Distributive encryption

A Baskar (CMI) R Ramanujam (IMSc) S P Suresh (CMI)

Automata, Concurrency, and Timed Systems CMI January 28, 2011

Outline

Introduction

- 2 The Dolev-Yao model
- **3** Size lower bounds
- Complexity lower bound
- **5** Proof normalization
- *O Upper bound proofs*

Outline

Introduction

- 2 The Dolev-Yao model
- 3 Size lower bounds
- Omplexity lower bound
- Operation States Proof normalization
- *O Upper bound proofs*

Cryptographic operations – viewed logically

• Encryption is used to hide information

 $\frac{t \quad k}{\{t\}_k} encrypt$

• Decryption requires the corresponding inverse key

$$\frac{\{t\}_k \quad inv(k)}{t} decrypt$$

• Want to bundle some data together? Concatenate them!

$$\frac{t_1 \quad t_2}{(t_1, t_2)} pair$$

• You can split a bundle anytime you want to

$$\frac{(t_0, t_1)}{t_i} \operatorname{split}_i (i = 0, 1)$$

Cryptographic operations ...

- Useful protocols can be built by composing these operations $A \rightarrow B: \{(id_A, n)\}_{pubk_B}$ $B \rightarrow A: \{n\}_{pubk_A}$
- But we want more for some applications like electronic voting
- Can *A* get *B*'s signature on a note *n*, without revealing the contents to *B*?

Blind signatures

- *A* picks a random number *r*, and sends $[\{r\}_{pubk_B}, n]$ to *B*
- [*a*, *b*] is a different kind of bundle can be unbundled only by someone who has at least one of the components
- *B* signs the bundle $\{[\{r\}_{pubk_B}, n]\}_{privk_B}$
- But magically the signature seeps through $-[r, \{n\}_{privk_B}]$
- There are implementations with all these properties standard RSA encryption along with multiplication serving as the special bundling
- *A* receives the signed term and can retrieve $\{n\}_{privk_B}$ from it, since she has *r*

Blind pairs

• One can form blind pairs

$$\frac{t_1 \quad t_2}{[t_1, t_2]} blindpair$$

• One can unpack blind pairs, provided one of the components is already in one's possession

$$\frac{\begin{bmatrix} t_0, t_1 \end{bmatrix} \quad t_i \downarrow}{t_{1-i}} \text{ blindsplit}_i$$

• All encryptions seep into blind pairs

 $\{[t, t']\}_k = [\{t\}_k, \{t'\}_k]$

Outline

2 The Dolev-Yao model

3 Size lower bounds

④ Complexity lower bound

6 Proof normalization

O Upper bound proofs

The basic model

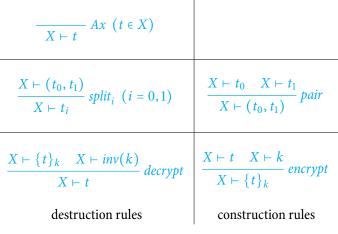


Figure: Derivation rules

Decidability

- The passive intruder deduction problem: given X and t, check if there is proof of $X \vdash t$
- This problem is decidable.
 - A notion of normal proofs.
 - If $X \vdash t$ is provable, there is a normal proof of $X \vdash t$.
 - Every term *r* occurring in a normal proof of $X \vdash t$ is a subterm of $X \cup \{t\}$.
 - Derive bounds on the size of normal proofs from this.

Non-normal proofs

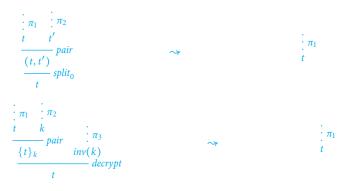
• An example:

Non-normal proofs

• An example:

• Another one:

Normalization rules



Subterm property

Lemma

If π is a normal proof of $X \vdash t$ and r occurs in π :

- $r \in st(X \cup \{t\})$
- if π ends in a destruction rule, then $r \in st(X)$.

Subterm property

Lemma

If π is a normal proof of $X \vdash t$ and r occurs in π :

- $r \in st(X \cup \{t\})$
- if π ends in a destruction rule, then $r \in st(X)$.

