
Towards an Efficient Contextual Unfolder

Stefan Schwoon

LSV, ENS Cachan & CNRS, INRIA

ACTS III, Chennai, 27.01.2011



Opening remarks

Last year at ACTS:

Theory behind construction of contextual unfolding

Lots of open algorithmic questions

This year:

Progress on algorithms and implementation

Some experimental results

Work in progress, jointly with:

César Rodrı́guez, author of Cunf tool

Baldan, Bruni, Corradini, König

2



Outline

Motivation

Challenges

Solutions

Results

3



Motivation



Petri nets

Model for distributed, concurrent system:

Expresses independence, conflict, causality, . . .

5



Petri net unfoldings

Acyclic data structure that completely represents the behaviour of a Petri net;
exploits concurrency inherent in the Petri net model.

Size between that of Petri net and that of reachability graph; once unfolding is
computed, reachability queries become easier.

Large body of work on using unfoldings in verification.

reachability, LTL model checking, diagnosis, . . .

6



Construction of an unfolding

The unfolding U of a Petri net N is an acyclic, infinite Petri net.

Places in U (called conditions) are labelled with places of N.

Transitions in U (called events) are labelled with transitions of N.

Modulo the labelling, the unfolding has the same behaviours and the same
reachable states.

Construction: Start with “copies” of initially marked places; for every coverable
marking in U whose labelling enables a transition in N, add a “copy” of that
transition with fresh copies of the output places.

7



Example: Petri net. . .

p5p1

t6

t5t3

t2

p3 p7

p4

8



. . . and its unfolding

...
...

...
...

t5

p7
p7

t5t2

p3
p3

t2

p1 p4 p5

t2 t5

p3 p7

p4 p4p1 p5

t6t3

9



Complete prefixes

In the following, we consider only nets that are 1-safe:

In any reachable marking, any place holds at most one token.

Sometimes guaranteed by construction (e.g., communicating FA).

Even the unfolding of a 1-safe Petri net is (in general) infinite!

Possible to construct a finite, complete prefix P of U:
for every marking m reachable in N there exists a marking m′ in P whose
labelling equals m.

Technique: declare certain events as cut-offs.

10



Contextual nets

Explicit modelling of “read/test” actions (arcs without arrows):

Intuition: The read arc does not consume or touch the token, it merely verifies its
presence. For any transition t , we distinguish its preset ∙t , its context t , and its
postset t∙.

11



Contextual unfoldings

The unfolding U of a contextual net N is an acyclic, infinite contextual net.

Contextual nets faithfully model concurrent read accesses;
=⇒ better exploitation of concurrency
=⇒ smaller unfoldings

Construction of a finite prefix still possible (see last year’s talk).

Disadvantage: construction becomes rather more complex

12



Example: Contexual unfolding

Consider the contextual net shown below (six readers):

p

u5

u4

u3

u2

u1

t2

t1

u6

13



Naı̈ve encoding into Petri nets

Why not replace read arcs by double arrows and unfold normally?

t1

u1

u2

u3

u4

u5

u6

p

t2

14



Naı̈ve encoding into Petri nets

Resulting unfolding: 6! ui-labelled events, no exploitation of concurrency!

u6t1

p

u1

p

p

u1u6

p

p

...

...

...

...

... ...

...

15



Place-replication encoding into Petri nets

(PR-encoding) Replace p by six copies, one for each reader.

u6

u4

u3

u2

u1

t2

t1

u5

16



Place-replication encoding into Petri nets

Resulting unfolding: just one copy each of u1, . . . , u6!

u1

p1

p1

u6

p6

p6

t1

...

...

17



Place-replication encoding into Petri nets

However, we will still have 26 copies of t2.

u1

p1

p1

u6

p6

p6

t1

...

...

18



Direct contextual unfolding

Here: unfolding identical to net, no blowup at all!

p

u5

u4

u3

u2

u1

t2

t1

u6

19



Contextual unfoldings

The unfolding U of a contextual net N is an acyclic, infinite contextual net.

