Towards an algebraic classification of recognizable sets of lambda-terms¹

Sylvain Salvati

INRIA Bordeaux sud-ouest, LaBRI, université de Bordeaux

Automata, Concurrency and Timed Systems (ACTS) III

Outline

Recognizable sets of λ -terms

Recognizability and congruence

Eilenberg theorem: towards an algebraic classification of classes of C-recognizable languages

Varieties of locally finite CCCs

Outline

Recognizable sets of λ -terms

Recognizability and congruence

Eilenberg theorem: towards an algebraic classification of classes of C-recognizable languages

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Varieties of locally finite CCCs

λ -calculus: syntax

Given a finite set of atomic types \mathcal{A} , simple types are:

$$\mathcal{T}_{\mathcal{A}} := \mathcal{A} | (\mathcal{T}_{\mathcal{A}}
ightarrow \mathcal{T}_{\mathcal{A}})$$

λ -calculus: syntax

Given a finite set of atomic types \mathcal{A} , simple types are:

$$\mathcal{T}_\mathcal{A} := \mathcal{A} | (\mathcal{T}_\mathcal{A} o \mathcal{T}_\mathcal{A})$$

A higher order signature (HOS) is a tuple $\Sigma = (\mathcal{A}, \mathcal{C}, \tau)$ where:

- A is a finite set of atomic types,
- C is a finite set of constants,
- τ is a function from C to $\mathcal{T}_{\mathcal{A}}$.

λ -calculus: syntax

Given a finite set of atomic types A, simple types are:

$$\mathcal{T}_\mathcal{A} := \mathcal{A} | (\mathcal{T}_\mathcal{A} o \mathcal{T}_\mathcal{A})$$

A higher order signature (HOS) is a tuple $\Sigma = (\mathcal{A}, \mathcal{C}, \tau)$ where:

- A is a finite set of atomic types,
- C is a finite set of constants,
- τ is a function from C to $\mathcal{T}_{\mathcal{A}}$.

 λ -terms built on Σ are defined as:

for α ∈ T_A, x^α ∈ Λ^α_Σ,
 c ∈ Λ^{τ(c)}_Σ,
 if M₁ ∈ Λ^{α₂→α₁}, M₂ ∈ Λ^{α₂}_Σ, then (M₁M₂) ∈ Λ^{α₁}_Σ,
 if M ∈ Λ^{α₁}_Σ, then λx^{α₂}.M ∈ Λ^{α₂→α₁}.

 λ -calculus is a theory of function and computation. Computation is done with the relation of $\beta\eta$ -contraction ($\rightarrow_{\beta\eta}$):

$(\lambda x.M)N$	λx.Mx	$x \notin FV(M)$	$M_1 ightarrow _{eta \eta} M_2$
$\overline{(\lambda x.M)N \to_{\beta\eta} M[x := N]}$	λx.Λ	$Mx \to_{\beta\eta} M$	$\overline{(\mathit{MM}_1)} ightarrow_{eta\eta} (\mathit{MM}_2)$
$M_1 o_{eta\eta} M_1$	$M_1 ightarrow_{eta\eta} M_2$		<i>M</i> ₂
$\overline{(M_1M) ightarrow_{eta\eta}}$ (M	$M_2M)$	$\overline{(\lambda x.M_1) \rightarrow_{\beta\eta}}$	$(\lambda x.M_2)$

(ロ)、(型)、(E)、(E)、 E) の(の)

 λ -calculus is a theory of function and computation. Computation is done with the relation of $\beta\eta$ -contraction ($\rightarrow_{\beta\eta}$):

$(\lambda x.M)N$	λx.Mx	$x \notin FV(M)$	$M_1 \rightarrow_{\beta\eta} M_2$
$\overline{(\lambda x.M)N \to_{\beta\eta} M[x := N]}$	λx.Λ	$Mx \to_{\beta\eta} M$	$\overline{(\mathit{MM}_1)} ightarrow_{eta\eta} (\mathit{MM}_2)$
$M_1 ightarrow_{eta\eta} M_2$		$M_1 ightarrow_{eta\eta} M_2$	
$\overline{(M_1M) ightarrow_{eta\eta}}$ (A	<i>I</i> ₂ <i>M</i>)	$\overline{(\lambda x.M_1) \rightarrow_{\beta\eta}}$	$(\lambda x.M_2)$

 $\beta\eta$ -reduction $(\stackrel{*}{\rightarrow}_{\beta\eta})$: reflexive transitive closure of $\beta\eta$ -contraction $\beta\eta$ -conversion: symetric closure of $\beta\eta$ -reduction

 λ -calculus is a theory of function and computation. Computation is done with the relation of $\beta\eta$ -contraction ($\rightarrow_{\beta\eta}$):