- if r occurs in π_1 , $r \in st(X \cup \{t\})$
- if r occurs in π_2 , $r \in st(X \cup \{k\})$
- therefore, if r occurs in π , $r \in st(X \cup \{\{t\}_k\})$

Subterm property

Lemma

If π is a normal proof of $X \vdash t$ and r occurs in π :

- $r \in st(X \cup \{t\})$
- if π ends in a destruction rule, then $r \in st(X)$.

- if r occurs in π_1 or π_2 , $r \in st(X \cup \{\{t\}_k\})$
- since π is normal, π₁ does not end with the *encrypt* rule
- so it ends with a destruction rule, and $\{t\}_k \in st(X)$
- so any *r* occurring in π is in st(X).

A polynomial-time algorithm

- The height of a normal proof of $X \vdash t$ is bounded by $n = |st(X \cup \{t\})|$.
- Let $X_0 = X$
- Compute X_i = one-step-derivable $(X_{i-1}) \cap st(X \cup \{t\})$, for $i \le n$
- Check if $t \in X_n$!

Distributive encryption in Dolev-Yao

$\mathscr{T} ::= m | (t_1, t_2) | [t_1, t_2] | \{t\}_k$

Normal terms: Terms that do not contain a subterm of the form $\{[t_1, t_2]\}_k$. For a term *t*, get its normal form $t\downarrow$ by pushing encryptions over blind pairs, all the way inside.

Distributive encryption in Dolev-Yao

$\mathscr{T} ::= m | (t_1, t_2) | [t_1, t_2] | \{t\}_k$

Normal terms: Terms that do not contain a subterm of the form $\{[t_1, t_2]\}_k$. For a term *t*, get its normal form $t\downarrow$ by pushing encryptions over blind pairs, all the way inside.

$\frac{[t,t'] k}{[\{t\}_{k\downarrow},\{t\}_{k\downarrow}]} encrypt$	$\frac{\{t\}_{k}\downarrow inv(k)}{t} decrypt$	$\frac{(t_0, t_1)}{t_i} \operatorname{split}_i$	$\frac{[t_0, t_1] \downarrow t_i \downarrow}{t_{1-i}} blindsplit_i$
$ Ax \ (t \in X)$	$\frac{t k}{\{t\}_{k}\downarrow} encrypt$	$\frac{t_1 t_2}{(t_1, t_2)} pair$	$\frac{t_1 t_2}{[t_1, t_2]} blindpair$

Figure: analz and synth rules for normal terms (with assumptions from $X \subseteq \mathcal{T}$)

Alternative theories

• A simpler system. Delaune, Kremer, Ryan 2009, Baskar, Ramanujam, Suresh 2007.

 $[t, \{m\}_k] \quad inv(k)$

 $[\{t\}_{inv(k)},m]$

Passive intruder deduction is ptime decidable.

• A much harder system. Lafourcade, Lugiez, Treinen 2007.

 $\frac{t_1 + \dots + t_\ell \quad k}{\{t_1\}_k + \dots + \{t_\ell\}_k}$

$$t_1 + \dots + t_\ell + \dots + t_m$$
 $t_\ell + \dots + t_m + \dots + t_m$

 $t_1 + \dots + t_{\ell-1} - t_{m+1} - \dots - t_n$

Decidable but non-elementary upper bound.

• Our system: Decidable with a dexptime upper bound and a dexptime lower bound.

Related work

- What about other cryptographic primitives?
- Diffie-Hellman encryption, exclusive or, homomorphic encryption, blind signatures, ...
- A large body of results: Rusinowitch & Turuani 2003, Millen & Shmatikov 2001, Comon & Shmatikov 2003, Chevalier, Küsters, Rusinowitch & Turuani 2005, Delaune & Jacquemard 2006, Bursuc, Comon & Delaune 2007
- But distributive encryption is an especially hard case that is not subsumed by these theories

Outline

Introduction

2 The Dolev-Yao model

3 Size lower bounds

Omplexity lower bound

I Proof normalization

O Upper bound proofs

No subterm property!

$$\frac{\boxed{[a,b]}^{Ax} - Ax}{[\{a\}_k, \{b\}_k]^{encrypt} - \{b\}_k} Ax}_{\{a\}_k} blindsplit_1$$

Proof size lower bounds

Theorem

For every *n*, there exist X_n , t_n such that:

- size (X_n, t_n) is O(n)
- **(a)** Any proof of $X_n \vdash t_n$ is of size at least 2^n .

