INPUT plays with 0 or 1
 - Player OUTPUT responds with 0 or 1

- Infinite play forms two ω words *IN*, *OUT*.
- OUTPUT wins if $(IN, OUT) \in L$.

Gale-Stewart Game

- Two players game.
- Specification L ⊆ {0,1}^ω × {0,1}^ω.
- In every round
 - Player INPUT plays with 0 or 1
 - Player OUTPUT responds with 0 or 1
- Infinite play forms two ω words *IN*, *OUT*.
- OUTPUT wins if $(IN, OUT) \in L$.
- OUTPUT winning strategy is a program for specification *L*.

Gale-Stewart Game

- Two players game.
- Specification L ⊆ {0,1}^ω × {0,1}^ω.
- In every round
 - Player INPUT plays with 0 or 1
 - Player OUTPUT responds with 0 or 1
- Infinite play forms two ω words *IN*, *OUT*.
- OUTPUT wins if $(IN, OUT) \in L$.
- OUTPUT winning strategy is a program for specification *L*.
- ► Theorem Büchi-Landweber theorem 1969
 - Assume that L is ω regular.
 - It is decidable who is the winner.
 - A finite memory strategy for the winner can be constructed.

- Non regular winning conditions
 - Mean payoff condition Ehrenfeucht & Mycielski 1979

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Context free ω language
- ▶

- Non regular winning conditions
 - Mean payoff condition Ehrenfeucht & Mycielski 1979
 - Context free ω language
 - ▶ ...
- Conjunction of winning conditions
 - Mean payoff parity game Chatterjee, Henzinger & Jurdzinski 05

- ► Energy parity game Chatterjee & Doyen 10
- ► \ MultiDimensionalMeanPayoff game partially solved Chatterjee, Doyen, Henzinger & Raskin 10

- Non regular winning conditions
 - Mean payoff condition Ehrenfeucht & Mycielski 1979
 - Context free ω language
- Conjunction of winning conditions

▶ ...

- Mean payoff parity game Chatterjee, Henzinger & Jurdzinski 05
- ► Energy parity game Chatterjee & Doyen 10
- ► \ MultiDimensionalMeanPayoff game partially solved Chatterjee, Doyen, Henzinger & Raskin 10

► Games with lookahead degree Holtmann, Kaiser & Thomas 10

Possibility to get a lookahead on the moves of the opponent.

- Non regular winning conditions
 - Mean payoff condition Ehrenfeucht & Mycielski 1979
 - Context free ω language
- Conjunction of winning conditions

▶ ...

- Mean payoff parity game Chatterjee, Henzinger & Jurdzinski 05
- ► Energy parity game Chatterjee & Doyen 10
- ► \ MultiDimensionalMeanPayoff game partially solved Chatterjee, Doyen, Henzinger & Raskin 10
- ► Games with lookahead degree Holtmann, Kaiser & Thomas 10
 - Possibility to get a lookahead on the moves of the opponent.

- Games with imperfect information
 - Observation based strategies.

- Non regular winning conditions
 - Mean payoff condition Ehrenfeucht & Mycielski 1979
 - Context free ω language
- Conjunction of winning conditions

▶ ...

- Mean payoff parity game Chatterjee, Henzinger & Jurdzinski 05
- ► Energy parity game Chatterjee & Doyen 10
- ► \ MultiDimensionalMeanPayoff game partially solved Chatterjee, Doyen, Henzinger & Raskin 10

► Games with lookahead degree Holtmann, Kaiser & Thomas 10

Possibility to get a lookahead on the moves of the opponent.

- Games with imperfect information
 - Observation based strategies.
 - Games with errors.

Plan

- 1. Synthesis problem for noisy input.
- 2. Games with (detected) errors.
- 3. Regular games with errors.

- 6. Games with (undetected) errors.
- 7. Conclusion & open questions.

Synthesis for noisy input

- The input signal is noisy
 - We consider two kinds of errors (noises) in the input signal
 - Detected error The received signal is z ∉ {0,1}. The real signal may be any a ∈ {0,1}.
 - ► Undetected error The received signal is a ∈ {0,1}. The real signal is b ∈ {0,1} {a}. The program cannot detect whether the signal has an error.

