Using non-convex Approximations for Efficient Analysis of Timed Automata

F. Herbreteau\textsuperscript{1}, D. Kini\textsuperscript{2}, B. Srivathsan\textsuperscript{1} and I. Walukiewicz\textsuperscript{1}

LaBRI, Université de Bordeaux 1

Indian Institute of Technology Bombay, India

ACTS III, January 2011 - Chennai, India
Run: finite sequence of transitions,

\[
(s_0, 0, 0) \xrightarrow{0.4, a} (s_1, 0.4, 0) \xrightarrow{0.5, c} (s_3, 0.9, 0.5)
\]

▶ A run is accepting if it ends in a green state.
The problem we are interested in ...
The problem we are interested in ... 

Given a TA, does there exist an accepting run?

Theorem [AD94]

This problem is PSPACE-complete
First solution to this problem

Key idea: Partition the space of valuations into a finite number of regions
First solution to this problem

**Key idea:** Partition the space of valuations into a **finite** number of **regions**

- **Region:** set of valuations satisfying the **same** guards w.r.t. time
- **Finiteness:** Parametrized by **maximal constant**
First solution to this problem

Key idea: Partition the space of valuations into a finite number of regions

- Region: set of valuations satisfying the same guards w.r.t. time
- Finiteness: Parametrized by maximal constant
First solution to this problem

Key idea: Partition the space of valuations into a finite number of regions

- **Region**: set of valuations satisfying the same guards w.r.t. time

- **Finiteness**: Parametrized by maximal constant

Sound and complete

**Region graph** preserves state reachability
First solution to this problem

Key idea: Partition the space of valuations into a finite number of regions

- **Region**: set of valuations satisfying the same guards w.r.t. time
- **Finiteness**: Parametrized by maximal constant $O(|X|! \cdot M^{|X|})$ many regions!

Sound and complete

**Region graph** preserves state reachability
A more efficient solution...

Key idea: Maintain all valuations reaching a state via a path
A more efficient solution...

Key idea: Maintain **all valuations** reaching a state via a path

\[
x = y \geq 0
\]

\[
x = y \geq 7
\]

\[
y - x \geq 7 \quad (x \leq 5)
\]

\[
y - x \geq 7 \quad (y \geq 7)
\]

\[
x := 0
\]
A more efficient solution...

Key idea: Maintain **all valuations** reaching a state via a path

![Diagram](image)
A more efficient solution...

Key idea: Maintain **all valuations** reaching a state via a path

\[ \begin{align*}
(x &\leq 5) \\
(y &\geq 7) \\
x &:= 0
\end{align*} \]
A more efficient solution...

Key idea: **Maintain all valuations** reaching a state via a path.
A more efficient solution...

Key idea: Maintain all valuations reaching a state via a path
A more efficient solution...

Key idea: Maintain all valuations reaching a state via a path
A more efficient solution...

Key idea: Maintain all valuations reaching a state via a path
A more efficient solution...

**Key idea:** Maintain **all valuations** reaching a state via a path.

\[
x = y \geq 0 \quad x = y \geq 5 \quad y - x \geq 7
\]

\[
(x \leq 5) \quad (y \geq 7) \quad x := 0
\]
A more efficient solution...

**Key idea:** Maintain **all valuations** reaching a state via a path

\[
\begin{align*}
 x &\leq 5 \\
 y &\geq 7 \\
 x &:= 0
\end{align*}
\]
A more efficient solution...

Key idea: Maintain all valuations reaching a state via a path
A more efficient solution...

**Key idea:** Maintain **all valuations** reaching a state via a path

\[
x \leq 5 \quad (x \leq 5)
\]

\[
y \geq 7 \quad (y \geq 7)
\]

\[
x := 0
\]
A more efficient solution...

Key idea: Maintain all valuations reaching a state via a path
A more efficient solution...

Key idea: Maintain **all valuations** reaching a state via a path
Zones and zone graph

- **Zone**: set of valuations defined by conjunctions of constraints:
  - \( x \sim c \)
  - \( x - y \sim c \)
  - e.g. \( (x - y \geq 1) \land y < 2 \)

- **Representation**: by DBM
Zones and zone graph

Zone: set of valuations defined by conjunctions of constraints:
- \( x \sim c \)
- \( x - y \sim c \)
- e.g. \((x - y \geq 1) \land y < 2\)

Representation: by DBM
Zones and zone graph

- **Zone**: set of valuations defined by conjunctions of constraints:
  - $x \sim c$
  - $x - y \sim c$
  - e.g. $(x - y \geq 1) \land y < 2$

- **Representation**: by DBM

---

**Sound and complete**

**Zone graph** preserves state **reachability**
But the zone graph could be infinite ...

(y = 1)