- $K = \{k, k', k_0, k_1\}$. 0 will denote k_0 , 1 will denote k_1
- <u>m</u> is the reverse of the *n*-bit representation of $m \in \{0, ..., 2^n 1\}$
- X_0 is the following set:

 $\{a\}_{k\underline{0}k'}$ $[\{b_1\}_0, a], [\{b_2\}_0, b_1], \dots, [\{b_n\}_0, b_{n-1}]$ $[\{b_1\}_1, a], [\{b_2\}_1, b_1], \dots, [\{b_n\}_1, b_{n-1}]$ $[\{a\}_k, b_n], [\{c\}_{\underline{2^n-1}}, a]$

• The following sequent can be derived:

 $X_0, K \vdash \{c\}_{\underline{2^n-1}k\underline{i_r}k\cdots k\underline{i_0}k\underline{0}k'}$

• X_1 is the following set (where ℓ ranges over $\{k_0, k_1, k\}$:

 $\{e\}_{k'}, [\{e\}_{\ell}, e]$ [{g₀}₀, e], [{g₁}_{\ell}, g₀], ..., [{g_{n+1}}_{\ell}, g_n] [{f₀}₁, e], [{f₁}_{\ell}, f₀], ..., [{f_{n+1}}_{\ell}, f_n]

• The following derivations are possible, where $x, y \in \{k, k_0, k_1\}^*, |y| = n + 1$:

 $X_1, K \vdash \{e\}_{xk\underline{0}k'}$

 $X_1, K \vdash \{g_n\}_{y0xk\underline{0}k'}$ $X_1, K \vdash \{f_n\}_{y1xk\underline{0}k'}$

• X_2 is the following set :

$[[c, \{c\}_0], f_n], [[d, \{c\}_1], g_n]$ $[[d, \{d\}_0], g_n], [[d, \{d\}_1], f_n]$

• The following derivation is possible:

 $X_1, X_2, K, \{c\}_{\underline{i+1}k\underline{i}xk'} \vdash \{c\}_{\underline{i}xk'}$

• X_2 is the following set :

$[[c, \{c\}_0], f_n], [[d, \{c\}_1], g_n]$ $[[d, \{d\}_0], g_n], [[d, \{d\}_1], f_n]$

• The following derivation is possible:

 $X_1, X_2, K, \{c\}_{\underline{i+1}k\underline{i}xk'} \vdash \{c\}_{\underline{i}xk'}$

• To prevent accidental decryptions, we actually take X_2 to be:

 $[[[[c, \{c\}_0], f_n], \{c\}_0], f_n], [[d, \{c\}_1], g_n], \{c\}_1], g_n], \dots$

- $X = X_0 \cup X_1 \cup X_2 \cup K$
- $X \vdash \{c\}_{\underline{0}k'}$
- One can also prove that every derivation of the above contains the term $\{c\}_{\underline{2^n-1}ki_rk\cdots ki_0k\underline{0}k'}$, but arbitrary derivations are hard to analyze!
- Strategy: Show that every proof can be transformed to a normal proof without introducing new terms in the proof, and analyze normal proofs.

Outline

Introduction

- 2 The Dolev-Yao model
- 3 Size lower bounds
- Complexity lower bound
- 3 Proof normalization
- *O Upper bound proofs*

Alternating pushdown systems

Definition

An alternating pushdown system is a triple $\mathscr{P} = (P, \Gamma, \hookrightarrow)$ where:

- *P* is a finite set of control locations,
- Γ is a finite stack alphabet,
- and $\hookrightarrow \subseteq P \times \Gamma^* \times 2^{(P \times \Gamma^*)}$ is a finite set of transition rules.