$(\lambda x.M)N$	λx.Mx	$x \notin FV(M)$	$M_1 ightarrow _{eta \eta} M_2$
$\overline{(\lambda x.M)N \to_{\beta\eta} M[x := N]}$	λx.Λ	$Mx \to_{\beta\eta} M$	$\overline{(\mathit{MM}_1) ightarrow_{eta\eta} (\mathit{MM}_2)}$
$M_1 o_{eta\eta} M_1$	1 ₂	$M_1 ightarrow _{eta \eta}$	<i>M</i> ₂
$\overline{(M_1M) ightarrow_{eta\eta}}$ (N	$M_2M)$	$\overline{(\lambda x.M_1) \rightarrow_{\beta\eta}}$	$(\lambda x.M_2)$

 $\beta\eta$ -reduction ($\stackrel{*}{\rightarrow}_{\beta\eta}$): reflexive transitive closure of $\beta\eta$ -contraction $\beta\eta$ -conversion: symetric closure of $\beta\eta$ -reduction

Theorem (Church-Rosser)

 $\beta\eta$ -conversion is confluent

 λ -calculus is a theory of function and computation. Computation is done with the relation of $\beta\eta$ -contraction ($\rightarrow_{\beta\eta}$):

$(\lambda x.M)N$	$\lambda x.Mx$	$x \notin FV(M)$	$M_1 ightarrow_{eta\eta} M_2$	
$\overline{(\lambda x.M)N \to_{\beta\eta} M[x := N]}$	λx.Λ	$Mx \to_{\beta\eta} M$	$\overline{(MM_1) ightarrow_{eta\eta} (MM_2)}$	
$M_1 ightarrow_{eta\eta} M_2$		$M_1 ightarrow_{eta\eta} M_2$		
$\overline{(M_1M) ightarrow_{eta\eta}(I)}$	$M_2M)$	$\overline{(\lambda x.M_1) \rightarrow_{\beta\eta}}$	$(\lambda x.M_2)$	

 $\beta\eta$ -reduction ($\stackrel{*}{\rightarrow}_{\beta\eta}$): reflexive transitive closure of $\beta\eta$ -contraction $\beta\eta$ -conversion: symetric closure of $\beta\eta$ -reduction

Theorem (Church-Rosser)

 $\beta\eta$ -conversion is confluent

Theorem (Strong Normalisation)

Given M in $\Lambda^{\alpha}_{\Sigma}$, there is no infinite sequence of $\beta\eta$ -contraction starting in M.

The ranked alphabet $\{e; g; f\}$ where rank(e) = 0, rank(g) = 1, rank(f) = 2 can be represented by the following second order constants:

 $e: o, g: o \rightarrow o, f: o \rightarrow o \rightarrow o$

The ranked alphabet $\{e; g; f\}$ where rank(e) = 0, rank(g) = 1, rank(f) = 2 can be represented by the following second order constants:

$$e: o, g: o \rightarrow o, f: o \rightarrow o \rightarrow o$$

the term g(f(e, g(e))) is represented by the λ -term g(f e (g e))

The ranked alphabet $\{e; g; f\}$ where rank(e) = 0, rank(g) = 1, rank(f) = 2 can be represented by the following second order constants:

$$e: o, g: o \rightarrow o, f: o \rightarrow o \rightarrow o$$

the term g(f(e, g(e))) is represented by the λ -term g(f e (g e))The Böhm tree of the λ -term is the same as the graphic representation of the term:

The ranked alphabet $\{e; g; f\}$ where rank(e) = 0, rank(g) = 1, rank(f) = 2 can be represented by the following second order constants:

$$e: o, g: o \rightarrow o, f: o \rightarrow o \rightarrow o$$

the term g(f(e, g(e))) is represented by the λ -term g(f e (g e))The Böhm tree of the λ -term is the same as the graphic representation of the term:

A λ -term whose normal form represent a tree is a λ -tree.

The elements of $\{a; b\}^*$ can be represented with the constants:

$$a: o \rightarrow o, b: o \rightarrow o$$

Strings are represented by terms of type $o \rightarrow o$:

the string *aba* is represented by $/aba/ = \lambda x^o . a(b(a x^o))$

The elements of $\{a; b\}^*$ can be represented with the constants:

$$a: o \rightarrow o, b: o \rightarrow o$$

Strings are represented by terms of type $o \rightarrow o$:

the string *aba* is represented by $/aba/ = \lambda x^{o}.a(b(ax^{o}))$ Concatenation is then $s_1 + s_2 = \lambda x^{o}.s_1(s_2(x^{o}))$:

$$\begin{aligned} /ab/ + /bb/ &= \lambda x^{\circ}.a(b(x^{\circ})) + \lambda x^{\circ}.b(b(x^{\circ})) \\ &= \lambda x^{\circ}.(\lambda y^{\circ}.a(b y^{\circ}))((\lambda z^{\circ}.b(b z^{\circ}))x^{\circ}) \\ &=_{\beta\eta} \lambda x^{\circ}.a(b(b(b z^{\circ}))) \end{aligned}$$

