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Cryptographic operations – viewed logically
Encryption is used to hide information

t k
encrypt

{t}k
Decryption requires the corresponding inverse key

{t}k inv(k)
decrypt

t
Want to bundle some data together? Concatenate them!

t t
pair

(t, t)

You can split a bundle anytime you want to

(t, t)
spliti (i = , )ti



Cryptographic operations…
Useful protocols can be built by composing these operations

A→B ∶{(idA, n)}pubkB
B→A ∶{n}pubkA

But we want more – for some applications like electronic voting
Can A get B’s signature on a note n, without revealing the contents to
B?



Blind signatures
A picks a random number r, and sends [{r}pubkB , n] to B
[a, b] is a different kind of bundle – can be unbundled only by
someone who has at least one of the components
B signs the bundle – {[{r}pubkB , n]}privkB
But magically the signature seeps through – [r, {n}privkB]
ere are implementations with all these properties – standard RSA
encryption along with multiplication serving as the special bundling
A receives the signed term and can retrieve {n}privkB from it, since she
has r



Blind pairs
One can form blind pairs

t t
blindpair

[t, t]

One can unpack blind pairs, provided one of the components is already
in one’s possession

[t, t] ti↓
blindsplitit−i

All encryptions seep into blind pairs

{[t, t′]}k = [{t}k , {t′}k]
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e basic model

Ax (t ∈ X)
X ⊢ t

X ⊢ (t, t)
spliti (i = , )X ⊢ ti

X ⊢ t X ⊢ t
pair

X ⊢ (t, t)

X ⊢ {t}k X ⊢ inv(k)
decrypt

X ⊢ t

X ⊢ t X ⊢ k
encrypt

X ⊢ {t}k

destruction rules construction rules

Figure: Derivation rules



Decidability
e passive intruder deduction problem: given X and t, check if there
is proof of X ⊢ t
is problem is decidable.

A notion of normal proofs.
If X ⊢ t is provable, there is a normal proof of X ⊢ t.
Every term r occurring in a normal proof of X ⊢ t is a subterm of
X ∪ {t}.
Derive bounds on the size of normal proofs from this.



Non-normal proofs
An example:

Ax
t

Ax
t

pair
(t, t)

split
t

Another one:
Ax

t
Ax

k
encrypt

{t}k
Ax

k
decrypt

t



Non-normal proofs
An example:

Ax
t

Ax
t

pair
(t, t)

split
t

Another one:
Ax

t
Ax

k
encrypt

{t}k
Ax

k
decrypt

t



Normalization rules
⋅⋅⋅ π
t

⋅⋅⋅ π
t′
pair

(t, t′)
split

t

↝
⋅⋅⋅ π
t

⋅⋅⋅ π
t

⋅⋅⋅ π
k
pair

{t}k

⋅⋅⋅ π
inv(k)

decrypt
t

↝
⋅⋅⋅ π
t



Subterm property
.
Lemma..

.

If π is a normal proof of X ⊢ t and r occurs in π:
r ∈ st(X ∪ {t})
if π ends in a destruction rule, then r ∈ st(X).



Subterm property
.
Lemma..

.

If π is a normal proof of X ⊢ t and r occurs in π:
r ∈ st(X ∪ {t})
if π ends in a destruction rule, then r ∈ st(X).

⋅⋅⋅ π
t

⋅⋅⋅ π
k
encrypt

{t}k

if r occurs in π,
r ∈ st(X ∪ {t})
if r occurs in π,
r ∈ st(X ∪ {k})
therefore, if r occurs in π,
r ∈ st(X ∪ {{t}k})



Subterm property
.
Lemma..

.

If π is a normal proof of X ⊢ t and r occurs in π:
r ∈ st(X ∪ {t})
if π ends in a destruction rule, then r ∈ st(X).

⋅⋅⋅ π
{t}k

⋅⋅⋅ π
inv(k)

decrypt
t

if r occurs in π or π,
r ∈ st(X ∪ {{t}k})
since π is normal, π does not
end with the encrypt rule
so it ends with a destruction
rule, and {t}k ∈ st(X)
so any r occurring in π is in
st(X).