Contextual nets faithfully model concurrent read accesses;
=⇒ better exploitation of concurrency
=⇒ smaller unfoldings

Construction of a finite prefix still possible (see last year’s talk).

Disadvantage: construction becomes rather more complex

20



Contextual unfoldings

The unfolding U of a contextual net N is an acyclic, infinite contextual net.

Contextual nets faithfully model concurrent read accesses;
=⇒ better exploitation of concurrency
=⇒ smaller unfoldings

Construction of a finite prefix still possible (see last year’s talk).

Disadvantage: construction becomes rather more complex

21



Challenges



Algorithmic problems

The two principal problems in unfolding are:

Problem 1: Decide (efficiently) whether a set of places is coverable.

→ decision required whenever the unfolding is extended

Problem 2: Decide with events are cut-offs.

→ to obtain finite complete prefix

23



Revisiting Problem 1 on Petri nets

Two conditions c, c′ are called concurrrent (c ∥ c′) iff there exists a firing
sequence that marks them both.

Fact I: A set S of conditions is coverable iff c ∥ c′ for all c, c′ ∈ S.

Fact II: (Non-)Concurrency is inherited by causal successors:

e

m
c
1 ...

d
1 n

d
...

c

For any condition di (where 1 ≤ i ≤ n) and c′ we have:

di ∥ c′ ⇐⇒ c′ ∈ e∙ ∨
(

c′ /∈ ∙e ∧
m⋀

j=1

cj ∥ c′
)

24



Concurrency on contextual nets

Bad news (from last time): Fact I no longer holds:

d1

c2

e2

d2 e3

d3

c1

c3

e1

Any pair {d1, d2}, {d2, d3}, {d2, d3} is coverable, but {d1, d2, d3} is not.

⇒ key element from Petri unfolding algorithms unavailable

25



Revisiting Problem 2 on Petri nets

Let < (causality) be the transitive closure of the relation { (x , y) ∣ x ∈ ∙y }.

We write ⌊e⌋ := { e′ ∣ e′ < e } (the causal-predecessor events of e.

Each event is associated with the marking Me generated by firing the events in
⌊e⌋.

If Me equals the initial marking, or if there already exists an event e′ with
Me = Me′, then e is declared a cut-off.

26



Cut-offs in contextual nets

Read arcs do not fit into this scheme:

t1

p1

p2

p3

p4

p1

p4

p3

p2

p1

t1

p5

t4

t2

t3

t2

t3

Should event t2 be considered a causal predecessor of event t3?

27



Asymmetric conflict

Let e, e′ be distinct events. They are in asymmetric conflict, written e↗ e′ iff
e∙ ∩ ∙e′ ∕= ∅, or ∙e ∩ ∙e′ ∕= ∅, or e ∩ ∙e′ ∕= ∅.

Intuition: “If both e and e′ happen, then e happens first.”

Let C be a finite set of events in a contextual unfolding.
We call C a configuration iff:

(i) e ∈ C and e′ < e imply e′ ∈ C (i.e., C is causally closed);

(ii)↗∩ (C × C) =:↗C does not contain any cycles;

The marking associated with C is MC = (M0 ∪ C∙) ∖ ∙C, where M0 is the initial
marking.

Let C be a configuration and e ∈ C an event. The history of e in C is the
configuration C[[e]] := { e′ ∈ C ∣ e′↗∗C e }.

28



Example: Histories

Below, two histories for t3 and their markings are shown:

t1

p2

p3

p4

p1

p4

p3

p2

p1

t1

p5

t4

t2

t3

t2

t3

{p1,p3}

{p1,p4}

p1

29



Cut-offs for contextual nets

We shall annotate events with a relevant subset of their histories.

The cutoff criterion is lifted to histories (rather than events); the future of an event
is explored if it has at least one non-cutoff history.

How to choose that relevant subset: see last year’s talk.