Synthesis for noisy input

- The input signal is noisy
 - We consider two kinds of errors (noises) in the input signal
 - Detected error The received signal is z ∉ {0,1}. The real signal may be any a ∈ {0,1}.
 - ► Undetected error The received signal is a ∈ {0,1}. The real signal is b ∈ {0,1} {a}. The program cannot detect whether the signal has an error.

 The program must produce an output which correspond the real input signal

Synthesis for noisy input

- The input signal is noisy
 - We consider two kinds of errors (noises) in the input signal
 - Detected error The received signal is z ∉ {0,1}. The real signal may be any a ∈ {0,1}.
 - ► Undetected error The received signal is a ∈ {0,1}. The real signal is b ∈ {0,1} {a}. The program cannot detect whether the signal has an error.
- The program must produce an output which correspond the real input signal
- However, the amount of allowed errors is limited.
 - If there are "too many" errors in the input signal the program behavior is undefined.

▲□▶ ▲□▶ ▲国▶ ▲国▶ 三国 - のへで

Two players game.

Two players game.

• Specification $L \subseteq \{0,1\}^{\omega} imes \{0,1\}^{\omega}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Two players game.

• Specification $L \subseteq \{0,1\}^{\omega} \times \{0,1\}^{\omega}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In every round

- Two players game.
- Specification $L \subseteq \{0,1\}^{\omega} \times \{0,1\}^{\omega}$
- In every round
 - ▶ Player INPUT plays with 0, 1 or *z* (detected error).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Two players game.
- Specification $L \subseteq \{0,1\}^{\omega} \times \{0,1\}^{\omega}$
- In every round
 - ▶ Player INPUT plays with 0, 1 or *z* (detected error).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Player OUTPUT responds with 0 or 1

- Two players game.
- Specification $L \subseteq \{0,1\}^{\omega} \times \{0,1\}^{\omega}$
- In every round
 - ▶ Player INPUT plays with 0, 1 or *z* (detected error).

- Player OUTPUT responds with 0 or 1
- ► Infinite play forms (*IN*, *OUT*).

- Two players game.
- Specification $L \subseteq \{0,1\}^{\omega} \times \{0,1\}^{\omega}$
- In every round
 - ▶ Player INPUT plays with 0, 1 or *z* (detected error).

- Player OUTPUT responds with 0 or 1
- ► Infinite play forms (*IN*, *OUT*).
- OUTPUT wins if one the following holds

- Two players game.
- Specification $L \subseteq \{0,1\}^{\omega} \times \{0,1\}^{\omega}$
- In every round
 - Player INPUT plays with 0, 1 or z (detected error).

- Player OUTPUT responds with 0 or 1
- ► Infinite play forms (*IN*, *OUT*).
- OUTPUT wins if one the following holds
 - IN has "too many" errors.

- Two players game.
- Specification $L \subseteq \{0,1\}^{\omega} \times \{0,1\}^{\omega}$
- In every round
 - Player INPUT plays with 0, 1 or z (detected error).
 - Player OUTPUT responds with 0 or 1
- ► Infinite play forms (*IN*, *OUT*).
- OUTPUT wins if one the following holds
 - IN has "too many" errors.
 - ∀X generated from *IN* by replacing every z with 0 or 1, we have (X, OUT) ∈ L.

How many errors are "too many"?

How many errors are "too many"?

- Scales
 - Error count: EC(X, n) = number of zs in X until position n.

• Error rate: $ER(X) = \limsup_{n \to \infty} \frac{1}{n} EC(X, n)$

How many errors are "too many"?

Scales

• Error count: EC(X, n) = number of zs in X until position n.

- Error rate: $ER(X) = \limsup_{n \to \infty} \frac{1}{n} EC(X, n)$
- Error thresholds

How many errors are "too many"?

Scales

- Error count: EC(X, n) = number of zs in X until position n.
- Error rate: $ER(X) = \limsup_{n \to \infty} \frac{1}{n} EC(X, n)$
- Error thresholds
 - Error rate (most interesting):
 - ▶ DE_{δ} are games with detected errors, with error rate threshold $\delta \in [0, 1]$

How many errors are "too many"?

Scales

- Error count: EC(X, n) = number of zs in X until position n.
- Error rate: $ER(X) = \limsup_{n \to \infty} \frac{1}{n} EC(X, n)$
- Error thresholds
 - Error rate (most interesting):
 - ▶ DE_{δ} are games with detected errors, with error rate threshold $\delta \in [0, 1]$

- Finite number of errors:
 - DE_{fin} number of errors must be finite.