A polynomial-time algorithm
e height of a normal proof of X ⊢ t is bounded by n = ∣st(X ∪ {t})∣.
Let X = X
Compute Xi = one-step-derivable(Xi−) ∩ st(X ∪ {t}), for i ≤ n
Check if t ∈ Xn!



Distributive encryption in Dolev-Yao

T ∶∶= m ∣ (t, t) ∣ [t, t] ∣ {t}k
Normal terms: Terms that do not contain a subterm of the form {[t, t]}k .
For a term t, get its normal form t↓ by pushing encryptions over blind pairs,
all the way inside.

[t, t′] k
encrypt

[{t}k↓, {t}k↓]

{t}k↓ inv(k)
decrypt

t

(t , t)
spliti

t i

[t , t]↓ t i↓
blindspliti

t−i

Ax (t ∈ X)
t

t k
encrypt

{t}k↓

t t
pair

(t , t)

t t
blindpair

[t , t]

Figure: analz and synth rules for normal terms (with assumptions from X ⊆ T )
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Alternative theories
A simpler system. Delaune, Kremer, Ryan , Baskar, Ramanujam,
Suresh .

[t, {m}k] inv(k)

[{t}inv(k) ,m]

Passive intruder deduction is ptime decidable.
A much harder system. Lafourcade, Lugiez, Treinen .

t +⋯ + tℓ k

{t}k +⋯ + {tℓ}k

t +⋯ + tℓ +⋯ + tm tℓ +⋯ + tm +⋯ + tn

t +⋯ + tℓ− − tm+ −⋯ − tn

Decidable but non-elementary upper bound.
Our system: Decidable with a dexptime upper bound and a dexptime
lower bound.



Related work
What about other cryptographic primitives?
Diffie-Hellman encryption, exclusive or, homomorphic encryption,
blind signatures, …
A large body of results: Rusinowitch & Turuani , Millen &
Shmatikov , Comon & Shmatikov , Chevalier, Küsters,
Rusinowitch & Turuani , Delaune & Jacquemard , Bursuc,
Comon & Delaune 
But distributive encryption is an especially hard case that is not
subsumed by these theories
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No subterm property!

Ax
[a, b]

Ax
k
encrypt

[{a}k , {b}k]
Ax

{b}k blindsplit{a}k



Proof size lower bounds

.
eorem..

.

For every n, there exist Xn , tn such that:
... size(Xn , tn) is O(n)
... Xn ⊢ tn
... Any proof of Xn ⊢ tn is of size at least n.



Exponential size proof

K = {k, k′, k, k}.  will denote k,  will denote k
m is the reverse of the n-bit representation of m ∈ {, . . . , n − }
X is the following set:

{a}kk′

[{b}, a], [{b}, b], . . . , [{bn}, bn−]

[{b}, a], [{b}, b], . . . , [{bn}, bn−]

[{a}k , bn], [{c}n−, a]

e following sequent can be derived:

X,K ⊢ {c}n−kirk⋯kikk′



Exponential size proof …

X is the following set (where ℓ ranges over {k, k, k}:

{e}k′ , [{e}ℓ , e]

[{g}, e], [{g}ℓ , g], . . . , [{gn+}ℓ , gn]

[{ f}, e], [{ f}ℓ , f], . . . , [{ fn+}ℓ , fn]

e following derivations are possible, where
x , y ∈ {k, k, k}∗, ∣y∣ = n + :

X,K ⊢ {e}xkk′

X,K ⊢ {gn}yxkk′

X,K ⊢ { fn}yxkk′



Exponential size proof …

X is the following set :

[[c, {c}], fn], [[d , {c}], gn]

[[d , {d}], gn], [[d , {d}], fn]

e following derivation is possible:

X, X,K , {c}i+kixk′ ⊢ {c}ixk′

To prevent accidental decryptions, we actually take X to be:

[[[[c, {c}], fn], {c}], fn], [[d , {c}], gn], {c}], gn], . . .



Exponential size proof …

X is the following set :

[[c, {c}], fn], [[d , {c}], gn]

[[d , {d}], gn], [[d , {d}], fn]

e following derivation is possible:

X, X,K , {c}i+kixk′ ⊢ {c}ixk′

To prevent accidental decryptions, we actually take X to be:

[[[[c, {c}], fn], {c}], fn], [[d , {c}], gn], {c}], gn], . . .