Transitions are written $(a, x) \hookrightarrow \{(b_1, x_1), \ldots, (b_n, x_n)\}.$

Alternating pushdown systems ...

Definition

A *configuration* is a pair (a, x) where $a \in P$ and $x \in \Gamma^*$. Given a set of configurations *C*, a configuration (a, x), and $i \ge 0$, we say that $(a, x) \Rightarrow \mathcal{P}_{i} C$ iff:

- $(a, x) \in C$ and i = 0, or
- there is a transition $(a, y) \hookrightarrow \{(b_1, y_1), \dots, (b_n, y_n)\}$ of $\mathscr{P}, z \in \Gamma^*$, and i_1, \dots, i_n such that $i = i_1 + \dots + i_n + 1$ and x = yz and $(b_j, y_j z) \Rightarrow \mathscr{P}_{,i_j} C$ for all $j \in \{1, \dots, n\}$.

We say that $(a, x) \Rightarrow \mathscr{P} C$ iff $(a, x) \Rightarrow \mathscr{P}_{i} C$ for some $i \ge 0$.

Alternating pushdown systems ...

Theorem (Suwimonteerabuth, Schwoon, Esparza 2006)

The backwards-reachability problem for alternating pushdown systems, which asks, given an APDS \mathscr{P} and configurations (s, x_s) and (f, x_f) , whether $(s, x_s) \Rightarrow_{\mathscr{P}} (f, x_f)$, is dexptime-complete.

The reduction

Given an APDS $\mathscr{P} = (P, \Gamma, \hookrightarrow)$, with rules in \hookrightarrow are numbered 1 to ℓ and two configurations (s, x_s) and (f, x_f) . Take $M = P \cup \{\mathbf{c}_m \mid 1 \le m \le \ell\}$ to be a set of atomic terms, and $K = \Gamma \cup \{d, e\}$ to be a set of *non-symmetric keys*. Suppose the m^{th} rule is:

 $(a,x) \hookrightarrow \{(b_1,x_1),\ldots,(b_n,x_n)\}$

This gets translated to the following term \mathbf{r}_m :

 $\mathbf{r}_{m} = [[\cdots[[\mathbf{r}_{m}', \{b_{1}\}_{x_{1}}], \{b_{2}\}_{x_{2}}], \cdots, \{b_{n-1}\}_{x_{n-1}}], \{b_{n}\}_{x_{n}}], \text{ where } \mathbf{r}_{m}' = [[\cdots[[\{\mathbf{c}_{m}\}_{d}, \{a\}_{x}], \{b_{1}\}_{x_{1}}], \cdots, \{b_{n-1}\}_{x_{n-1}}], \{b_{n}\}_{x_{n}}].$

The reduction ...

We take X to be the set $\{\mathbf{r}_m \mid 1 \le m \le \ell\} \cup \{\{f\}_{x_f e}\} \cup \{\{\mathbf{c}_m\}_d \mid 1 \le m \le \ell\} \cup \Gamma \cup \{e\}.$

Theorem $(s, x_s) \Rightarrow \mathscr{P}(f, x_f) \text{ iff } X \vdash \{s\}_{x_s e}.$

Theorem

The passive intruder deduction problem is dexptime-hard.

Outline

Introduction

- 2 The Dolev-Yao model
- 3 Size lower bounds
- Omplexity lower bound
- In Proof normalization
- *O Upper bound proofs*

Proof normalization

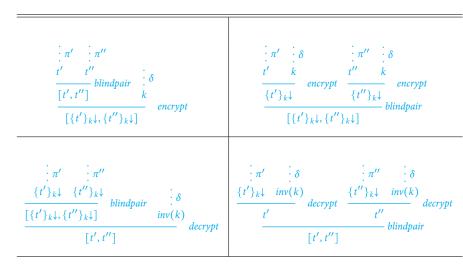


Figure: The normalization rules I

Proof normalization ...