How many errors are "too many"?

Scales

- Error count: EC(X, n) = number of zs in X until position n.
- Error rate: $ER(X) = \limsup_{n \to \infty} \frac{1}{n} EC(X, n)$
- Error thresholds
 - Error rate (most interesting):
 - ▶ DE_{δ} are games with detected errors, with error rate threshold $\delta \in [0, 1]$

- Finite number of errors:
 - DE_{fin} number of errors must be finite.
- Fixed number of errors:
 - DE_n at most *n* errors in input.

How many errors are "too many"?

Scales

- Error count: EC(X, n) = number of zs in X until position n.
- Error rate: $ER(X) = \limsup_{n \to \infty} \frac{1}{n} EC(X, n)$
- Error thresholds
 - Error rate (most interesting):
 - ▶ DE_{δ} are games with detected errors, with error rate threshold $\delta \in [0, 1]$

- Finite number of errors:
 - DE_{fin} number of errors must be finite.
- Fixed number of errors:
 - DE_n at most *n* errors in input.
- Bounded number of errors problem:
 - ▶ Is there exists $n \in \mathbb{N}$ s.t INPUT is the winner of DE_n ?

Theorem

Theorem

► It is decidable who is the winner of DE_{δ} , DE_{fin} and DE_n games.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

► It is decidable who is the winner of DE_{δ} , DE_{fin} and DE_n games.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• The bounded number of errors problem is decidable.

Theorem

► It is decidable who is the winner of DE_{δ} , DE_{fin} and DE_n games.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The bounded number of errors problem is decidable.
- Sketch of proof

Theorem

- ► It is decidable who is the winner of DE_{δ} , DE_{fin} and DE_n games.
- The bounded number of errors problem is decidable.
- Sketch of proof
 - Immediate reduction from DE_n and DE_{fin} to regular games, and from DE_{δ} to mean payoff parity games.

Theorem

- ► It is decidable who is the winner of DE_{δ} , DE_{fin} and DE_n games.
- The bounded number of errors problem is decidable.
- Sketch of proof
 - Immediate reduction from DE_n and DE_{fin} to regular games, and from DE_{δ} to mean payoff parity games.
 - It is decidable who is the winner in mean payoff parity game Chatterjee, Henzinger & Jurdzinski 05

Theorem

- ► It is decidable who is the winner of DE_{δ} , DE_{fin} and DE_n games.
- The bounded number of errors problem is decidable.
- Sketch of proof
 - Immediate reduction from DE_n and DE_{fin} to regular games, and from DE_{δ} to mean payoff parity games.
 - It is decidable who is the winner in mean payoff parity game Chatterjee, Henzinger & Jurdzinski 05

► There exists a computable $m \in \mathbb{N}$ s.t: INPUT wins $DE_{fin} \Leftrightarrow$ INPUT wins DE_m

• Game arena
$$G = (V, E, w : E \to \mathbb{Z})$$

- Game arena $G = (V, E, w : E \to \mathbb{Z})$
- Finite path has a total payoff value.
 - For finite path $\pi = e_0 e_1 \dots e_n$.
 - $TP(\pi) = \sum_{i=0}^{n} w(e_i)$

- Game arena $G = (V, E, w : E \to \mathbb{Z})$
- Finite path has a total payoff value.
 - For finite path $\pi = e_0 e_1 \dots e_n$.
 - $TP(\pi) = \sum_{i=0}^{n} w(e_i)$
- Infinite path has a mean payoff value.
 - For infinite path π
 - $\overline{MP}(\pi) = \lim_{n \to \infty} \sup\{\frac{1}{k} TP(\pi[0, k]) | k \ge n\}$
 - $\underline{MP}(\pi) = \lim_{n \to \infty} \inf\{\frac{1}{k} TP(\pi[0, k]) | k \ge n\}$

- Game arena $G = (V, E, w : E \to \mathbb{Z})$
- Finite path has a *total payoff* value.
 - For finite path $\pi = e_0 e_1 \dots e_n$.
 - $TP(\pi) = \sum_{i=0}^{n} w(e_i)$
- Infinite path has a mean payoff value.
 - For infinite path π
 - $\overline{MP}(\pi) = \lim_{n \to \infty} \sup\{\frac{1}{k} TP(\pi[0, k]) | k \ge n\}$
 - $\underline{MP}(\pi) = \lim_{n \to \infty} \inf\{\frac{1}{k}TP(\pi[0, k]) | k \ge n\}$

