Towards an Efficient Contextual Unfolder

Stefan Schwoon

LSV, ENS Cachan & CNRS, INRIA

ACTS III, Chennai, 27.01.2011
Opening remarks

Last year at ACTS:

- Theory behind construction of contextual unfolding
- Lots of open algorithmic questions

This year:

- Progress on algorithms and implementation
- Some experimental results

Work in progress, jointly with:

- César Rodríguez, author of Cunf tool
- Baldan, Bruni, Corradini, König
Outline

Motivation

Challenges

Solutions

Results
Motivation
Petri nets

Model for distributed, concurrent system:

Expresses independence, conflict, causality, ...
Petri net unfoldings

Acyclic data structure that completely represents the behaviour of a Petri net; exploits concurrency inherent in the Petri net model.

Size between that of Petri net and that of reachability graph; once unfolding is computed, reachability queries become easier.

Large body of work on using unfoldings in verification.

reachability, LTL model checking, diagnosis, ...
Construction of an unfolding

The unfolding U of a Petri net N is an acyclic, infinite Petri net.

Places in U (called conditions) are labelled with places of N.

Transitions in U (called events) are labelled with transitions of N.

Modulo the labelling, the unfolding has the same behaviours and the same reachable states.

Construction: Start with “copies” of initially marked places; for every coverable marking in U whose labelling enables a transition in N, add a “copy” of that transition with fresh copies of the output places.
Example: Petri net...
...and its unfolding
In the following, we consider only nets that are 1-safe:

In any reachable marking, any place holds at most one token.

Sometimes guaranteed by construction (e.g., communicating FA).

Even the unfolding of a 1-safe Petri net is (in general) infinite!

Possible to construct a finite, complete prefix \(P \) of \(U \):
for every marking \(m \) reachable in \(N \) there exists a marking \(m' \) in \(P \) whose labelling equals \(m \).

Technique: declare certain events as cut-offs.
Explicit modelling of “read/test” actions (arcs without arrows):

Intuition: The read arc does not consume or touch the token, it merely verifies its presence. For any transition t, we distinguish its preset t^\bullet, its context t, and its postset t^\cdot.
Contextual unfoldings

The unfolding U of a contextual net N is an acyclic, infinite contextual net.

Contextual nets faithfully model concurrent read accesses;
\implies better exploitation of concurrency
\implies smaller unfoldings
Example: Contextual unfolding

Consider the contextual net shown below (six readers):
Naïve encoding into Petri nets

Why not replace read arcs by double arrows and unfold normally?
Naïve encoding into Petri nets

Resulting unfolding: $6! u_i$-labelled events, no exploitation of concurrency!
(PR-encoding) Replace p by six copies, one for each reader.
Place-replication encoding into Petri nets

Resulting unfolding: just one copy each of u_1, \ldots, u_6!
However, we will still have 2^6 copies of t_2.
Direct contextual unfolding

Here: unfolding identical to net, no blowup at all!
Contextual unfoldings

The unfolding U of a *contextual* net N is an *acyclic*, infinite *contextual* net.

Contextual nets faithfully model concurrent read accesses;
\implies better exploitation of concurrency
\implies smaller unfoldings

Construction of a finite prefix still possible (see last year’s talk).
Contextual unfoldings

The unfolding U of a contextual net N is an acyclic, infinite contextual net.

Contextual nets faithfully model concurrent read accesses;
\iff better exploitation of concurrency
\iff smaller unfoldings

Construction of a finite prefix still possible (see last year's talk).

Disadvantage: construction becomes rather more complex
Challenges
Algorithmic problems

The two principal problems in unfolding are:

Problem 1: Decide (efficiently) whether a set of places is coverable.

→ decision required whenever the unfolding is extended

Problem 2: Decide with events are cut-offs.

→ to obtain finite complete prefix
Revisiting Problem 1 on Petri nets

Two conditions \(c, c' \) are called concurrent \((c \parallel c')\) iff there exists a firing sequence that marks them both.

Fact I: A set \(S \) of conditions is coverable iff \(c \parallel c' \) for all \(c, c' \in S \).

Fact II: (Non-)Concurrency is inherited by causal successors:

For any condition \(d_i \) (where \(1 \leq i \leq n \)) and \(c' \) we have:

\[
d_i \parallel c' \iff c' \in e^* \lor \left(c' \notin e^* \land \bigwedge_{j=1}^{m} c_j \parallel c' \right)
\]
Concurrent on contextual nets

Bad news (from last time): Fact I no longer holds:

Any pair \(\{d_1, d_2\} \), \(\{d_2, d_3\} \), \(\{d_2, d_3\} \) is coverable, but \(\{d_1, d_2, d_3\} \) is not.

\[\Rightarrow \] key element from Petri unfolding algorithms unavailable
Let $< \text{(causality)}$ be the transitive closure of the relation $\{(x, y) \mid x \in \cdot y\}$.

