Using non-convex Approximations for Efficient Analysis of Timed Automata

F. Herbreteau¹, D. Kini², B. Srivathsan¹ and I. Walukiewicz¹

LaBRI, Université de Bordeaux 1

Indian Institute of Technology Bombay, India

ACTS III, January 2011 - Chennai, India

Timed Automata [AD94]

Run: finite sequence of transitions,

$$(s_0, \overbrace{0}^{x}, \overbrace{0}^{y}) \xrightarrow{0.4, a} (s_1, 0.4, 0) \xrightarrow{0.5, c} (s_3, 0.9, 0.5)$$

• A run is **accepting** if it ends in a green state.

The problem we are interested in ...

Given a TA, does there exist an accepting run?

The problem we are interested in ...

Given a TA, does there exist an accepting run?

Theorem [AD94]

This problem is **PSPACE-complete**

Key idea: Partition the space of valuations into a **finite** number of **regions**

Key idea: Partition the space of valuations into a **finite** number of **regions**

- Region: set of valuations satisfying the same guards w.r.t. time
- Finiteness: Parametrized by maximal constant

Key idea: Partition the space of valuations into a **finite** number of **regions**

- Region: set of valuations satisfying the same guards w.r.t. time
- Finiteness: Parametrized by maximal constant

Key idea: Partition the space of valuations into a **finite** number of **regions**

- Region: set of valuations satisfying the same guards w.r.t. time
- Finiteness: Parametrized by maximal constant

Sound and complete

Region graph preserves state reachability

Key idea: Partition the space of valuations into a **finite** number of **regions**

- Region: set of valuations satisfying the same guards w.r.t. time
- Finiteness: Parametrized by maximal constant

 $\mathcal{O}(|X|!.M^{|X|})$ many regions!

Sound and complete

Region graph preserves state reachability

Key idea: Maintain all valuations reaching a state via a path

Key idea: Maintain all valuations reaching a state via a path

Key idea: Maintain all valuations reaching a state via a path

Key idea: Maintain all valuations reaching a state via a path

Key idea: Maintain all valuations reaching a state via a path

Key idea: Maintain all valuations reaching a state via a path

Key idea: Maintain all valuations reaching a state via a path

Key idea: Maintain all valuations reaching a state via a path

Key idea: Maintain all valuations reaching a state via a path

Key idea: Maintain all valuations reaching a state via a path

Key idea: Maintain all valuations reaching a state via a path

Key idea: Maintain all valuations reaching a state via a path

Key idea: Maintain all valuations reaching a state via a path

Key idea: Maintain all valuations reaching a state via a path

Zones and zone graph

- Zone: set of valuations defined by conjunctions of constraints:
 - ► *x* ~ *c*

•
$$x - y \sim c$$

• e.g.
$$(x - y \ge 1) \land y < 2$$

Representation: by DBM

Zones and zone graph

- Zone: set of valuations defined by conjunctions of constraints:
 - ► *x* ~ *c*

•
$$x - y \sim c$$

• e.g.
$$(x - y \ge 1) \land y < 2$$

Representation: by DBM

Zones and zone graph

- Zone: set of valuations defined by conjunctions of constraints:
 - ► *x* ~ *c*

•
$$x - y \sim c$$

• e.g.
$$(x - y \ge 1) \land y < 2$$

Representation: by DBM

Sound and complete

Zone graph preserves state reachability

- Number of extrapolated zones is finite
- ▶ **Bigger** extrapolated zones → smaller simulation graph

Sound and complete

All the above abstractions preserve state reachability

Sound and complete

All the above abstractions preserve state reachability

But for implementation extrapolated zone should be a zone

Only convex abstractions in implementations!

Efficient use of the non-convex Closure abstraction!

What is $Closure_{\alpha}$?

What is $Closure_{\alpha}$?

What is $Closure_{\alpha}$?