30



Example: Prefix with cut-offs

Unfolding with annotated histories:

t1

p2

p3

p4

p1
p5

p4

p3

p2

p1

t1

t4

t2

t3

t2

t3

{t1} / {p2,p3}

{t2} / {p2,p4}

{t1,t3} / {p1,p3}

{t1,t2,t3} / {p1,p4}
p5

{t1,...,t4} / {p5}

p1

t3 has one cut-off history (marked red) and one non-cutoff history.

31



Solutions



Goal

Implement the (abstract) algorithm presented last year

existing implementation for Petri nets not-reusable due to presence of
asymmetric conflict and histories

Motivation: generate small unfoldings, efficiency unclear a priori

Problems to overcome (among others):

Efficiently find coverable sets

Data structures to deal with histories

33



Conflicting histories

Let C1,C2 be two configurations. We say that C1 and C2 are in conflict
(C1 # C2) iff there exist events e ∈ C2 ∖ C1 and e′ ∈ C1 such that e↗ e′ (or
vice versa).

If C1 # C2, then C1 and C2 have “diverged”; they cannot both be extended to a
common, bigger configuration. However, if ¬(C1 # C2), then C1 ∪ C2 is a
configuration (the other direction does not hold in general.)

d1

c2

e2

d2 e3

d3

c1

c3

e1

e.g., {e1}# {e2}, but ¬({e1}# {e1, e2})

34



Enriched conditions

Let c be a condition.

if ∙c = {e} and H is a history of e, then H is a generating history of c; if
∙c = ∅, then ∅ is.

if e ∈ c and H is a history of e, then H is a reading history of c.

A history of c is any

– generating or reading history of c;

– union H1 ∪ H2 of non-conflicting histories of c.

We call ⟨c,H⟩ an enriched condition.

Example: {e2} is a generating history for d2 and a reading history for c3.

35



Composing histories

Let e be an event such that ∙e = {c1, . . . , ck} and e = {ck+1, . . . , cm}. Then H
is a history of e iff there exist arbitrary histories H1, . . . ,Hk for c1, . . . , ck and
generating histories Hk+1, . . . ,Hm for ck+1, . . . , cm such that:

H = {e} ∪
∪m

i=1 Hi

↗H is free of cycles

c1, . . . , cm ∈ MH

k
c
1 ... c

c
k+1

c
m

e

Provides a strategy for unfolding procedure: start with generating histories for
initial conditions; for every new enriched condition, use above theorem to
construct new event/condition histories.

36



A concurrency relation for contextual nets

Let � = ⟨c,H⟩ and �′ = ⟨c′,H ′⟩ be two enriched conditions. We say � ∥ �′ (that
is, �, �′ are concurrent) iff:

¬(H # H ′) and c, c′ ∈ MH∪H ′

Fact I: A set S = {c1, . . . , ck} is coverable iff there exist histories H1, . . . ,Hk
such that (ci ,Hi) ∥ (cj ,Hj) for all 1 ≤ i < j ≤ k .

37



Computing the concurrency relation

Fact II: Let H be a newly discovered history for e composed from histories Hj for
cj , where 1 ≤ j ≤ m; we let �j := ⟨cj ,Hj⟩.

k
c
1 ... c

c
k+1

c
m

e

d
1 n

d
...

Moreover, let � = ⟨c,H⟩ for some c ∈ e∙ and �′ = ⟨c′,H ′⟩ any existing enriched
history. Then:

� ∥ �′ ⇐⇒ (c′ ∈ e∙ ∧ H = H ′) ∨
(

c′ /∈ ∙e ∧
m⋀

j=1

(�j ∥ �′) ∧ (∙e) ∩ H ′ ⊆ H
)

38



Notes

The condition (∙e) ∩ H ′ ⊆ H can be implemented with reasonable efficiency:

No need to traverse H ′ completely when checking � ∥ �′: can remember
candidate events when computing the marking MH ′.

A similar result exists for general (i.e., composed) histories of conditions.

Efficient detection of coverable sets akin to Petri net method.

39



History graph

We call ⟨e,H⟩, where H is a history of e, an enriched event.