- Mean payoff condition
 - $MeanPayoffSup^{\geq}(0) \overline{MP}$ value of play ≥ 0
 - MeanPayoffInf^{\geq}(0) <u>MP</u> value of play \geq 0

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Decidability results

Decidability results

► It is decidable who is the winner of DE_n , DE_{fin} and of DE_δ for $\delta = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Decidability results

- ► It is decidable who is the winner of DE_n , DE_{fin} and of DE_{δ} for $\delta = 0$.
- Sketch of proof
 - ► INPUT is the winner of DE_{δ} for $\delta = 0 \Leftrightarrow$ INPUT is the winner of DE_{fin} .

Decidability results

- ► It is decidable who is the winner of DE_n , DE_{fin} and of DE_{δ} for $\delta = 0$.
- Sketch of proof
 - ► INPUT is the winner of DE_{δ} for $\delta = 0 \Leftrightarrow$ INPUT is the winner of DE_{fin} .
 - ► INPUT is the winner of $DE_{fin} \Leftrightarrow INPUT$ is the winner of DE_n for $n = 2^{|V|}$

Decidability results

- ► It is decidable who is the winner of DE_n , DE_{fin} and of DE_{δ} for $\delta = 0$.
- Sketch of proof
 - ► INPUT is the winner of DE_{δ} for $\delta = 0 \Leftrightarrow$ INPUT is the winner of DE_{fin} .
 - ► INPUT is the winner of $DE_{fin} \Leftrightarrow INPUT$ is the winner of DE_n for $n = 2^{|V|}$
 - ▶ Reduction from DE_n game to ∧ MultiDimensionalMeanPayoff game.

Decidability results

- ► It is decidable who is the winner of DE_n , DE_{fin} and of DE_{δ} for $\delta = 0$.
- Sketch of proof
 - ► INPUT is the winner of DE_{δ} for $\delta = 0 \Leftrightarrow$ INPUT is the winner of DE_{fin} .
 - ► INPUT is the winner of $DE_{fin} \Leftrightarrow INPUT$ is the winner of DE_n for $n = 2^{|V|}$
 - ▶ Reduction from DE_n game to ∧ MultiDimensionalMeanPayoff game.

Undecidability result

- For δ > 0, it is undecidable who is the winner of DE_δ.
 - Immediate reduction to universality problem of non deterministic mean payoff automaton.

The game arena is a graph with multi dimensional weight function.

- $w: E \to \mathbb{Z}^k$.
- Every play π has 2k dimensional mean payoff vector $\overrightarrow{MP} = (\underline{MP}(\pi)_1, \dots, \underline{MP}(\pi)_k, \overline{MP}(\pi)_1, \dots, \overline{MP}(\pi)_k)$

The game arena is a graph with multi dimensional weight function.

- $w: E \to \mathbb{Z}^k$.
- Every play π has 2k dimensional mean payoff vector $\overrightarrow{MP} = (\underline{MP}(\pi)_1, \dots, \underline{MP}(\pi)_k, \overline{MP}(\pi)_1, \dots, \overline{MP}(\pi)_k)$
- Winning conditions

- The game arena is a graph with multi dimensional weight function.
 - $w: E \to \mathbb{Z}^k$.
- Every play π has 2k dimensional mean payoff vector $\overrightarrow{MP} = (\underline{MP}(\pi)_1, \dots, \underline{MP}(\pi)_k, \overline{MP}(\pi)_1, \dots, \overline{MP}(\pi)_k)$
- Winning conditions
 - \bigwedge MeanPayoffInf^{\geq}(0) games
 - OUTPUT must ensure $\bigwedge_{i=1}^{k} (\underline{MP}(\pi)_i \ge 0)$.

(日) (同) (三) (三) (三) (○) (○)

- The game arena is a graph with multi dimensional weight function.
 - $w: E \to \mathbb{Z}^k$.
- Every play π has 2k dimensional mean payoff vector $\overrightarrow{MP} = (\underline{MP}(\pi)_1, \dots, \underline{MP}(\pi)_k, \overline{MP}(\pi)_1, \dots, \overline{MP}(\pi)_k)$
- Winning conditions
 - ∧ MeanPayoffInf[≥](0) games
 - OUTPUT must ensure $\bigwedge_{i=1}^{k} (\underline{MP}(\pi)_i \ge 0)$.
 - \bigwedge MeanPayoffSup^{\geq}(0) games
 - OUTPUT must ensure $\bigwedge_{i=1}^{k} (\overline{MP}(\pi)_i \ge 0)$.

