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Timed Automata [AD94]

c, (x<1)

d, (x>1)

a, (y<1) y:=

Run: finite sequence of transitions,

X y
A~ A~
(0,70 .70 ) 222 (s,0.4,0) 225 (5.,0.9,0.5)

» A run is accepting if it ends in a state.
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The problem we are interested in ...

Given a TA, does there exist an accepting run?
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The problem we are interested in ...

Given a TA, does there exist an accepting run?

Theorem [AD94]

This problem is PSPACE-complete
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First solution to this problem

Key idea: Partition the space of valuations into a finite
number of regions
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» Region: set of valuations
y satisfying the same
guards w.r.t. time

» Finiteness: Parametrized
by maximal constant
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Sound and complete

Region graph preserves state reachability
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First solution to this problem

Key idea: Partition the space of valuations into a finite
number of regions

» Region: set of valuations
satisfying the same
guards w.r.t. time

» Finiteness: Parametrized
by maximal constant

O(|X|!.MX1) many regions!

Sound and complete

Region graph preserves state reachability
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A more efficient solution...

Key idea: Maintain all valuations reaching a state via a path
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A more efficient solution...

Key idea: Maintain all valuations reaching a state via a path
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A more efficient solution...

Key idea: Maintain all valuations reaching a state via a path
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A more efficient solution...

Key idea: Maintain all valuations reaching a state via a path
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Zones and zone graph

» Zone: set of valuations defined
by conjunctions of constraints:
> X~ C
> X—y~C
»eg (x—y>1)Ay<2

» Representation: by DBM
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Zones and zone graph

[0] (x==y && y==0)

» Zone: set of valuations defined
by conjunctions of constraints:
> X~ C
> X—y~C
eg (x—y>1)Ay<2

[1] (x<2 && y==0)

([21 (I<=x && y::l)j ([1] (1<x && x<2 && y::O)j

[2] (Q<x && y==1)

» Representation: by DBM
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Zones and zone graph

[0] (x==y && y==0)
1 (y==0)
[3] (x<l && y<=x)

» Zone: set of valuations defined
by conjunctions of constraints:

> X~ C
s - > X—yn~C¢C
») @ e o »eg (x—y>1)Ay <2

([21 (I<=x && y::l)j ([1] (1<x && x<2 && y::O)j

Sound and complete

Zone graph preserves state reachability

» Representation: by DBM
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But the zone graph could be infinite ...
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Use finite abstractions

Key idea: Extrapolate each zone in a sound manner

(g0, Z0)

AN

(g1, Z1)

AN

(92, 22)
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Use finite abstractions

Key idea: Extrapolate each zone in a sound manner

(90, Z0) (qo, a(Z0))
AN

(g1, Z1)

AN

(92, 22)
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Use finite abstractions

Key idea: Extrapolate each zone in a sound manner

(90, 20) (90, a(2))
AN AN
(91, Z1) (q1,2')
AN
(92, 22)
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Use finite abstractions

Key idea: Extrapolate each zone in a sound manner

(90, 20) (90, a(20))
N HON
(g1, Z1) (q1,a(Z"))
AN
(92, 22)
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Use finite abstractions

Key idea: Extrapolate each zone in a sound manner

(g0, Z0)

AN

(g1, Z1)

AN

(92, 22)

Using

(qo, a(2))

HON
(q1,a(Z"))
AN

(92, Z2")
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Use finite abstractions

Key idea: Extrapolate each zone in a sound manner

(90, 20) (90, a(20))
N HON
(g1, Z1) (q1,a(Z"))
AN AN
(92, 22) (g2,a(Z"))
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Use finite abstractions

Key idea: Extrapolate each zone in a sound manner

(90, 20) (90, a(20))
N HON
(91, Z1) (q1,a(Z"))
AN AN
(g2, £2) (g2,a(Z"))

» Number of extrapolated zones is finite

» Bigger extrapolated zones — smaller simulation graph
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Abstractions in literature [Bou04, BBLP06]

a<ru
/N
Closure,, Extra/,
N
ExtraZ
T
Extra,
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Abstractions in literature [Bou04, BBLP06]

a<ru
/N
Closure,, Extra/,
NS
Extral
|
Extra,

Sound and complete

All the above abstractions preserve state reachability
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Abstractions in literature [Bou04, BBLPO6]

a<ru
/N
Closure,, Extra/,
N S
ExtraZ
T
Extra,

Sound and complete

All the above abstractions preserve state reachability

But for implementation extrapolated zone should be a zone
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Abstractions in literature [Bou04, BBLPO6]

aziu
/N
Closure, Extra/, v/
NS
Extral v/
T
Extra, v

Only convex abstractions in implementations!
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Here...