Closure_{α}(*Z*): set of regions that *Z* intersects

Schema

Schema

Schema

 $Z \subseteq \text{Closure}_{\alpha}(Z')$

Reduction to 2 clocks

 $Z \subseteq \text{Closure}_{\alpha}(Z')$ iff for all pairs of clocks x, y, we have $Proj_{xy}(Z) \subseteq \text{Closure}_{\alpha}(Proj_{xy}(Z'))$

Complexity: $\mathcal{O}(|X|^2)$ where X is the set of clocks

$$Z \subseteq \mathsf{Closure}_{\alpha}(Z')$$

Reduction to 2 clocks

 $Z \subseteq \text{Closure}_{\alpha}(Z')$ iff for all pairs of clocks x, y, we have $Proj_{xy}(Z) \subseteq \text{Closure}_{\alpha}(Proj_{xy}(Z'))$

Complexity: $\mathcal{O}(|X|^2)$ where X is the set of clocks

Same complexity as $Z \subseteq Z'$!

So what do we have now...

- No need to restrict to convex abstractions
- Compute $ZG(\mathcal{A})$: $Z \subseteq Closure_{\alpha}(Z')$ to **terminate**

So what do we have now...

- No need to restrict to convex abstractions
- Compute $ZG(\mathcal{A})$: $Z \subseteq Closure_{\alpha}(Z')$ to **terminate**

Coming next: prune the bound function α !

Bound function α

Naive:
$$\alpha(x) = 14$$
, $\alpha(y) = 10^{6}$

But this is not enough!

Need to look at semantics...

Need to look at semantics...

Need to look at semantics...

More than 10^6 zones at q_0 not necessary!

Bound function for every (q, Z) in ZG(A)

Bound function for every (q, Z) in ZG(A)

$$\alpha(x) = -\infty$$

$$(q, Z, \alpha)$$

Invariants on the bounds

- Non tentative nodes: $\alpha = max\{\alpha_{succ}\}$ (modulo resets)
- Tentative nodes: $\alpha = \alpha_{master}$

Invariants on the bounds

- Non tentative nodes: $\alpha = max\{\alpha_{succ}\}$ (modulo resets)
- Tentative nodes: $\alpha = \alpha_{master}$

Theorem (Correctness)

An accepting state is reachable in ZG(A) iff the algorithm reaches a node with an accepting state and a non-empty zone.

Overall algorithm

- ▶ Compute ZG(A): $Z \subseteq Closure_{\alpha'}(Z')$ for **termination**
- Bounds α calculated on-the-fly
- Extra⁺₁₁₁ can also be handled:
 - $\mathcal{O}(|X|^2)$ procedure for $Z \subseteq \text{Closure}_{\alpha'}(\text{Extra}^+_{L'U'}(Z'))$

Benchmarks

Model	E_{LU}^+ ,sa		Cl ⁺ _{LU} ,sa		Cl_{LU}^+ , otf	
	nodes	S.	nodes	S.	nodes	s.
Fi7	48535	6.24	48535	4.85	26405	2.76
Fi8	229890	63.97	229890	33.78	95353	12.49
Fi9	1024697	558.90	1024697	250.42	339211	55.29
Fi10	_	_	_	_	1191211	322.01
C7	23137	6.07	23137	6.74	18034	5.94
C8	86157	40.45	86157	37.18	65745	30.92
C9	317326	283.56	317326	201.02	238594	156.56
FD10	726	1.89	640	3.22	640	3.35
FD20	2846	70.13	2430	86.27	2430	90.99
FD30	6366	670.31	5370	622.14	5370	655.89

E_{III}^+ , sa is currently used in **UPPAAL**

- Closure can be efficiently implemented
- **Both** Closure and otf bounds help

Conclusions & Perspectives

- Efficient implementation of a non-convex approximation that subsumes current ones in use
- On-the-fly learning of bounds that is better than the current static analysis

- More sophisticated non-convex approximations
- Strategies for constraint propagation

Bibliography

R. Alur and D.L. Dill.

A theory of timed automata. Theoretical Computer Science, 126(2):183–235, 1994.

G. Behrmann, P. Bouyer, E. Fleury, and K. G. Larsen.

Static guard analysis in timed automata verification. In *TACAS'03*, volume 2619 of *LNCS*, pages 254–270. Springer, 2003.

G. Behrmann, P. Bouyer, K. G. Larsen, and R. Pelanek.

Lower and upper bounds in zone-based abstractions of timed automata. Int. Journal on Software Tools for Technology Transfer, 8(3):204–215, 2006.

P. Bouyer.

Forward analysis of updatable timed automata. Form. Methods in Syst. Des., 24(3):281–320, 2004.