We write $\lfloor e \rfloor := \{e' \mid e' < e\}$ (the causal-predecessor events of e).

Each event is associated with the marking M_e generated by firing the events in $\lfloor e \rfloor$.

If M_e equals the initial marking, or if there already exists an event e' with $M_e = M_{e'}$, then e is declared a cut-off.
Cut-offs in contextual nets

Read arcs do not fit into this scheme:

Should event t_2 be considered a causal predecessor of event t_3?
Asymmetric conflict

Let e, e' be distinct events. They are in asymmetric conflict, written $e \rightarrow e'$ iff $e^* \cap e' \neq \emptyset$, or $e \cap e' \neq \emptyset$, or $e \cap e' \neq \emptyset$.

Intuition: “If both e and e' happen, then e happens first.”

Let C be a finite set of events in a contextual unfolding. We call C a configuration iff:

(i) $e \in C$ and $e' < e$ imply $e' \in C$ (i.e., C is causally closed);

(ii) $\rightarrow \cap (C \times C) =: \rightarrow_C$ does not contain any cycles;

The marking associated with C is $M_C = (M_0 \cup C^*) \setminus C^*$, where M_0 is the initial marking.

Let C be a configuration and $e \in C$ an event. The history of e in C is the configuration $C[[e]] := \{ e' \in C \mid e' \rightarrow_C e \}$.

28
Example: Histories

Below, two histories for t_3 and their markings are shown:
Cut-offs for contextual nets

We shall annotate events with a relevant subset of their histories.

The cutoff criterion is lifted to histories (rather than events); the future of an event is explored if it has at least one non-cutoff history.

How to choose that relevant subset: see last year’s talk.
Example: Prefix with cut-offs

Unfolding with annotated histories:

t_3 has one cut-off history (marked red) and one non-cutoff history.
Solutions
Goal

Implement the (abstract) algorithm presented last year

existing implementation for Petri nets not-reusable due to presence of asymmetric conflict and histories

Motivation: generate small unfoldings, efficiency unclear a priori

Problems to overcome (among others):

 Efficiently find coverable sets

 Data structures to deal with histories
Conflict histories

Let C_1, C_2 be two configurations. We say that C_1 and C_2 are in conflict ($C_1 \not\equiv C_2$) iff there exist events $e \in C_2 \setminus C_1$ and $e' \in C_1$ such that $e \uparrow e'$ (or vice versa).

If $C_1 \not\equiv C_2$, then C_1 and C_2 have “diverged”; they cannot both be extended to a common, bigger configuration. However, if $\neg (C_1 \not\equiv C_2)$, then $C_1 \cup C_2$ is a configuration (the other direction does not hold in general.)

e.g., $\{e_1\} \not\equiv \{e_2\}$, but $\neg (\{e_1\} \not\equiv \{e_1, e_2\})$
Enriched conditions

Let c be a condition.

if $\bullet c = \{e\}$ and H is a history of e, then H is a generating history of c; if $\bullet c = \emptyset$, then \emptyset is.

if $e \in c$ and H is a history of e, then H is a reading history of c.

A history of c is any

- generating or reading history of c;
- union $H_1 \cup H_2$ of non-conflicting histories of c.

We call $\langle c, H \rangle$ an enriched condition.

Example: $\{e_2\}$ is a generating history for d_2 and a reading history for c_3.
Composing histories

Let e be an event such that $\bullet e = \{c_1, \ldots, c_k\}$ and $e = \{c_{k+1}, \ldots, c_m\}$. Then H is a history of e iff there exist arbitrary histories H_1, \ldots, H_k for c_1, \ldots, c_k and generating histories H_{k+1}, \ldots, H_m for c_{k+1}, \ldots, c_m such that:

$$H = \{e\} \cup \bigcup_{i=1}^{m} H_i$$

\uparrow_H is free of cycles

$c_1, \ldots, c_m \in M_H$

Provides a strategy for unfolding procedure: start with generating histories for initial conditions; for every new enriched condition, use above theorem to construct new event/condition histories.
A concurrency relation for contextual nets

Let $\rho = \langle c, H \rangle$ and $\rho' = \langle c', H' \rangle$ be two enriched conditions. We say $\rho \parallel \rho'$ (that is, ρ, ρ' are concurrent) iff:

$$\neg (H \neq H') \quad \text{and} \quad c, c' \in M_{H \cup H'}$$

Fact 1: A set $S = \{c_1, \ldots, c_k\}$ is coverable iff there exist histories H_1, \ldots, H_k such that $(c_i, H_i) \parallel (c_j, H_j)$ for all $1 \leq i < j \leq k$.
Computing the concurrency relation

Fact II: Let H be a newly discovered history for e composed from histories H_j for c_j, where $1 \leq j \leq m$; we let $\rho_j := \langle c_j, H_j \rangle$.

