VERIFICATION OF REQUIREMENT SPECIFICATION USING COUNTER AUTOMATA

K VASANTA LAKSHMI AND K V RAGHAVAN Indian Institute of Science, Bangalore

- Motivation
- Our approach

- Motivation
- Our approach
 - We give an algorithm which is similar to symbolic model checking.

- Motivation
- Our approach
 - We give an algorithm which is similar to symbolic model checking.
 - But in addition to reachability it can also answer a class of temporal properties.

- Motivation
- Our approach
 - We give an algorithm which is similar to symbolic model checking.
 - But in addition to reachability it can also answer a class of temporal properties.
- How it relates to existing work

- Motivation
- Our approach
 - We give an algorithm which is similar to symbolic model checking.
 - But in addition to reachability it can also answer a class of temporal properties.
- How it relates to existing work
 - We believe that we can define a new class of counter automata for which reachability is decidable and

- Motivation
- Our approach
 - We give an algorithm which is similar to symbolic model checking.
 - But in addition to reachability it can also answer a class of temporal properties.
- How it relates to existing work
 - We believe that we can define a new class of counter automata for which reachability is decidable and
 - This class is not subsumed by any already known such class.

- Our motivation for this work is a set of examples from:
 - Finance domain (Savings bank account and credit card account)
 - Filters in streaming applications
 - Simple programs (without dynamic allocation).

- Our motivation for this work is a set of examples from:
 - Finance domain (Savings bank account and credit card account)
 - Filters in streaming applications
 - Simple programs (without dynamic allocation).
- * These programs are infinite-state systems and can be naturally modeled using our restricted *counter automata*.

- Our motivation for this work is a set of examples from:
 - Finance domain (Savings bank account and credit card account)
 - Filters in streaming applications
 - Simple programs (without dynamic allocation).
- * These programs are infinite-state systems and can be naturally modeled using our restricted *counter automata*.
- Goal: Verification of infinite state systems that can be modeled using counter automata.

- Our motivation for this work is a set of examples from:
 - Finance domain (Savings bank account and credit card account)
 - Filters in streaming applications
 - Simple programs (without dynamic allocation).
- * These programs are infinite-state systems and can be naturally modeled using our restricted *counter automata*.
- Goal: Verification of infinite state systems that can be modeled using counter automata.
 - Challenge: In infinite-state systems in general even simple property like reachability is undecidable.

+

Model Based Software Development Cycle

4

Counter Automata

We assume Presburger arithmetic for *guards* and *actions*.

6

Accept deposits of any Amount

Initial Model: Counter Automata

Initial Model: Counter Automata

Initial Model: Counter Automata

Initial Model: Counter Automata Abstract states balance = 0**Initial States** $t_overd = 0$ balance' = balance' amount: $<math display="block">t_{over} + 1; amount:$ $<math display="block">c_{over} + 1; c_{over} + 1;$ c overd = 0c n withd = 0balance: "balance + amount balance: "balance + amount deposit: amount 10 Abstract transition !(balance = 0)balance = 10,000t overd = 0t overd = 1 $c_overd = 0$ c overd = 1 c_n withd = 0) Ithdrawali L = 20k c n withd = 0withdrawali balance = 10,000t overd = 1deposit; c overd = 1amount > 00 c n withd = 0

Repeat until there are no more bad edges remaining.
If algorithm terminates then we have a *finite final partitioning*.

If there is an edge between partitions P1 and P2, then every concrete state in P2 has a pre-image in P1.

 Final partitioning is a refinement of partitioning created by symbolic model checking.

 Terminates on a subclass of systems on which symbolic model checking terminates.

Applying our algorithm on Banking Example

Applying our algorithm on Banking Example

Saturday 29 January 2011

Applying our algorithm on Banking Example: Part of final partitioning

Saturday 29 January 2011

Answering Verification Properties:Reachability

Saturday 29 January 2011

Answering Verification Properties: Temporal Properties Example: If an overdraft is rejected there is some overdraft that was accepted in the past.

