Towards an Efficient Contextual Unfolder

Stefan Schwoon

LSV, ENS Cachan & CNRS, INRIA

ACTS III, Chennai, 27.01.2011

Last year at ACTS:

Theory behind construction of contextual unfolding

Lots of open algorithmic questions

This year:

Progress on algorithms and implementation

Some experimental results

Work in progress, jointly with:

César Rodríguez, author of Cunf tool

Baldan, Bruni, Corradini, König

Motivation

Challenges

Solutions

Results

Motivation

Model for distributed, concurrent system:

Expresses independence, conflict, causality, ...

Acyclic data structure that completely represents the behaviour of a Petri net; exploits concurrency inherent in the Petri net model.

Size between that of Petri net and that of reachability graph; once unfolding is computed, reachability queries become easier.

Large body of work on using unfoldings in verification.

reachability, LTL model checking, diagnosis, ...

The unfolding U of a Petri net N is an *acyclic*, infinite Petri net.

Places in U (called conditions) are labelled with places of N.

Transitions in U (called events) are labelled with transitions of N.

Modulo the labelling, the unfolding has the same behaviours and the same reachable states.

Construction: Start with "copies" of initially marked places; for every coverable marking in U whose labelling enables a transition in *N*, add a "copy" of that transition with *fresh copies* of the output places.

Example: Petri net...

8

... and its unfolding

9

In the following, we consider only nets that are 1-safe:

In any reachable marking, any place holds at most one token.

Sometimes guaranteed by construction (e.g., communicating FA).

Even the unfolding of a 1-safe Petri net is (in general) infinite!

Possible to construct a *finite*, complete prefix P of U: for every marking m reachable in N there exists a marking m' in P whose labelling equals m.

Technique: declare certain events as cut-offs.

Explicit modelling of "read/test" actions (arcs without arrows):

Intuition: The read arc does not consume or touch the token, it merely verifies its presence. For any transition t, we distinguish its preset $\bullet t$, its context \underline{t} , and its postset t^{\bullet} .

The unfolding U of a *contextual* net N is an *acyclic*, infinite *contextual* net.

Contextual nets faithfully model concurrent read accesses;

- \implies better exploitation of concurrency
- \implies smaller unfoldings

Example: Contexual unfolding

13

Naïve encoding into Petri nets

Why not replace read arcs by double arrows and unfold normally?

Naïve encoding into Petri nets

Resulting unfolding: <u>6</u>! *u_i*-labelled events, no exploitation of concurrency!

Place-replication encoding into Petri nets

Place-replication encoding into Petri nets

Resulting unfolding: just one copy each of $u_1, \ldots, u_6!$

Place-replication encoding into Petri nets

However, we will still have 2^6 copies of t_2 .

Direct contextual unfolding

19

The unfolding U of a *contextual* net N is an *acyclic*, infinite *contextual* net.

Contextual nets faithfully model concurrent read accesses;

- \implies better exploitation of concurrency
- \implies smaller unfoldings

Construction of a finite prefix still possible (see last year's talk).

The unfolding U of a *contextual* net N is an *acyclic*, infinite *contextual* net.

Contextual nets faithfully model concurrent read accesses;

- \implies better exploitation of concurrency
- \implies smaller unfoldings

Construction of a finite prefix still possible (see last year's talk).

Disadvantage: construction becomes rather more complex

Challenges

The two principal problems in unfolding are:

Problem 1: Decide (efficiently) whether a set of places is coverable.

 \rightarrow decision required whenever the unfolding is extended

Problem 2: Decide with events are cut-offs.

 \rightarrow to obtain finite complete prefix

Revisiting Problem 1 on Petri nets

Two conditions c, c' are called concurrent ($c \parallel c'$) iff there exists a firing sequence that marks them both.

Fact I: A set S of conditions is coverable iff $c \parallel c'$ for all $c, c' \in S$.

Fact II: (Non-)Concurrency is inherited by causal successors:

For any condition d_i (where $1 \le i \le n$) and c' we have:

$$d_i \parallel c' \iff c' \in e^{\bullet} \lor \left(c' \notin {}^{\bullet}e \land \bigwedge_{j=1}^m c_j \parallel c'\right)$$

Concurrency on contextual nets

Bad news (from last time): Fact I no longer holds:

Any pair $\{d_1, d_2\}, \{d_2, d_3\}, \{d_2, d_3\}$ is coverable, but $\{d_1, d_2, d_3\}$ is not.

 \Rightarrow key element from Petri unfolding algorithms unavailable

Let < (causality) be the transitive closure of the relation $\{(x, y) | x \in {}^{\bullet}y\}$.

We write $\lfloor e \rfloor := \{ e' \mid e' < e \}$ (the causal-predecessor events of *e*.