- The game arena is a graph with multi dimensional weight function.
 - $w: E \to \mathbb{Z}^k$.
- Every play π has 2k dimensional mean payoff vector $\overrightarrow{MP} = (\underline{MP}(\pi)_1, \dots, \underline{MP}(\pi)_k, \overline{MP}(\pi)_1, \dots, \overline{MP}(\pi)_k)$
- Winning conditions
 - \bigwedge MeanPayoffInf^{\geq}(0) games
 - OUTPUT must ensure $\bigwedge_{i=1}^{k} (\underline{MP}(\pi)_i \ge 0)$.
 - \bigwedge MeanPayoffSup^{\geq}(0) games
 - OUTPUT must ensure $\bigwedge_{i=1}^{k} (\overline{MP}(\pi)_i \ge 0)$.
 - ▶ \land MeanPayoffInf[≥](0) \land \land MeanPayoffSup[≥](0) games

(日) (同) (三) (三) (三) (○) (○)

► For $S \subseteq \{1, ..., k\}$ OUTPUT must ensure $\bigwedge_{i \in S} (\underline{MP}(\pi)_i \ge 0) \land \bigwedge_{i \in \overline{S}} (\overline{MP}(\pi)_i \ge 0).$

- Chatterjee, Doyen, Henzinger & Raskin 10:
 - When OUTPUT is restricted to finite memory strategy
 - Objectives ∧ MeanPayoffInf[≥](0) and ∧ MeanPayoffSup[≥](0) coincide.

- Deciding whether OUTPUT is the winner is coNP complete.
- If INPUT is the winner, he has a memoryless winning strategy.

- Chatterjee, Doyen, Henzinger & Raskin 10:
 - When OUTPUT is restricted to finite memory strategy
 - Objectives ∧ MeanPayoffInf[≥](0) and ∧ MeanPayoffSup[≥](0) coincide.

- Deciding whether OUTPUT is the winner is coNP complete.
- If INPUT is the winner, he has a memoryless winning strategy.
- ▶ Open question: Decidability and complexity of who is the winner of ∧ *MultiDimensionalMeanPayoff* (when strategy of OUTPUT is not restricted).

- Chatterjee, Doyen, Henzinger & Raskin 10:
 - When OUTPUT is restricted to finite memory strategy
 - Objectives ∧ MeanPayoffInf[≥](0) and ∧ MeanPayoffSup[≥](0) coincide.

- Deciding whether OUTPUT is the winner is coNP complete.
- If INPUT is the winner, he has a memoryless winning strategy.
- Open question: Decidability and complexity of who is the winner of *MultiDimensionalMeanPayoff* (when strategy of OUTPUT is not restricted).
- We answer this question.

Theorem

- For ∧ MeanPayoffSup[≥](0) games
 - \blacktriangleright Deciding whether OUTPUT is the winner is in NP \cap coNP.

Theorem

- For $\bigwedge MeanPayoffSup^{\geq}(0)$ games
 - \blacktriangleright Deciding whether OUTPUT is the winner is in NP \cap coNP.
- For ∧ MeanPayoffInf[≥](0) games
 - Deciding whether OUTPUT is the winner is coNP complete.

Theorem

- For $\bigwedge MeanPayoffSup^{\geq}(0)$ games
 - \blacktriangleright Deciding whether OUTPUT is the winner is in NP \cap coNP.
- For $\bigwedge MeanPayoffInf^{\geq}(0)$ games
 - Deciding whether OUTPUT is the winner is coNP complete.
- ▶ For \land MeanPayoffInf[≥](0) \land \land MeanPayoffSup[≥](0) games
 - Deciding whether OUTPUT is the winner is coNP complete.