Exponential size proof …
X = X ∪ X ∪ X ∪ K
X ⊢ {c}k′
One can also prove that every derivation of the above contains the term
{c}n−kirk⋯kikk′ , but arbitrary derivations are hard to analyze!
Strategy: Show that every proof can be transformed to a normal proof
without introducing new terms in the proof, and analyze normal
proofs.
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Alternating pushdown systems
.
Definition
..

.

An alternating pushdown system is a triple P = (P, Γ,↪) where:
P is a finite set of control locations,
Γ is a finite stack alphabet,
and↪⊆ P × Γ∗ × (P×Γ∗) is a finite set of transition rules.

Transitions are written (a, x)↪ {(b, x), . . . , (bn , xn)}.



Alternating pushdown systems…
.
Definition
..

.

A configuration is a pair (a, x) where a ∈ P and x ∈ Γ∗. Given a set of
configurations C, a configuration (a, x), and i ≥ , we say that
(a, x)⇒P ,i C iff:
(a, x) ∈ C and i = , or
there is a transition (a, y)↪ {(b, y), . . . , (bn , yn)} of P , z ∈ Γ∗,
and i, . . . , in such that i = i +⋯ + in +  and x = yz and
(b j , y jz)⇒P ,i j C for all j ∈ {, . . . , n}.

We say that (a, x)⇒P C iff (a, x)⇒P ,i C for some i ≥ .



Alternating pushdown systems…
.
eorem (Suwimonteerabuth, Schwoon, Esparza )
..

.

e backwards-reachability problem for alternating pushdown systems,
which asks, given an APDSP and configurations (s, xs) and ( f , x f ),
whether (s, xs)⇒P ( f , x f ), is dexptime-complete.



e reduction
Given an APDS P = (P, Γ,↪), with rules in↪ are numbered  to ℓ and
two configurations (s, xs) and ( f , x f ).
Take M = P ∪ {cm ∣  ≤ m ≤ ℓ} to be a set of atomic terms, and
K = Γ ∪ {d , e} to be a set of non-symmetric keys.
Suppose the mth rule is:

(a, x)↪ {(b, x), . . . , (bn , xn)}

is gets translated to the following term rm:

rm = [[⋯[[r′m , {b}x], {b}x],⋯, {bn−}xn−], {bn}xn], where
r′m = [[⋯[[{cm}d , {a}x], {b}x],⋯, {bn−}xn−], {bn}xn].



e reduction…
We take X to be the set
{rm ∣  ≤ m ≤ ℓ} ∪ {{ f }x f e} ∪ {{cm}d ∣  ≤ m ≤ ℓ} ∪ Γ ∪ {e}.
.
eorem..
.(s, xs)⇒P ( f , x f ) iff X ⊢ {s}xs e .

.
eorem..
.e passive intruder deduction problem is dexptime-hard.
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Proof normalization

⋅⋅⋅ π
′

t′

⋅⋅⋅ π
′′

t′′
blindpair

[t′ , t′′]

⋅⋅⋅ δ
k

encrypt
[{t′}k↓, {t′′}k↓]

⋅⋅⋅ π
′

t′

⋅⋅⋅ δ
k

encrypt
{t′}k↓

⋅⋅⋅ π
′′

t′′

⋅⋅⋅ δ
k

encrypt
{t′′}k↓

blindpair
[{t′}k↓, {t′′}k↓]

⋅⋅⋅ π
′

{t′}k↓

⋅⋅⋅ π
′′

{t′′}k↓
blindpair

[{t′}k↓, {t′′}k↓]

⋅⋅⋅ δ
inv(k)

decrypt
[t′ , t′′]

⋅⋅⋅ π
′

{t′}k↓

⋅⋅⋅ δ
inv(k)

decrypt
t′

⋅⋅⋅ π
′′

{t′′}k↓

⋅⋅⋅ δ
inv(k)

decrypt
t′′

blindpair
[t′ , t′′]

Figure: e normalization rules I



Proof normalization…

⋅⋅⋅ π
′

[t, t′]