Moreover, let $\rho = \langle c, H \rangle$ for some $c \in e^\bullet$ and $\rho' = \langle c', H' \rangle$ any existing enriched history. Then:

$$\rho \parallel \rho' \iff (c' \in e^\bullet \land H = H') \lor \left(c' \notin e^\bullet \land \bigwedge_{j=1}^{m} (\rho_j \parallel \rho') \land e^\bullet \cap H' \subseteq H \right)$$
The condition \((\bullet e) \cap H' \subseteq H\) can be implemented with reasonable efficiency:

No need to traverse \(H'\) completely when checking \(\rho \parallel \rho'\): can remember candidate events when computing the marking \(M_{H'}\).

A similar result exists for general (i.e., composed) histories of conditions.

Efficient detection of coverable sets akin to Petri net method.
History graph

We call \(\langle e, H \rangle \), where \(H \) is a history of \(e \), an enriched event.

Let \(\mathcal{H} \) be the node-labelled directed graph whose nodes are the enriched events and an edge \(\langle e, H \rangle \to \langle e', H' \rangle \) exists iff \(e' \nearrow e \) and \(H' = H[e'] \). Node \(\langle e, H \rangle \) is labelled by \(e \).

Notes:

\(\mathcal{H} \) can be incrementally constructed during the construction of the unfolding.

The history \(H \) of a node can be recovered by recursively following the outgoing edges of the node and reading the labels.

All required operations on histories can be implemented as simple neighbourhood queries on \(\mathcal{H} \), for instance, finding all events in \(H \cap (\bullet e) \) in the computation of concurrency.
Results
Benchmarks

Benchmarks used: Corbett’s set of examples

- Standard benchmarks in unfolding literature
- Derived from concurrent finite automata, hence 1-safe
- Different characteristics, fairly sure to exhibit implementation flaws
- Not specifically geared towards contextual nets
Experiments I: Mole vs Cunf

<table>
<thead>
<tr>
<th></th>
<th>events</th>
<th>Mole</th>
<th>Cunf</th>
</tr>
</thead>
<tbody>
<tr>
<td>bds_1</td>
<td>12900</td>
<td>0.47</td>
<td>0.52</td>
</tr>
<tr>
<td>buf100</td>
<td>5051</td>
<td>2.85</td>
<td>2.10</td>
</tr>
<tr>
<td>byzagr4</td>
<td>14724</td>
<td>3.04</td>
<td>3.40</td>
</tr>
<tr>
<td>dpd_7</td>
<td>10457</td>
<td>0.93</td>
<td>0.87</td>
</tr>
<tr>
<td>dph_7</td>
<td>37272</td>
<td>0.79</td>
<td>0.99</td>
</tr>
<tr>
<td>elevator_4</td>
<td>16856</td>
<td>2.00</td>
<td>2.01</td>
</tr>
<tr>
<td>fifo20</td>
<td>41792</td>
<td>4.89</td>
<td>4.14</td>
</tr>
<tr>
<td>ftp_1</td>
<td>83889</td>
<td>76.02</td>
<td>77.09</td>
</tr>
<tr>
<td>furnace_3</td>
<td>25394</td>
<td>1.22</td>
<td>1.10</td>
</tr>
<tr>
<td>key_4</td>
<td>67954</td>
<td>1.80</td>
<td>2.18</td>
</tr>
<tr>
<td>q_1.sync</td>
<td>10722</td>
<td>1.36</td>
<td>1.22</td>
</tr>
<tr>
<td>rw_12.sync</td>
<td>98361</td>
<td>2.89</td>
<td>3.98</td>
</tr>
<tr>
<td>rw_1w3r</td>
<td>15401</td>
<td>0.30</td>
<td>0.39</td>
</tr>
<tr>
<td>rw_2w1r</td>
<td>9241</td>
<td>0.23</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Mole is an (efficient) unfolder for Petri nets.

Cunf is the new contextual unfolder.

We run both tools on the original Petri nets (no read arcs!) ⇒ results are the same

Times given in seconds.