Theorem

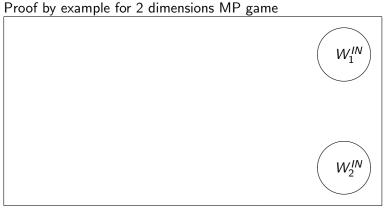
- For $\bigwedge MeanPayoffSup^{\geq}(0)$ games
 - \blacktriangleright Deciding whether OUTPUT is the winner is in NP \cap coNP.
- For $\bigwedge MeanPayoffInf^{\geq}(0)$ games
 - Deciding whether OUTPUT is the winner is coNP complete.
- ▶ For \land MeanPayoffInf[≥](0) \land \land MeanPayoffSup[≥](0) games
 - Deciding whether OUTPUT is the winner is coNP complete.
- For all above games
 - If INPUT is the winner, he has a memoryless winning strategy.

(日) (同) (三) (三) (三) (○) (○)

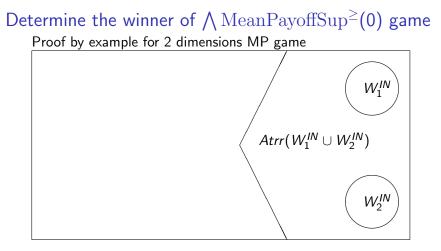
Proof by example for 2 dimensions MP game

Proof by example for 2 dimensions MP game

• W_1^{IN} - INPUT winning region for dimension 1

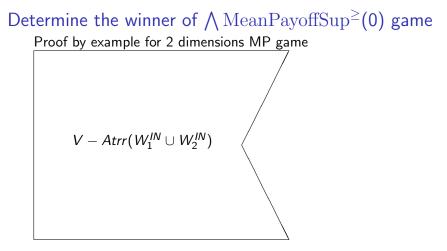


- W_1^{IN} INPUT winning region for dimension 1
- W_2^{IN} INPUT winning region for dimension 2

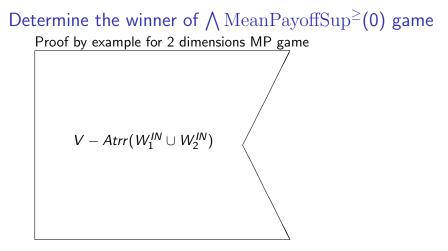


- W_1^{IN} INPUT winning region for dimension 1
- W_2^{IN} INPUT winning region for dimension 2

▶ INPUT wins in $Atrr(W_1^{IN} \cup W_2^{IN})$



- W_1^{IN} INPUT winning region for dimension 1
- W_2^{IN} INPUT winning region for dimension 2
- ▶ INPUT wins in $Atrr(W_1^{IN} \cup W_2^{IN})$
- Continue computation on subgame $V Atrr(W_1^{IN} \cup W_2^{IN})$



- W_1^{IN} INPUT winning region for dimension 1
- W_2^{IN} INPUT winning region for dimension 2
- ▶ INPUT wins in $Atrr(W_1^{IN} \cup W_2^{IN})$
- Continue computation on subgame $V Atrr(W_1^{IN} \cup W_2^{IN})$
 - If $Atrr(W_1^{IN} \cup W_2^{IN}) = \emptyset$, OUTPUT wins in V

Lemma 1: OUTPUT is the winner of ∧ MeanPayoffInf[≥](0) ⇔ For every α > 0, OUTPUT has a finite memory wining strategy in ∧ MeanPayoffInf[≥](−α).

- Lemma 1: OUTPUT is the winner of ∧ MeanPayoffInf[≥](0)
 ⇔ For every α > 0, OUTPUT has a finite memory wining strategy in ∧ MeanPayoffInf[≥](-α).
- When OUTPUT is restricted to finite memory strategies
 - Lemma 2: If INPUT is the winner he has a memoryless winning strategy Chatterjee, Doyen, Henzinger & Raskin 10.

- Lemma 1: OUTPUT is the winner of ∧ MeanPayoffInf[≥](0)
 ⇔ For every α > 0, OUTPUT has a finite memory wining strategy in ∧ MeanPayoffInf[≥](-α).
- When OUTPUT is restricted to finite memory strategies
 - Lemma 2: If INPUT is the winner he has a memoryless winning strategy Chatterjee, Doyen, Henzinger & Raskin 10.

▶ Lemma 3: If INPUT is the winner of A MeanPayoffInf[≥](0), it has a memoryless winning strategy.

- Lemma 1: OUTPUT is the winner of ∧ MeanPayoffInf[≥](0) ⇔ For every α > 0, OUTPUT has a finite memory wining strategy in ∧ MeanPayoffInf[≥](-α).
- When OUTPUT is restricted to finite memory strategies
 - Lemma 2: If INPUT is the winner he has a memoryless winning strategy Chatterjee, Doyen, Henzinger & Raskin 10.