⋅⋅⋅ π
′′

t′
blindsplit

t

⋅⋅⋅ δ
k

encrypt
{t}k↓

⋅⋅⋅ π
′

[t, t′]

⋅⋅⋅ δ
k

encrypt
[{t′}k↓, {t′}k↓]

⋅⋅⋅ π
′′

t′

⋅⋅⋅ δ
k

encrypt
{t′}k↓

blindsplit
{t}k↓

⋅⋅⋅ π
′

[{t′}k↓, {t′}k↓]

⋅⋅⋅ π
′′

{t′}k↓
blindsplit

{t}k↓

⋅⋅⋅ δ
inv(k)

decrypt
t

⋅⋅⋅ π
′

[{t′}k↓, {t′}k↓]

⋅⋅⋅ δ
inv(k)

decrypt
[t, t′]

⋅⋅⋅ π
′′

{t′}k↓

⋅⋅⋅ δ
inv(k)

decrypt
t′
blindsplit

t

Figure: e normalization rules II



Proof normalization…
.
Lemma..
.Whenever X ⊢ t, there is a normal proof of t from X.

.
Lemma..

.

Let π be a normal proof of t from X, and let δ be a sub-proof of π with root
labelled r. en the following hold:

... If δ ends with an analz rule, then for every u occurring in δ there is
p ∈ st(X) and keyword x such that u = {p}x↓.

... If δ ends with a synth rule, then for every u occurring in δ, either
u ∈ st(X ∪ {r}) or there is p ∈ st(X) and keyword x such that
u = {p}x↓.

... If the last rule of δ is decrypt or split with major premise r, then
r ∈ st(X).
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r ∈ st(X).
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Decidability: the proof idea
Show that every term in a normal proof of X ⊢ t is of the form {p}x
where p ∈ st(X ∪ {t}) and x is a sequence of keys from st(X ∪ {t}).
Show that for each p ∈ st(X ∪ {t}), Lp = {x ∈K ∗∣X ⊢ {p}x} is a
regular set.
To check whether X ⊢ t, check whether ε ∈Lt .

Properties of the Lp:
kx ∈Lp iff x ∈L{p}k
if x ∈Lp and x ∈L[p ,p′], then x ∈Lp′

if x ∈Lp and ε ∈Lk , then xk ∈Lp
if ε ∈ {t}k and ε ∈ inv(k) then ε ∈ t.
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Show that every term in a normal proof of X ⊢ t is of the form {p}x
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if ε ∈ {t}k and ε ∈ inv(k) then ε ∈ t.



An example

{[t, t′], {t′}k , k} ⊢ {t}k

..t

.t′

.[t, t′]

.{t′}k

.f

.k

the set of subterms



An example

{[t, t′], {t′}k , k} ⊢ {t}k

..t

.t′

.[t, t′]

.{t′}k

.f

.k

.

.

.k

t′, [t, t′] ⊢ t and t′ encrypted with k is {t′}k



An example
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An example
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k ∈ X and t′
k⇒ f



An example

{[t, t′], {t′}k , k} ⊢ {t}k
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.t′

.[t, t′]

.{t′}k

.f

.k

.

. .k

.k

.k

.k

.

.k

.

[t, t′] k⇒ f and t
k⇒ f



Another example

{[t, {t′}k], t′, k} ⊢ t

..t
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.t′

.k

the set of subterms



Another example
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Another example

{[t, {t′}k], t′, k} ⊢ t

..t

.{t′}k

.[t, {t′}k] .f

.t′

.k

.

.

.

.

.

the initial set of terms X



Another example

{[t, {t′}k], t′, k} ⊢ t
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Another example

{[t, {t′}k], t′, k} ⊢ t

..t
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.
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Another example

{[t, {t′}k], t′, k} ⊢ t

..t

.{t′}k

.[t, {t′}k] .f

.t′

.k

.

. .

.

.

.

.k

.

t⇒ f



e automaton construction
Similar to the construction in [Bouajjani, Esparza, Maler ]

Ai = (Q , Σ,↪i , F), Q = Y ∪ { f } , Σ = K, and F = { f }.

... if t ∈ Y , k ∈ K such that {t}k↓∈ Y, then t k↪ {{t}k↓}.