Let ℋ be the node-labelled directed graph whose nodes are the enriched events
and an edge ⟨e,H⟩ → ⟨e′,H ′⟩ exists iff e′↗ e and H ′ = H[[e′]]. Node ⟨e,H⟩ is
labelled by e.

Notes:

ℋ can be incrementally constructed during the construction of the unfolding.

The history H of a node can be recovered by recursively following the
outgoing edges of the node and reading the labels.

All required operations on histories can be implemented as simple
neighbourhood queries on ℋ, for instance, finding all events in H ∩ (∙e) in
the computation of concurrency.

40



Results



Benchmarks

Benchmarks used: Corbett’s set of examples

Standard benchmarks in unfolding literature

Derived from concurrent finite automata, hence 1-safe

Different characteristics, fairly sure to exhibit implementation flaws

Not specifically geared towards contextual nets

42



Experiments I: Mole vs Cunf

events Mole Cunf

bds 1 12900 0.47 0.52

buf100 5051 2.85 2.10

byzagr4 14724 3.04 3.40

dpd 7 10457 0.93 0.87

dph 7 37272 0.79 0.99

elevator 4 16856 2.00 2.01

fifo20 41792 4.89 4.14

ftp 1 83889 76.02 77.09

furnace 3 25394 1.22 1.10

key 4 67954 1.80 2.18

q 1.sync 10722 1.36 1.22

rw 12.sync 98361 2.89 3.98

rw 1w3r 15401 0.30 0.39

rw 2w1r 9241 0.23 0.29

Mole is an (efficient) unfolder for Petri nets.

Cunf is the new contextual unfolder.

We run both tools on the original Petri nets
(no read arcs!) ⇒ results are the same

Times given in seconds.

Conclusion: implementation of Cunf is
reasonably efficient (factors 0.7 to 1.4 w.r.t.
Mole)

Conclusion: histories handled gracefully

43



Experiments II: Naı̈ve vs contextual

events Naı̈ve Context. c-events

bds 1 12900 0.52 0.16 4032

buf100 5051 2.10 2.17 5051

byzagr4 14724 3.40 2.59 8044

dpd 7 10457 0.87 0.94 10457

dph 7 37272 0.99 0.99 37272

elevator 4 16856 2.01 1.30 16856

fifo20 41792 4.14 4.14 41792

ftp 1 83889 77.09 34.60 50928

furnace 3 25394 1.10 0.62 16893

key 4 67954 2.18 9.35 21742

q 1.sync 10722 1.22 1.20 10722

rw 12.sync 98361 3.98 3.14 98361

rw 1w3r 15401 0.39 0.43 14982

rw 2w1r 9241 0.29 0.36 9241

Contextual nets obtained by con-
verting read/write loops to read
arcs.

Cunf used on both tools.

3 examples w/o read arcs (in
italics).

Some savings on time and size
(not always on both).

Inefficiency detected in key 4 ex-
ample, we’re working on fixing it.

44



Experiments III: Contextual vs PR-encoding

Context. PR-enc.

bds 1 0.16 0.27

buf100 2.17 2.16

byzagr4 2.59 5.30

dpd 7 0.94 0.98

dph 7 0.99 1.00

elevator 4 1.30 557.06

fifo20 4.14 4.12

ftp 1 34.60 113.71

furnace 3 0.62 0.96

key 4 9.35 4.28

q 1.sync 1.20 2.18

rw 12.sync 3.14 7.66

rw 1w3r 0.43 0.70

rw 2w1r 0.36 8.86

PR-encoding obtained from contextual nets.

Cunf used on both tools.

#histories in contextual = #events in PR

Nonetheless, contextual is consistently
better (except key 4, for now).

Explanation: combinatorial problems in PR
resulting from larger transition pre-sets.

45



Conclusions and future work

Contextual unfolding feasible and efficient

Beats PR-encoding

Work in progress, further ideas for optimization

Will look at more extensive benchmarks

To do: look at the applications in verification, diagnosis, etc.

46