Our Algorithm: Summary

- Final partitioning satisfies following property:
 - If there is an edge between partitions P1 and P2, then every concrete state in P2 has a pre-image in P1.
- We can answer some temporal properties other than reachability.
 - Future work: To define the class of temporal properties that can be answered with final partitioning.
- The algorithm does not terminate on all counter automata.
 - Future work: To improve our algorithm to terminate on larger class of systems.

Our Algorithm: Proposed Improvements

- Algorithm can be tuned to terminate on larger class of counter automata using following changes:
 - To compute Image* instead of Image while refining on self loops on partitions.
 - To avoid partitioning of already reachable states.
 - To answer reachability for a given set of final states.
 - These improvements will make our algorithm equivalent to symbolic model checking.

+

Example: Computing Image*

Example: Computing Image*

Example: Computing Image*

Initial State
$$n = 0$$
 $n' = n + 1$ $n = 1$ $n' = n + 1$ 2 $n > 1$ $n' = n + 1$

Initial State
$$n = 0$$
 $n' = n + 1$ $n = 1$ $n' = n + 1$ $n = 2$ $n' = n + 1$ 3 $n > 2 0$ $n' = n + 1$

• We loose the information about the paths on which we could reach a particular state.

Avoid Partitioning of Already Reachable States

Avoid Partitioning of Already Reachable States

Backward Analysis

Answering properties using Backward Analysis

- Control state reachability: Given a transition system with a finite labeling for concrete states, we can only answer reachability of a label using our backward analysis algorithm.
- Backward algorithm terminates on some examples where forward algorithm fails to terminate, and vice versa.
- Forward algorithm:
 - * *Must* analysis for reachability of a concrete state form initial state.
 - * *May* analysis for reachability of a final state from given concrete state.
- Backward algorithm:
 - * *May* analysis for reachability of a concrete state form initial state.
 - *Must* analysis for reachability of a final state from given concrete state.

In Comparison to Existing Algorithms

- * Algorithms for hybrid automata proposed by Henzinger et. al.
 - Partitioning based
 - Backward analysis of the system
 - Answer control state reachability
 - Synergy proposed by Bhargav S. Gulavani et. al.
 - Partitioning based
 - Backward analysis
 - Answers reachability of a given set of final states.
 - Symbolic model checking of infinite state systems
 - Forward analysis
 - Set saturation based

+

+

Comparison to Ibarra et. al. (2000)

- Result: Emptiness, infiniteness, disjointness, containment and equivalence is decidable for reversal bounded counter machines.
- The banking example is not reversal bounded:
 - balance and cn_withd are not reversal bounded.
- Our algorithm doesn't terminate on all reversal bounded counter automata.
- Future work: To improve our algorithm so that it terminates on all reversal bounded counter automata.

Comparison to Comon et. al. (1998)

- Result: Reachability is decidable in flat counter automata.
- Counter automata for the banking example is not a flat.

Comparison to Comon et. al. (1998)

- Result: Reachability is decidable in flat counter automata.
- Counter automata for the banking example is not a flat.

Comparison to Comon et. al. (1998)

- * **Result:** Reachability is decidable in flat counter automata.
- Counter automata for the banking example is not a flat.

- The guard on edges is specified as conjunctions formulas of the form: x <= y + d, where x and y can be primed or unprimed counters and d is a constant.
- * Future Work: Check if our algorithm terminates on all flat automata.

Comparison to Past Work: Summary

- The two papers define classes of counter automata for which reachability is decidable.
- Future Work:
 - Identify the sufficient conditions for termination of our algorithms.
 - To improve our algorithms to terminate on a class of counter automata that is superset of reversal bounded and flat automata.

Comparison to A. Finkel et. al. (1994)

- Result: Generalized results for answering control state reachability in well-structured infinite state transition systems
- Future work:
 - Check how well-structuredness of transitions systems is related to termination of our algorithms.

THANK YOU