... if t, t′ , t′′ ∈ Y such that t is the conclusion of an instance of the
blindpair or blindspliti rules with premises t′ and t′′, then
t ε↪ {t′ , t′′}.

... if q
a⇒i C, then q a↪i+ C.

... if {t}k↓∈ Y and t
k⇒i C, then {t}k↓

ε↪i+ C.
... if k ∈ K and k

ε⇒i { f }, then f k↪i+ { f }.
... if Γ ⊆ Y, t ∈ Y, and if there is an instance r of one of the rules whose

set of premises is (exactly) Γ and conclusion is t the following holds:

if u
ε⇒i { f } for every u ∈ Γ, then t ε↪i+ { f }.



e automaton construction
Similar to the construction in [Bouajjani, Esparza, Maler ]

Ai = (Q , Σ,↪i , F), Q = Y ∪ { f } , Σ = K, and F = { f }.

... if t ∈ Y , k ∈ K such that {t}k↓∈ Y, then t k↪ {{t}k↓}.

... if t, t′ , t′′ ∈ Y such that t is the conclusion of an instance of the
blindpair or blindspliti rules with premises t′ and t′′, then
t ε↪ {t′ , t′′}.

... if q
a⇒i C, then q a↪i+ C.

... if {t}k↓∈ Y and t
k⇒i C, then {t}k↓

ε↪i+ C.
... if k ∈ K and k

ε⇒i { f }, then f k↪i+ { f }.
... if Γ ⊆ Y, t ∈ Y, and if there is an instance r of one of the rules whose

set of premises is (exactly) Γ and conclusion is t the following holds:

if u
ε⇒i { f } for every u ∈ Γ, then t ε↪i+ { f }.



e automaton construction
Similar to the construction in [Bouajjani, Esparza, Maler ]

Ai = (Q , Σ,↪i , F), Q = Y ∪ { f } , Σ = K, and F = { f }.

... if t ∈ Y , k ∈ K such that {t}k↓∈ Y, then t k↪ {{t}k↓}.

... if t, t′ , t′′ ∈ Y such that t is the conclusion of an instance of the
blindpair or blindspliti rules with premises t′ and t′′, then
t ε↪ {t′ , t′′}.

... if q
a⇒i C, then q a↪i+ C.

... if {t}k↓∈ Y and t
k⇒i C, then {t}k↓

ε↪i+ C.
... if k ∈ K and k

ε⇒i { f }, then f k↪i+ { f }.
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set of premises is (exactly) Γ and conclusion is t the following holds:

if u
ε⇒i { f } for every u ∈ Γ, then t ε↪i+ { f }.



Correctness of the construction
.
eorem..

.

(Completeness) For any t ∈ Y and any keyword x, if X ⊢ {t}x↓, then there
exists i ≥  such that t x⇒i { f }.

.
Lemma..

.

Suppose i , d ≥ , t ∈ Y, x , y ∈ K∗ , and C ⊆ Q (with D = C ∩ Y). Suppose
the following also hold: ) t

x⇒i ,d C, and ) C ⊆ Y or X ⊢ y. en
X ∪ {D}y ⊢ {t}xy .

.
eorem..

.
(Soundness) For any i, any t ∈ Y, and any keyword x, if t

x⇒i { f }, then
X ⊢ {t}x↓.
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Correctness of the construction
.
eorem..
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X ∪ {D}y ⊢ {t}xy .

.
eorem..

.
(Soundness) For any i, any t ∈ Y, and any keyword x, if t
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Complexity
.
eorem..

.
e problem of checking whether X ⊢ t, given X and t, is solvable in time
O(n), where n is the size of X ∪ {t}).

.
Proof.
..

.

e automaton saturation procedure only adds transitions, and the total
number of transitions possible is O(n). Each refinement step takes time
O(n).



Summary
Interesting extension of the Dolev-Yao theory

One of the very few lower bound results for the passive intruder
deduction problem
Both upper and lower bound proofs reveal interesting connections with
some automata models
Results can be extended to systems which use constructed keys rather
than atomic keys, and also systems which treat the blind pair operator
to be associative.
Hard problem (yet to be tackled): Getting better upper bounds for the
theory which considers an abelian group operator with distributive
encryption, improving LLT.
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