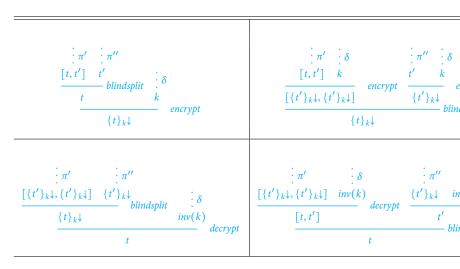


Figure: The normalization rules II

Proof normalization ...

Lemma

Whenever $X \vdash t$, there is a normal proof of t from X.

Proof normalization ...

Lemma

Whenever $X \vdash t$, there is a normal proof of t from X.

Lemma

Let π be a normal proof of t from X, and let δ be a sub-proof of π with root labelled r. Then the following hold:

- If δ ends with an analz rule, then for every u occurring in δ there is $p \in st(X)$ and keyword x such that $u = \{p\}_x \downarrow$.
- If δ ends with a synth rule, then for every u occurring in δ, either u ∈ st(X ∪ {r}) or there is p ∈ st(X) and keyword x such that u = {p}x↓.
- If the last rule of δ is decrypt or split with major premise r_1 , then $r_1 \in st(X)$.

Outline

Introduction

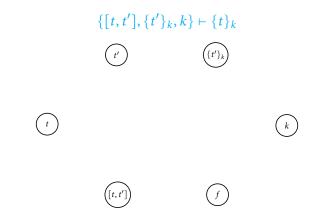
- 2 The Dolev-Yao model
- 3 Size lower bounds
- Omplexity lower bound
- 3 Proof normalization
- *O Upper bound proofs*

Decidability: the proof idea

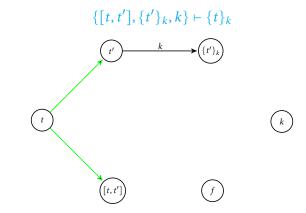
- Show that every term in a normal proof of $X \vdash t$ is of the form $\{p\}_x$ where $p \in st(X \cup \{t\})$ and x is a sequence of keys from $st(X \cup \{t\})$.
- Show that for each $p \in st(X \cup \{t\})$, $\mathscr{L}_p = \{x \in \mathscr{K}^* | X \vdash \{p\}_x\}$ is a regular set.
- To check whether $X \vdash t$, check whether $\varepsilon \in \mathscr{L}_t$.

Decidability: the proof idea

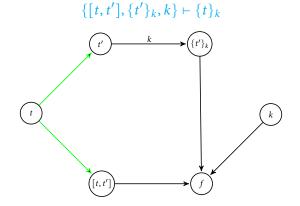
- Show that every term in a normal proof of $X \vdash t$ is of the form $\{p\}_x$ where $p \in st(X \cup \{t\})$ and x is a sequence of keys from $st(X \cup \{t\})$.
- Show that for each $p \in st(X \cup \{t\})$, $\mathscr{L}_p = \{x \in \mathscr{K}^* | X \vdash \{p\}_x\}$ is a regular set.
- To check whether $X \vdash t$, check whether $\varepsilon \in \mathscr{L}_t$.
- Properties of the \mathscr{L}_p :
 - $kx \in \mathscr{L}_p$ iff $x \in \mathscr{L}_{\{p\}_k}$
 - if $x \in \mathscr{L}_p$ and $x \in \mathscr{L}_{[p,p']}$, then $x \in \mathscr{L}_{p'}$
 - if $x \in \mathscr{L}_p$ and $\varepsilon \in \mathscr{L}_k$, then $xk \in \mathscr{L}_p$
 - if $\varepsilon \in \{t\}_k$ and $\varepsilon \in inv(k)$ then $\varepsilon \in t$.