$y := 0$

$q_0 \xrightarrow{x := 0} q_1$

$q_1 \xrightarrow{y := 0} q_1$
But the zone graph could be infinite ...
But the zone graph could be infinite ...
Use finite abstractions

Key idea: **Extrapolate** each zone in a **sound** manner

\[(q_0, Z_0) \rightarrow (q_1, Z_1) \rightarrow (q_2, Z_2)\]
Use finite abstractions

Key idea: **Extrapolate** each zone in a **sound** manner

\[
(q_0, Z_0) \quad \rightarrow \quad (q_1, Z_1) \quad \rightarrow \quad (q_2, Z_2) \quad \rightarrow \quad (q_0, a(Z_0))
\]

- Number of extrapolated zones is finite
- Bigger extrapolated zones $\rightarrow$ smaller simulation graph
Use finite abstractions

Key idea: **Extrapolate** each zone in a **sound** manner

\[(q_0, Z_0) \quad \rightarrow \quad (q_1, Z_1) \quad \rightarrow \quad (q_2, Z_2)\]

\[(q_0, a(Z_0)) \quad \rightarrow \quad \quad \quad \quad \quad \quad \quad \quad \quad \]

- Number of extrapolated zones is finite
- Bigger extrapolated zones $\rightarrow$ smaller simulation graph
Use finite abstractions

Key idea: Extrapolate each zone in a sound manner

\[(q_0, Z_0) \quad \quad (q_1, Z_1) \quad \quad (q_2, Z_2)\]

\[(q_0, \alpha(Z_0)) \quad \quad (q_1, Z')\]
Use finite abstractions

Key idea: **Extrapolate** each zone in a **sound** manner

\[(q_0, Z_0) \quad \rightarrow \quad (q_1, Z_1) \quad \rightarrow \quad (q_2, Z_2)\]

\[(q_0, \alpha(Z_0)) \quad \rightarrow \quad (q_1, \alpha(Z'))\]
Use finite abstractions

Key idea: **Extrapolate** each zone in a **sound** manner

\[
(q_0, Z_0) \quad \rightarrow \quad (q_1, Z_1) \quad \rightarrow \quad (q_2, Z_2)
\]

\[
(q_0, \alpha(Z_0)) \quad \rightarrow \quad (q_1, \alpha(Z')) \quad \rightarrow \quad (q_2, Z'')
\]
Use finite abstractions

Key idea: **Extrapolate** each zone in a **sound** manner

\[(q_0, Z_0) \rightarrow (q_1, Z_1) \rightarrow (q_2, Z_2)\]

\[(q_0, a(Z_0)) \rightarrow (q_1, a(Z')) \rightarrow (q_2, a(Z''))\]
Use finite abstractions

Key idea: **Extrapolate** each zone in a **sound** manner

\[(q_0, Z_0) \xrightarrow{\pm} (q_1, Z_1) \xrightarrow{\pm} (q_2, Z_2)\]

\[(q_0, a(Z_0)) \xrightarrow{\pm} (q_1, a(Z')) \xrightarrow{\pm} (q_2, a(Z''))\]

- **Number of extrapolated zones is finite**
- **Bigger** extrapolated zones → **smaller simulation graph**
Abstractions in literature [Bou04, BBLP06]
Abstractions in literature [Bou04, BBLP06]

All the above abstractions preserve state reachability
Abstractions in literature [Bou04, BBLP06]

\[
\begin{align*}
\text{Closure}_\alpha & \quad \preceq_{LU} \quad \text{Extra}^+_{LU} \\
\text{Extra}^+_{\alpha} & \quad \text{Extra}^+_{\alpha} \\
\text{Extra}^+_{\alpha} & \quad \text{Extra}^+_{\alpha}
\end{align*}
\]

Sound and complete

All the above abstractions preserve state reachability

But for implementation extrapolated zone should be a zone
Abstractions in literature [Bou04, BBLP06]

Only convex abstractions in implementations!
Efficient use of the non-convex Closure abstraction!
What is Closure_α?
What is Closure$_{\alpha}$?
What is Closure_\(\alpha\)?