Each event is associated with the marking M_e generated by firing the events in $\lfloor e \rfloor$.

If M_e equals the initial marking, or if there already exists an event e' with $M_e = M_{e'}$, then e is declared a cut-off.

Cut-offs in contextual nets

Read arcs do not fit into this scheme:

Should event t_2 be considered a causal predecessor of event t_3 ?

Let e, e' be distinct events. They are in asymmetric conflict, written $e \nearrow e'$ iff $e^{\bullet} \cap {}^{\bullet}e' \neq \emptyset$, or ${}^{\bullet}e \cap {}^{\bullet}e' \neq \emptyset$, or $\underline{e} \cap {}^{\bullet}e' \neq \emptyset$.

Intuition: "If both *e* and *e'* happen, then *e* happens first."

Let *C* be a *finite* set of events in a contextual unfolding. We call *C* a configuration iff:

(i) $e \in C$ and e' < e imply $e' \in C$ (i.e., C is causally closed);

(ii) $\nearrow \cap (C \times C) =: \nearrow_C$ does not contain any cycles;

The marking associated with *C* is $M_C = (M_0 \cup C^{\bullet}) \setminus {}^{\bullet}C$, where M_0 is the initial marking.

Let *C* be a configuration and $e \in C$ an event. The history of *e* in *C* is the configuration $C[[e]] := \{ e' \in C \mid e' \nearrow_C^* e \}.$

Example: Histories

Below, two histories for t_3 and their markings are shown:

We shall annotate events with a relevant subset of their histories.

The cutoff criterion is lifted to *histories* (rather than events); the future of an event is explored if it has at least one non-cutoff history.

How to choose that relevant subset: see last year's talk.

Example: Prefix with cut-offs

Unfolding with annotated histories:

t₃ has one cut-off history (marked red) and one non-cutoff history.

Solutions

Implement the (abstract) algorithm presented last year

existing implementation for Petri nets not-reusable due to presence of asymmetric conflict and histories

Motivation: generate small unfoldings, efficiency unclear a priori

Problems to overcome (among others):

Efficiently find coverable sets

Data structures to deal with histories

Let C_1 , C_2 be two configurations. We say that C_1 and C_2 are in conflict $(C_1 \# C_2)$ iff there exist events $e \in C_2 \setminus C_1$ and $e' \in C_1$ such that $e \nearrow e'$ (or vice versa).

If $C_1 \# C_2$, then C_1 and C_2 have "diverged"; they cannot both be extended to a common, bigger configuration. However, if $\neg(C_1 \# C_2)$, then $C_1 \cup C_2$ is a configuration (the other direction does not hold in general.)

e.g., $\{e_1\} \# \{e_2\}$, but $\neg (\{e_1\} \# \{e_1, e_2\})$

Let c be a condition.

if $c = \{e\}$ and *H* is a history of *e*, then *H* is a generating history of *c*; if $c = \emptyset$, then \emptyset is.

if $e \in \underline{c}$ and H is a history of e, then H is a reading history of c.

A history of c is any

- generating or reading history of c;
- union $H_1 \cup H_2$ of non-conflicting histories of *c*.

We call $\langle c, H \rangle$ an enriched condition.

Example: $\{e_2\}$ is a generating history for d_2 and a reading history for c_3 .

Composing histories

Let *e* be an event such that $\bullet e = \{c_1, \ldots, c_k\}$ and $\underline{e} = \{c_{k+1}, \ldots, c_m\}$. Then *H* is a history of *e* iff there exist *arbitrary* histories H_1, \ldots, H_k for c_1, \ldots, c_k and *generating* histories H_{k+1}, \ldots, H_m for c_{k+1}, \ldots, c_m such that:

 $H = \{e\} \cup \bigcup_{i=1}^{m} H_i$ $\nearrow_H \text{ is free of cycles}$ $c_1, \dots, c_m \in M_H$ c_1

Provides a strategy for unfolding procedure: start with generating histories for initial conditions; for every new enriched condition, use above theorem to construct new event/condition histories.

Let $\rho = \langle c, H \rangle$ and $\rho' = \langle c', H' \rangle$ be two enriched conditions. We say $\rho \parallel \rho'$ (that is, ρ, ρ' are concurrent) iff:

 \neg (*H* # *H*') and *c*, *c*' \in *M*_{*H* \cup *H*'}

Fact I: A set $S = \{c_1, \ldots, c_k\}$ is coverable iff there exist histories H_1, \ldots, H_k such that $(c_i, H_i) \parallel (c_i, H_i)$ for all $1 \le i < j \le k$.

Computing the concurrency relation

Fact II: Let *H* be a newly discovered history for *e* composed from histories H_j for c_j , where $1 \le j \le m$; we let $\rho_j := \langle c_j, H_j \rangle$.