(日) (同) (三) (三) (三) (○) (○)

- ▶ Lemma 3: If INPUT is the winner of A MeanPayoffInf[≥](0), it has a memoryless winning strategy.
- ► Lemma 4: One can verify in polynomial time if INPUT memoryless strategy is a winning strategy in ∧ MeanPayoffInf[≥](0).

- Lemma 1: OUTPUT is the winner of ∧ MeanPayoffInf[≥](0) ⇔ For every α > 0, OUTPUT has a finite memory wining strategy in ∧ MeanPayoffInf[≥](-α).
- When OUTPUT is restricted to finite memory strategies
 - Lemma 2: If INPUT is the winner he has a memoryless winning strategy Chatterjee, Doyen, Henzinger & Raskin 10.
- ► Lemma 3: If INPUT is the winner of A MeanPayoffInf[≥](0), it has a memoryless winning strategy.
- ► Lemma 4: One can verify in polynomial time if INPUT memoryless strategy is a winning strategy in ∧ MeanPayoffInf[≥](0).
- Corollaries:
 - Deciding whether OUTPUT is the winner is in coNP
 - coNP hardness follows from Chatterjee, Doyen, Henzinger & Raskin 10 ⇒ The problem is coNP complete.

When weights are restricted to $\{-1, 0, +1\}$

- ► Deciding whether OUTPUT is the winner for ∧ MeanPayoffSup[≥](0) condition is in P
- ► Deciding whether OUTPUT is the winner for ∧ MeanPayoffInf[≥](0) condition is coNP hard

Games with undetected errors

Two players game.

- ω language $L \subseteq \{0,1\}^{\omega} imes \{0,1\}^{\omega}$
- In every round
 - Player INPUT plays with 0, 1 (every move is possibly an undetected error).

- Player OUTPUT responds with 0 or 1
- Infinite play forms (IN, OUT).

Games with undetected errors

Two players game.

- ▶ ω language $L \subseteq \{0,1\}^{\omega} \times \{0,1\}^{\omega}$
- In every round
 - Player INPUT plays with 0, 1 (every move is possibly an undetected error).
 - Player OUTPUT responds with 0 or 1
- ► Infinite play forms (*IN*, *OUT*).
- OUTPUT wins if for every $X \in \{0, 1\}^{\omega}$:
 - X has "too many errors" $(X(i) \text{ has error if } X(i) \neq IN(i))$.

• $(X, OUT) \in L$

Games with undetected errors - cont

- ► Error count: EC(IN, X, n) number of positions until position n where X(i) ≠ IN(i)
- Firror rate: $ER(IN, X) = \lim_{n \to \infty} \sup\{\frac{1}{k}EC(IN, X, k)|k\}$
- Thresholds
 - UDE_{δ} error rate δ
 - UDE fin finite number of errors
 - UDE_n up to n errors
- ▶ Bounded number of errors problem is there exists $n \in \mathbb{N}$ s.t INPUT is the winner of UDE_n ?

Theorem

• It is decidable who is the winner of UDE_{fin} and UDE_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Immediate reduction to regular games.

Theorem

- It is decidable who is the winner of UDE_{fin} and UDE_n
 - Immediate reduction to regular games.
- For $\delta > 0$ it is undecidable who is the winner of UDE_{δ}
 - Reduction to the universality problem of non deterministic mean payoff automaton.

Theorem

- ▶ It is decidable who is the winner of UDE_{fin} and UDE_n
 - Immediate reduction to regular games.
- For $\delta > 0$ it is undecidable who is the winner of UDE_{δ}
 - Reduction to the universality problem of non deterministic mean payoff automaton.

- Open questions
 - Deciding the winner of UDE_{δ} for $\delta = 0$
 - The bounded number of errors problem.

Conclusion

- 2. We obtained the following results for error games:

	Bounded		Fin		$\delta = 0$		$\delta \in (0,1)$		$\delta = 1$	
	Par	MP	Par	MP	Par	MP	Par	MP	Par	MP
DE	\checkmark	Х	\checkmark	Х						
UDE	?	?	\checkmark	?	?	?	Х	Х	\checkmark	Х
$\sqrt{-\text{decidable}}$ X - undecidable ? - Open										

 \checkmark - decidable. X - undecidable. ? - Open.

Thank you

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ ≧ ∽のへで