Closure_\(\alpha(Z)\): set of regions that \(Z\) intersects
Using non-convex Approximations for Efficient Analysis of Timed Automata - 12/23
Using non-convex Approximations for Efficient Analysis of Timed Automata - 12/23
Schema

\[ q_3 = q_1 \land Z_3 \subseteq \text{Closure}_\alpha(Z_1) ? \]
Reduction to 2 clocks

\[ Z \subseteq \text{Closure}_\alpha(Z') \text{ iff for all pairs of clocks } x, y, \text{ we have} \]

\[ \text{Proj}_{xy}(Z) \subseteq \text{Closure}_\alpha(\text{Proj}_{xy}(Z')) \]

Complexity: \( \mathcal{O}(|X|^2) \) where \( X \) is the set of clocks
$Z \subseteq \text{Closure}_\alpha(Z')$

**Reduction to 2 clocks**

$Z \subseteq \text{Closure}_\alpha(Z')$ iff for all pairs of clocks $x, y$, we have

$$\text{Proj}_{xy}(Z) \subseteq \text{Closure}_\alpha(\text{Proj}_{xy}(Z'))$$

**Complexity:** $O(|X|^2)$ where $X$ is the set of clocks

**Same complexity as** $Z \subseteq Z'$!
So what do we have now...

- **No need** to restrict to **convex** abstractions
- Compute $ZG(A)$: $Z \subseteq \text{Closure}_\alpha(Z')$ to **terminate**
So what do we have now...

- **No need** to restrict to convex abstractions
- Compute $ZG(A)$: $Z \subseteq \text{Closure}_{\alpha}(Z')$ to terminate

Coming next: **prune the bound function $\alpha$**!
Bound function $\alpha$

Naive: $\alpha(x) = 14, \alpha(y) = 10^6$
Static analysis: bound function for every $q$ [BBFL03]

Naive: $\alpha(x) = 14$, $\alpha(y) = 10^6$
Static analysis: bound function for every $q$ [BBFL03]

Naive: $\alpha(x) = 14$, $\alpha(y) = 10^6$
Static analysis: bound function for every $q$

[BBFL03]

\[ y \geq 10^6 \]
\[ x \leq 5 \]
\[ y \leq 14 \]
\[ y := 0 \]
\[ x := 0 \]

- $q_0$ to $q_1$: $x \leq 5$
- $q_0$ to $q_3$: $y \geq 10^6$
- $q_1$ to $q_2$: $y \geq 5$
- $q_3$ to $q_2$: $x \leq 14$

$\nu(y) = 10$
$\nu'(y) = 10^7$

Naive: $\alpha(x) = 14$, $\alpha(y) = 10^6$
Static analysis: bound function for every $q$

[BBFL03]

$\nu(y) = 10$

$\nu'(y) = 10^7$

Naive: $\alpha(x) = 14$, $\alpha(y) = 10^6$
Static analysis: bound function for every $q$

[BBFL03]

Naive: $\alpha(x) = 14$, $\alpha(y) = 10^6$

$$y \geq 10^6$$

$$x \leq 5$$

$$y \geq 5$$

$$x \leq 14$$

$$y := 0$$

$$x := 0$$

$$\nu(y) = 10$$

$$\nu'(y) = 10^7$$
Static analysis: bound function for every $q$

[BBFL03]
Static analysis: bound function for every $q$

[BBFL03]

But this is not enough!
Need to look at semantics...

\[ x = 1 \]
\[ x := 0 \]

\[ q_0 \quad \rightarrow \quad q_1 \quad \text{if} \quad x \geq 2 \]

\[ q_1 \quad \downarrow \quad q_2 \quad \text{if} \quad x < 1 \]

\[ q_2 \quad \rightarrow \quad q_3 \quad \text{if} \quad y = 10^6 \]
Need to look at semantics...

\[ x = 1 \]
\[ x := 0 \]

\[ 10^6 \]

\[ q_0 \quad x \geq 2 \quad q_1 \]

\[ q_3 \quad y = 10^6 \quad q_2 \]

More than 10^6 zones at \( q_0 \) not necessary!
Need to look at semantics...

More than $10^6$ zones at $q_0$ not necessary!
Bound function for every \((q, Z)\) in \(ZG(A)\)
Bound function for every \((q, Z)\) in \(ZG(A)\)

constants at
Constant propagation

\[ \alpha(x) = -\infty \]

\[ (q, Z, \alpha) \]

\[ * \]
Constant propagation

\[ \alpha(x) = -\infty \]

\((q, Z, \alpha)\)

\[ x \leq 3 \]
Constant propagation

\[ \alpha(x) = 3 \]

\((q, Z, \alpha)\)

\[ x \leq 3 \]
Constant propagation

\[ \alpha(x) = 3 \]

\[ (q, Z, \alpha) \]

\[ x \leq 3 \]
Constant propagation

\[ \alpha(x) = 5 \]

\[ (q, Z, \alpha) \]

\[ x \leq 3 \]
Constant propagation

\[ \alpha(x) = 5 \]

\((q, Z, \alpha)\)

\[ x \leq 3 \]
Constant propagation

\[ \alpha(x) = 5 \]

\((q, Z, \alpha)\)

\[ x \leq 3 \]

\[ x > 6 \]
Constant propagation

\[ \alpha(x) = 6 \]

\((q, Z, \alpha)\)

- \(x \leq 3\)
- \(x > 6\)
Constant propagation

\[ \alpha(x) = 6 \]

\[(q, Z, \alpha)\]

- \[x \leq 3\]
- \[x > 6\]

All tentative nodes consistent → No more exploration → Terminate!
Constant propagation

\[ \alpha(x) = 6 \]

\[ (q, Z, \alpha) \]

\[ x \leq 3 \]

\[ x > 6 \]
$$\alpha(x) = 6$$

Using non-convex Approximations for Efficient Analysis of Timed Automata - 18/23
Constant propagation

\[ \alpha(x) = 11 \]

\[(q, Z, \alpha)\]

All tentative nodes consistent + No more exploration → Terminate!