Moreover, let $\rho = \langle c, H \rangle$ for some $c \in e^{\bullet}$ and $\rho' = \langle c', H' \rangle$ any existing enriched history. Then:

$$\rho \parallel \rho' \iff (c' \in e^{\bullet} \land H = H') \lor \left(c' \notin e^{\bullet} \land \bigwedge_{j=1}^{m} (\rho_j \parallel \rho') \land (\underline{e}) \cap H' \subseteq H\right)$$

The condition $(\bullet e) \cap H' \subseteq H$ can be implemented with reasonable efficiency:

No need to traverse *H'* completely when checking $\rho \parallel \rho'$: can remember candidate events when computing the marking $M_{H'}$.

A similar result exists for general (i.e., composed) histories of conditions.

Efficient detection of coverable sets akin to Petri net method.

We call $\langle e, H \rangle$, where H is a history of e, an enriched event.

Let \mathcal{H} be the node-labelled directed graph whose nodes are the enriched events and an edge $\langle e, H \rangle \rightarrow \langle e', H' \rangle$ exists iff $e' \nearrow e$ and H' = H[[e']]. Node $\langle e, H \rangle$ is labelled by e.

Notes:

 \mathcal{H} can be incrementally constructed during the construction of the unfolding.

The history H of a node can be recovered by recursively following the outgoing edges of the node and reading the labels.

All required operations on histories can be implemented as simple neighbourhood queries on \mathcal{H} , for instance, finding all events in $H \cap (\underline{\bullet e})$ in the computation of concurrency.

Results

Benchmarks used: Corbett's set of examples

Standard benchmarks in unfolding literature

Derived from concurrent finite automata, hence 1-safe

Different characteristics, fairly sure to exhibit implementation flaws

Not specifically geared towards contextual nets

	events	Mole	Cunf
bds_1	12900	0.47	0.52
buf100	5051	2.85	2.10
byzagr4	14724	3.04	3.40
dpd_7	10457	0.93	0.87
dph_7	37272	0.79	0.99
elevator_4	16856	2.00	2.01
fifo20	41792	4.89	4.14
ftp_1	83889	76.02	77.09
furnace_3	25394	1.22	1.10
key_4	67954	1.80	2.18
q_1.sync	10722	1.36	1.22
rw_12.sync	98361	2.89	3.98
rw_1w3r	15401	0.30	0.39
rw_2w1r	9241	0.23	0.29

Mole is an (efficient) unfolder for Petri nets. Cunf is the new contextual unfolder. We run both tools on the original Petri nets (no read arcs!) \Rightarrow results are the same Times given in seconds. Conclusion: implementation of Cunf is reasonably efficient (factors 0.7 to 1.4 w.r.t.

Mole)

Conclusion: histories handled gracefully

	events	Naïve	Context.	c-events
bds_1	12900	0.52	0.16	4032
buf100	5051	2.10	2.17	5051
byzagr4	14724	3.40	2.59	8044
dpd_7	10457	0.87	0.94	10457
dph_7	37272	0.99	0.99	37272
elevator_4	16856	2.01	1.30	16856
fifo20	41792	4.14	4.14	41792
ftp_1	83889	77.09	34.60	50928
furnace_3	25394	1.10	0.62	16893
key_4	67954	2.18	9.35	21742
q_1.sync	10722	1.22	1.20	10722
rw_12.sync	98361	3.98	3.14	98361
rw_1w3r	15401	0.39	0.43	14982
rw_2w1r	9241	0.29	0.36	9241

Contextual nets obtained by converting read/write loops to read arcs.

Cunf used on both tools.

3 examples w/o read arcs (in italics).

Some savings on time and size (not always on both).

Inefficiency detected in key_4 example, we're working on fixing it.

Experiments III: Contextual vs PR-encoding

	Context.	PR-enc.
bds_1	0.16	0.27
buf100	2.17	2.16
byzagr4	2.59	5.30
dpd_7	0.94	0.98
dph_7	0.99	1.00
elevator_4	1.30	557.06
fifo20	4.14	4.12
ftp_1	34.60	113.71
furnace_3	0.62	0.96
key_4	9.35	4.28
q_1.sync	1.20	2.18
rw_12.sync	3.14	7.66
rw₋1w3r	0.43	0.70
rw_2w1r	0.36	8.86

PR-encoding obtained from contextual nets. Cunf used on both tools. #histories in contextual = #events in PR Nonetheless, contextual is consistently better (except key_4, for now). Explanation: combinatorial problems in PR resulting from larger transition pre-sets.

Contextual unfolding feasible and efficient

Beats PR-encoding

Work in progress, further ideas for optimization

Will look at more extensive benchmarks

To do: look at the applications in verification, diagnosis, etc.