Efficient use of the non-convex Closure abstraction!
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What is Closure,?

y

o(x)
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What is Closure,?

y

N

o(x)
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What is Closure,?

y

N

a(x)

Closure,(Z): set of regions that Z intersects
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Schema

(9o, a(Zo))

(q1,0(Z1)) » (g5,0(Zs5))

(a2,0(2)) (qs,0(Z))

(g3, 0(Z3))

Using non-convex Approximations for Efficient Analysis of Timed Automata - 12/23



Schema

(90, 20)

(91, 21) (g5, Z5)

(92, 22) (94, Za)

(g3, 23)
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Schema

(90, 20)

(q1,21) (g5, Z5)
B =aq A

Z3 C Closure, (Z1)? (92, 2) (qa, Za)

(g3, 23)
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Z C Closure,(Z)

Reduction to 2 clocks

Z C Closure,(Z’) iff for all pairs of clocks x,y, we have

Proj.,(Z) C Closure,(Proj.,(Z"))

Complexity: O(]X|?) where X is the set of clocks
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Z C Closure,(Z)

Reduction to 2 clocks

Z C Closure,(Z') iff for all pairs of clocks x, y, we have

Proj,,(Z) C Closure,(Projy,(Z'))
Complexity: O(]X]|?) where X is the set of clocks

Same complexity as Z C Z’ |

Using non-convex Approximations for Efficient Analysis of Timed Automata - 13/23



So what do we have now...

» No need to restrict to convex abstractions

» Compute ZG(A): Z C Closure,(Z’) to terminate
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So what do we have now...

» No need to restrict to convex abstractions

» Compute ZG(A): Z C Closure,(Z’) to terminate

Coming next: prune the bound function o !

Using non-convex Approximations for Efficient Analysis of Timed Automata - 14/23



Bound function «

Naive: a(x) =14, a(y) = 10°
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Static analysis: bound function for every g
[BBFLO3|
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Static analysis: bound function for every g

5 5
—
x<5

[BBFLO3|

y>5

But this is not enough!
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Need to look at semantics...

x=1
x:=0
—
x> 2
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Need to look at semantics...

x=1
x:=0
10°
—
x> 2
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Need to look at semantics...

x=1
x:=0
10°
—
x> 2

x<1

(=) =)

More than 10° zones at gy not necessary!
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Bound function for every (g, Z) in ZG(.A)
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Bound function for every (g, Z) in ZG(.A)

constants at
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Constant propagation

(q,Z,q)
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Constant propagation
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Constant propagation
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Constant propagation

(g,Z,)
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Constant propagation
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Constant propagation
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Constant propagation

All tentative nodes consistent
a(x)= 11 + No more exploration

— Terminate!

Using non-convex Approximations for Efficient Analysis of Timed Automata - 18/23



Invariants on the bounds

» Non tentative nodes: o« = max{asyec} (modulo resets)

» Tentative nodes: & = master
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Invariants on the bounds

» Non tentative nodes: o« = max{asyec} (modulo resets)

» Tentative nodes: & = master

Theorem (Correctness)

An accepting state is reachable in ZG(A) iff the algorithm
reaches a node with an accepting state and a non-empty zone.
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Overall algorithm

» Compute ZG(A): Z C Closure, (Z’) for termination
» Bounds « calculated on-the-fly

» Extra/, can also be handled:
» O(|X[?) procedure for Z C Closurey (Extra},,(Z))
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Benchmarks

Model Ez'U,sa Clz'U,sa Clz'U,otf
nodes s. nodes s. nodes s.
Fi7 48535 6.24 48535 4.85 26405 2.76
Fi8 229890 63.97 229890 33.78 95353 12.49
Fi9 1024697 | 558.90 1024697 | 250.42 339211 55.29
Fi10 — — — — 1191211 | 322.01
c7 23137 6.07 23137 6.74 18034 5.94
C8 86157 40.45 86157 37.18 65745 30.92
9 317326 | 283.56 317326 | 201.02 238594 | 156.56
FD10 726 1.89 640 3.22 640 3.35
FD20 2846 70.13 2430 86.27 2430 90.99
FD30 6366 | 670.31 5370 | 622.14 5370 | 655.89

E}',, sa is currently used in UPPAAL

» Closure can be efficiently implemented

» Both Closure and otf bounds help
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Conclusions & Perspectives

v

Efficient implementation of a non-convex
approximation that subsumes current ones in use

v

On-the-fly learning of bounds that is better than the
current static analysis

v

More sophisticated non-convex approximations

v

Strategies for constraint propagation
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