Conclusion: implementation of Cunf is reasonably efficient (factors 0.7 to 1.4 w.r.t. Mole)

Conclusion: histories handled gracefully
Experiments II: Naïve vs contextual

<table>
<thead>
<tr>
<th></th>
<th>events</th>
<th>Naïve</th>
<th>Context.</th>
<th>c-events</th>
</tr>
</thead>
<tbody>
<tr>
<td>bds_1</td>
<td>12900</td>
<td>0.52</td>
<td>0.16</td>
<td>4032</td>
</tr>
<tr>
<td>buf100</td>
<td>5051</td>
<td>2.10</td>
<td>2.17</td>
<td>5051</td>
</tr>
<tr>
<td>byzagr4</td>
<td>14724</td>
<td>3.40</td>
<td>2.59</td>
<td>8044</td>
</tr>
<tr>
<td>dpd_7</td>
<td>10457</td>
<td>0.87</td>
<td>0.94</td>
<td>10457</td>
</tr>
<tr>
<td>dph_7</td>
<td>37272</td>
<td>0.99</td>
<td>0.99</td>
<td>37272</td>
</tr>
<tr>
<td>elevator_4</td>
<td>16856</td>
<td>2.01</td>
<td>1.30</td>
<td>16856</td>
</tr>
<tr>
<td>fifo20</td>
<td>41792</td>
<td>4.14</td>
<td>4.14</td>
<td>41792</td>
</tr>
<tr>
<td>ftp_1</td>
<td>83889</td>
<td>77.09</td>
<td>34.60</td>
<td>50928</td>
</tr>
<tr>
<td>furnace_3</td>
<td>25394</td>
<td>1.10</td>
<td>0.62</td>
<td>16893</td>
</tr>
<tr>
<td>key_4</td>
<td>67954</td>
<td>2.18</td>
<td>9.35</td>
<td>21742</td>
</tr>
<tr>
<td>q_1.sync</td>
<td>10722</td>
<td>1.22</td>
<td>1.20</td>
<td>10722</td>
</tr>
<tr>
<td>rw_12.sync</td>
<td>98361</td>
<td>3.98</td>
<td>3.14</td>
<td>98361</td>
</tr>
<tr>
<td>rw_1w3r</td>
<td>15401</td>
<td>0.39</td>
<td>0.43</td>
<td>14982</td>
</tr>
<tr>
<td>rw_2w1r</td>
<td>9241</td>
<td>0.29</td>
<td>0.36</td>
<td>9241</td>
</tr>
</tbody>
</table>

Contextual nets obtained by converting read/write loops to read arcs.

Cunf used on both tools.

3 examples w/o read arcs (in italics).

Some savings on time and size (not always on both).

Inefficiency detected in key_4 example, we’re working on fixing it.
Experiments III: Contextual vs PR-encoding

<table>
<thead>
<tr>
<th>Item</th>
<th>Context.</th>
<th>PR-enc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>bds_1</td>
<td>0.16</td>
<td>0.27</td>
</tr>
<tr>
<td>buf100</td>
<td>2.17</td>
<td>2.16</td>
</tr>
<tr>
<td>byzagr4</td>
<td>2.59</td>
<td>5.30</td>
</tr>
<tr>
<td>dpd_7</td>
<td>0.94</td>
<td>0.98</td>
</tr>
<tr>
<td>dph_7</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>elevator_4</td>
<td>1.30</td>
<td>557.06</td>
</tr>
<tr>
<td>fifo20</td>
<td>4.14</td>
<td>4.12</td>
</tr>
<tr>
<td>ftp_1</td>
<td>34.60</td>
<td>113.71</td>
</tr>
<tr>
<td>furnace_3</td>
<td>0.62</td>
<td>0.96</td>
</tr>
<tr>
<td>key_4</td>
<td>9.35</td>
<td>4.28</td>
</tr>
<tr>
<td>q_1.sync</td>
<td>1.20</td>
<td>2.18</td>
</tr>
<tr>
<td>rw_12.sync</td>
<td>3.14</td>
<td>7.66</td>
</tr>
<tr>
<td>rw_1w3r</td>
<td>0.43</td>
<td>0.70</td>
</tr>
<tr>
<td>rw_2w1r</td>
<td>0.36</td>
<td>8.86</td>
</tr>
</tbody>
</table>

PR-encoding obtained from contextual nets.

Cunf used on both tools.

#histories in contextual = #events in PR

Nonetheless, contextual is consistently better (except key_4, for now).

Explanation: combinatorial problems in PR resulting from larger transition pre-sets.
Conclusions and future work

Contextual unfolding feasible and efficient

Beats PR-encoding

Work in progress, further ideas for optimization

Will look at more extensive benchmarks

To do: look at the applications in verification, diagnosis, etc.