Using non-convex Approximations for Efficient Analysis of Timed Automata - 18/23
Constant propagation

\[ \alpha(x) = 11 \]

\((q, Z, \alpha)\)

\[ x \leq 3 \]

\[ x > 6 \]

\[ x \geq 11 \]
Constant propagation

\[ \alpha(x) = 11 \]

\[(q, Z, \alpha)\]

\[ x \leq 3 \]
\[ x > 6 \]
\[ x \geq 11 \]
Constant propagation

\[ \alpha(x) = 11 \]

\((q, Z, \alpha)\)

- \(x \leq 3\)
- \(x > 6\)
- \(x \geq 11\)
- \(x := 0\)

All tentative nodes consistent → No more exploration → Terminate!
Constant propagation

\[ \alpha(x) = 11 \]

\[ (q, Z, \alpha) \]

\[ x \leq 3 \]
\[ x > 6 \]
\[ x > 6 \]
\[ x \geq 11 \]

All tentative nodes consistent

+ No more exploration

\[ x := 0 \]

\[ \rightarrow \text{Terminate!} \]
Invariants on the bounds

- Non tentative nodes: $\alpha = \max\{\alpha_{\text{succ}}\}$ (modulo resets)
- Tentative nodes: $\alpha = \alpha_{\text{master}}$
Invariants on the bounds

- Non tentative nodes: \( \alpha = \max\{\alpha_{\text{succ}}\} \) (modulo resets)
- Tentative nodes: \( \alpha = \alpha_{\text{master}} \)

**Theorem (Correctness)**
An accepting state is reachable in \( ZG(A) \) iff the algorithm reaches a node with an accepting state and a non-empty zone.
Overall algorithm

- Compute $ZG(A)$: $Z \subseteq \text{Closure}_{\alpha'}(Z')$ for termination
- **Bounds $\alpha$** calculated on-the-fly
- Extra $^+_LU$ can also be handled:
  - $O(|X|^2)$ procedure for $Z \subseteq \text{Closure}_{\alpha'}(Extra^+_LU'(Z'))$
## Benchmarks

<table>
<thead>
<tr>
<th>Model</th>
<th>$E_{LU}^+, sa$</th>
<th>$CI_{LU}^+, sa$</th>
<th>$CI_{LU}^+, otf$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nodes</td>
<td>s.</td>
<td>nodes</td>
</tr>
<tr>
<td>Fi7</td>
<td>48535</td>
<td>6.24</td>
<td>48535</td>
</tr>
<tr>
<td>Fi8</td>
<td>229890</td>
<td>63.97</td>
<td>229890</td>
</tr>
<tr>
<td>Fi9</td>
<td>1024697</td>
<td>558.90</td>
<td>1024697</td>
</tr>
<tr>
<td>Fi10</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C7</td>
<td>23137</td>
<td>6.07</td>
<td>23137</td>
</tr>
<tr>
<td>C8</td>
<td>86157</td>
<td>40.45</td>
<td>86157</td>
</tr>
<tr>
<td>C9</td>
<td>317326</td>
<td>283.56</td>
<td>317326</td>
</tr>
<tr>
<td>FD10</td>
<td>726</td>
<td>1.89</td>
<td>640</td>
</tr>
<tr>
<td>FD20</td>
<td>2846</td>
<td>70.13</td>
<td>2430</td>
</tr>
<tr>
<td>FD30</td>
<td>6366</td>
<td>670.31</td>
<td>5370</td>
</tr>
</tbody>
</table>

$E_{LU}^+, sa$ is currently used in **UPPAAL**

- Closure can be **efficiently implemented**
- **Both** Closure and otf bounds help
Conclusions & Perspectives

- Efficient implementation of a non-convex approximation that subsumes current ones in use

- On-the-fly learning of bounds that is better than the current static analysis

- More sophisticated non-convex approximations

- Strategies for constraint propagation
R. Alur and D.L. Dill.
A theory of timed automata.

Static guard analysis in timed automata verification.

Lower and upper bounds in zone-based abstractions of timed automata.

P. Bouyer.
Forward analysis of updatable timed automata.