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The Model
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in Games
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Weighted Coordination Games
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Static Neighbourhoods
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Description of type t

If payoff in round k > 0.5 then
play same action a in round k+1

else If all players with the maximum payoff
In round k played a different action 1-a

play 1-a in round k+1
Else play a in round k+1

| T Y

Cahadlf
11Ul

Neighbourhood Sturcture in Games




Theorem:

Let G be a neighbourhood graph and let m be the number
of neighbourhoods (cliques) and let M be the maximum
size of a clique. If all the players are of the same type t then
the game stabilises in at most mM steps.

Proof Idea:

Associate a potential with every configuration of the graph

Show that whenever the configuration changes from round
k to k+1 the potential strictly increases

The maximum possible potential of the graph is bounded
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Dynamic Neighbourhoods
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Description of type t

If payoff > 0.5 then
Stay In the same neighbourhood X

Elself there Is a player | In a different visible
neighbourhood X’ who received the
maximum (visible) payoff in round k and this
payoff is greater than my payoff then

Join X' in round k+1
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Theorem:

Let a game have n players where the
dynamic neighbourhood structure Is given

V& anranbh ~ 1f all thoa nlaviare Aar

o nf the
Uy Yyrapri o1l attne pPIaycrs afe ofrthe

same type t, then the game stabilises in at
most nn(n+1)/2 steps.

Proof Idea: Same as before

Associate a potential with every
configuration of the graph

Show that whengVerthe cotifiguration




General Neighbourhood Games
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Theorem:

A general game with n players and with
either a static or a dynamic neighbourhood
structure eventually stabilises if and only if
we can associate a potential ®k with
every round k such that if the game
moves to a different configuration from
round k to round k + 1 then ®k+1 >

Ok and the maximum possible

potential of the game is bounded.
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Proof
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Unfolding of the game -
configuration tree




Unfolding of the game -
configuration tree
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Generalising Stability
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Theorem:

A general game with n players and with either a static
or a dynamic neighbourhood structure eventually
stabilises if and only if we can associate a potential ®k
with every round k such that the following holds:

. If the game has not yet stabilised in round k then
there exists a round kO > k such that ®k0 > k

.. There exists kO = 0 such that for all k, k’ > kO, ®k =
®k’. That Is, the potential of the game becomes
constant eventually

3. The maximum potential of the game is bounded
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Proof
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Configuration
tree (with simple
cycles)

Neighbourhood Sturcture in Games



Configuration
tree (with simple
cycles)
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No cyclic configuration
implies
simple cycle
implies
unfolding was not correct
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No cyclic configuration
implies
simple cycle
implies
unfolding was not correct
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Cyclic configuration
implies
complex cycle present
contradicts
definition of stability
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Questions?
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