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The Model
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Static Neighbourhoods
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Description of type t

If payoff in round k > 0.5 then

play same action a in round k+1

else if all players with the maximum payoff 
in round k played a different action 1-a

play 1-a in round k+1

Else play a in round k+1

EndIf
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Theorem: 

Let G be a neighbourhood graph and let m be the number 
of neighbourhoods (cliques) and let M be the maximum 
size of a clique. If all the players are of the same type t then 
the game stabilises in at most mM steps.

Proof Idea:

Associate a potential with every configuration of the graph

Show that whenever the configuration changes from round 
k to k+1 the potential strictly increases

The maximum possible potential of the graph is bounded
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size of a clique. If all the players are of the same type t then 
the game stabilises in at most mM steps.

Proof Idea:

Associate a potential with every configuration of the graph

Show that whenever the configuration changes from round 
k to k+1 the potential strictly increases

The maximum possible potential of the graph is bounded

A weight or value unique for 
every configuration; 

independent of the history
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Dynamic Neighbourhoods

Neighbourhood Sturcture in Games



Neighbourhood Sturcture in Games



Neighbourhood Sturcture in Games



Neighbourhood Sturcture in Games



Description of type t

If payoff > 0.5 then

Stay in the same neighbourhood X

ElseIf there is a player j in a different visible 
neighbourhood X’ who received the 
maximum (visible) payoff in round k and this 
payoff is greater than my payoff then

Join X’ in round k+1

Else

Stay in X

EndIf
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Theorem:

Let a game have n players where the 
dynamic neighbourhood structure is given 
by a graph G. If all the players are of the 
same type t, then the game stabilises in at 
most nn(n+1)/2 steps.

Proof Idea: Same as before

Associate a potential with every 
configuration of the graph

Show that whenever the configuration 
changes from round k to k+1 the potential 
strictly increases

The maximum possible potential of the 
graph is bounded
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General Neighbourhood Games
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Theorem:

A general game with n players and with 
either a static or a dynamic neighbourhood 
structure eventually stabilises if and only if 
we can associate a potential Φk with 
every round k such that if the game 
moves to a different configuration from 
round k to round k + 1 then Φk+1 > 
Φk and the maximum possible 
potential of the game is bounded.
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Proof
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Unfolding of the game -
configuration tree



Unfolding of the game -
configuration tree

Finite
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Cycle!



Generalising Stability
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Theorem:
A general game with n players and with either a static 
or a dynamic neighbourhood structure eventually 
stabilises if and only if we can associate a potential Φk 
with every round k such that the following holds:

1. If the game has not yet stabilised in round k then 
there exists a round k0 > k such that Φk0 > k

2. There exists k0 ≥ 0 such that for all k, k’ > k0, Φk = 
Φk’. That is, the potential of the game becomes 
constant eventually

3.  The maximum potential of the game is bounded
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Proof
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Configuration
tree (with simple

cycles)
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Finite
Configuration

tree (with simple
cycles)
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No cyclic configuration 
implies 

simple cycle 
implies 

unfolding was not correct
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No cyclic configuration 
implies 

simple cycle 
implies 

unfolding was not correct

Cyclic configuration
implies

complex cycle present
contradicts

definition of stability
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Questions?
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