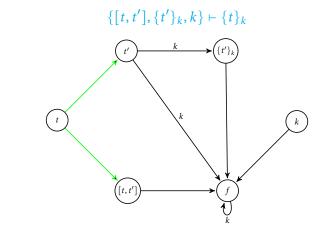
the set of subterms



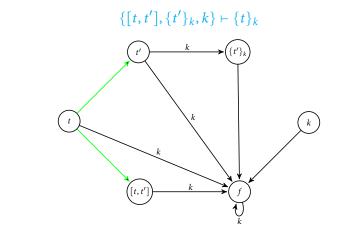
 $t', [t, t'] \vdash t$ and t' encrypted with k is $\{t'\}_k$



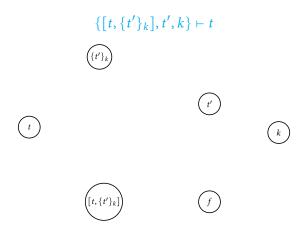
the initial set of terms X



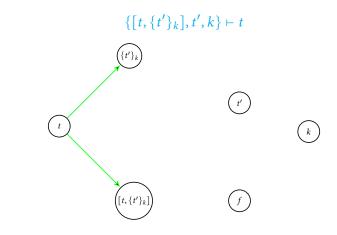
$$k \in X$$
 and $t' \stackrel{k}{\Rightarrow} f$



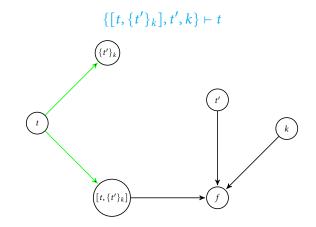
$$[t, t'] \stackrel{k}{\Rightarrow} f \text{ and } t \stackrel{k}{\Rightarrow} f$$



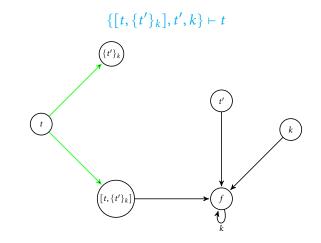
the set of subterms

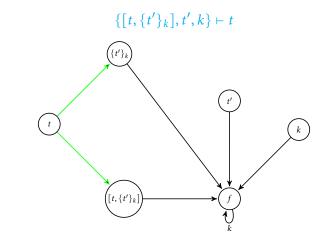


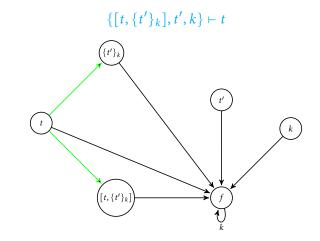
 $\{t'\}_k, [t, \{t'\}_k] \vdash t$



the initial set of terms X







 $t \Rightarrow f$

The automaton construction

Similar to the construction in [Bouajjani, Esparza, Maler 1997]

 $\mathscr{A}_i = (Q, \Sigma, \hookrightarrow_i, F), Q = Y_0 \cup \{f\}, \Sigma = K_0, \text{ and } F = \{f\}.$

The automaton construction

Similar to the construction in [Bouajjani, Esparza, Maler 1997]

 $\mathscr{A}_i = (Q, \Sigma, \hookrightarrow_i, F), Q = Y_0 \cup \{f\}, \Sigma = K_0, \text{ and } F = \{f\}.$

If t ∈ Y₀, k ∈ K₀ such that {t}_k↓∈ Y₀, then t →₀ {{t}_k↓}.
If t, t', t" ∈ Y₀ such that t is the conclusion of an instance of the *blindpair* or *blindsplit_i* rules with premises t' and t", then t ↔ {t', t"}.

The automaton construction

Similar to the construction in [Bouajjani, Esparza, Maler 1997]

 $\mathscr{A}_i = (Q, \Sigma, \hookrightarrow_i, F), Q = Y_0 \cup \{f\}, \Sigma = K_0, \text{ and } F = \{f\}.$

- If t ∈ Y₀, k ∈ K₀ such that {t}_k↓∈ Y₀, then t → {k → 0} {{t}_k↓}.
 If t, t', t'' ∈ Y₀ such that t is the conclusion of an instance of the *blindpair* or *blindsplit_i* rules with premises t' and t'', then t → 0 {t', t''}.
- (1) if $q \stackrel{a}{\Rightarrow}_i C$, then $q \stackrel{a}{\Rightarrow}_{i+1} C$. (2) if $\{t\}_k \downarrow \in Y_0$ and $t \stackrel{k}{\Rightarrow}_i C$, then $\{t\}_k \downarrow \stackrel{\varepsilon}{\Rightarrow}_{i+1} C$. (3) if $k \in K_0$ and $k \stackrel{\varepsilon}{\Rightarrow}_i \{f\}$, then $f \stackrel{k}{\Rightarrow}_{i+1} \{f\}$.
 - **④** if $\Gamma \subseteq Y_0$, *t* ∈ *Y*₀, and if there is an instance **r** of one of the rules whose set of premises is (exactly) Γ and conclusion is *t* the following holds:

if
$$u \stackrel{\varepsilon}{\Rightarrow}_i \{f\}$$
 for every $u \in \Gamma$, then $t \stackrel{\varepsilon}{\hookrightarrow}_{i+1} \{f\}$.

Correctness of the construction

Theorem

(*Completeness*) For any $t \in Y_0$ and any keyword x, if $X_0 \vdash \{t\}_x \downarrow$, then there exists $i \ge 0$ such that $t \stackrel{x}{\Rightarrow}_i \{f\}$.

Correctness of the construction

Theorem

(*Completeness*) For any $t \in Y_0$ and any keyword x, if $X_0 \vdash \{t\}_x \downarrow$, then there exists $i \ge 0$ such that $t \stackrel{x}{\Rightarrow}_i \{f\}$.

Lemma

Suppose $i, d \ge 0, t \in Y_0, x, y \in K_0^*$, and $C \subseteq Q$ (with $D = C \cap Y_0$). Suppose the following also hold: 1) $t \stackrel{x}{\Rightarrow}_{i,d} C$, and 2) $C \subseteq Y_0$ or $X_0 \vdash y$. Then $X_0 \cup \{D\}_y \vdash \{t\}_{xy}$.

Correctness of the construction

Theorem

(*Completeness*) For any $t \in Y_0$ and any keyword x, if $X_0 \vdash \{t\}_x \downarrow$, then there exists $i \ge 0$ such that $t \stackrel{x}{\Rightarrow}_i \{f\}$.

Lemma

Suppose $i, d \ge 0, t \in Y_0, x, y \in K_0^*$, and $C \subseteq Q$ (with $D = C \cap Y_0$). Suppose the following also hold: 1) $t \stackrel{x}{\Rightarrow}_{i,d} C$, and 2) $C \subseteq Y_0$ or $X_0 \vdash y$. Then $X_0 \cup \{D\}_y \vdash \{t\}_{xy}$.

Theorem

(Soundness) For any *i*, any $t \in Y_0$, and any keyword *x*, if $t \Rightarrow_i^x \{f\}$, then $X_0 \vdash \{t\}_x \downarrow$.

Complexity

Theorem

The problem of checking whether $X \vdash t$, given X and t, is solvable in time $2^{O(n)}$, where n is the size of $X \cup \{t\}$).

Proof.

The automaton saturation procedure only adds transitions, and the total number of transitions possible is $2^{O(n)}$. Each refinement step takes time $2^{O(n)}$.

Summary

• Interesting extension of the Dolev-Yao theory

Summary

- Interesting extension of the Dolev-Yao theory
- One of the very few lower bound results for the passive intruder deduction problem

- Interesting extension of the Dolev-Yao theory
- One of the very few lower bound results for the passive intruder deduction problem
- Both upper and lower bound proofs reveal interesting connections with some automata models

- Interesting extension of the Dolev-Yao theory
- One of the very few lower bound results for the passive intruder deduction problem
- Both upper and lower bound proofs reveal interesting connections with some automata models
- Results can be extended to systems which use constructed keys rather than atomic keys, and also systems which treat the blind pair operator to be associative.

- Interesting extension of the Dolev-Yao theory
- One of the very few lower bound results for the passive intruder deduction problem
- Both upper and lower bound proofs reveal interesting connections with some automata models
- Results can be extended to systems which use constructed keys rather than atomic keys, and also systems which treat the blind pair operator to be associative.
- Hard problem (yet to be tackled): Getting better upper bounds for the theory which considers an abelian group operator with distributive encryption, improving LLT2007.

Thank you!