and the empty string is $\lambda x^o . x^o$

The elements of $\{a; b\}^*$ can be represented with the constants:

$$a: o \rightarrow o, b: o \rightarrow o$$

Strings are represented by terms of type $o \rightarrow o$:

the string *aba* is represented by $/aba/ = \lambda x^{o}.a(b(ax^{o}))$ Concatenation is then $s_1 + s_2 = \lambda x^{o}.s_1(s_2(x^{o}))$:

$$\begin{aligned} /ab/ + /bb/ &= \lambda x^{\circ}.a(b(x^{\circ})) + \lambda x^{\circ}.b(b(x^{\circ})) \\ &= \lambda x^{\circ}.(\lambda y^{\circ}.a(b y^{\circ}))((\lambda z^{\circ}.b(b z^{\circ}))x^{\circ}) \\ &=_{\beta\eta} \lambda x^{\circ}.a(b(b(b z^{\circ}))) \end{aligned}$$

and the empty string is $\lambda x^o. x^o$ A λ -term whose normal form represent a string is a λ -string.

Let Σ be a HOS. $\mathbb{M} = ((\mathcal{M}^{\alpha})_{\alpha \in \mathcal{T}(\Sigma)}, \iota)$ is a finite model of Σ if:

• The sets \mathcal{M}^{α} are finite.

Let Σ be a HOS. $\mathbb{M} = ((\mathcal{M}^{\alpha})_{\alpha \in \mathcal{T}(\Sigma)}, \iota)$ is a finite model of Σ if:

- The sets \mathcal{M}^{α} are finite.
- $\mathcal{M}^{\alpha \to \beta}$ is the set of all functions from \mathcal{M}^{α} to \mathcal{M}^{β} .

Let Σ be a HOS. $\mathbb{M} = ((\mathcal{M}^{\alpha})_{\alpha \in \mathcal{T}(\Sigma)}, \iota)$ is a finite model of Σ if:

- The sets M^α are finite.
- $\mathcal{M}^{\alpha \to \beta}$ is the set of all functions from \mathcal{M}^{α} to \mathcal{M}^{β} .
- ι maps constants of type α to \mathcal{M}^{α}

Let Σ be a HOS. $\mathbb{M} = ((\mathcal{M}^{\alpha})_{\alpha \in \mathcal{T}(\Sigma)}, \iota)$ is a finite model of Σ if:

- The sets \mathcal{M}^{α} are finite.
- $\mathcal{M}^{\alpha \to \beta}$ is the set of all functions from \mathcal{M}^{α} to \mathcal{M}^{β} .
- ι maps constants of type α to \mathcal{M}^{α}

A variable assignment $\chi: V \to \bigcup_{\alpha \in \mathcal{T}(\Sigma)} \mathcal{M}^{\alpha}$ so that $\chi(x^{\alpha}) \in \mathcal{M}^{\alpha}$.

Let Σ be a HOS. $\mathbb{M} = ((\mathcal{M}^{\alpha})_{\alpha \in \mathcal{T}(\Sigma)}, \iota)$ is a finite model of Σ if:

- The sets \mathcal{M}^{α} are finite.
- $\mathcal{M}^{\alpha \to \beta}$ is the set of all functions from \mathcal{M}^{α} to \mathcal{M}^{β} .
- ι maps constants of type α to \mathcal{M}^{α}

A variable assignment $\chi: V \to \bigcup_{\alpha \in \mathcal{T}(\Sigma)} \mathcal{M}^{\alpha}$ so that $\chi(x^{\alpha}) \in \mathcal{M}^{\alpha}$. The semantics of λ -terms in \mathbb{M} is inductively defined by:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$\llbracket c \rrbracket^{\mathbb{M}}_{\chi} = \iota(c),$$

Let Σ be a HOS. $\mathbb{M} = ((\mathcal{M}^{\alpha})_{\alpha \in \mathcal{T}(\Sigma)}, \iota)$ is a finite model of Σ if:

- The sets \mathcal{M}^{α} are finite.
- $\mathcal{M}^{\alpha \to \beta}$ is the set of all functions from \mathcal{M}^{α} to \mathcal{M}^{β} .
- ι maps constants of type α to \mathcal{M}^{α}

,

A variable assignment $\chi: V \to \bigcup_{\alpha \in \mathcal{T}(\Sigma)} \mathcal{M}^{\alpha}$ so that $\chi(x^{\alpha}) \in \mathcal{M}^{\alpha}$. The semantics of λ -terms in \mathbb{M} is inductively defined by:

$$[[c]]_{\chi}^{\mathbb{M}} = \iota(c),$$
$$[[x^{\alpha}]]_{\chi}^{\mathbb{M}} = \chi(x^{\alpha})$$

Let Σ be a HOS. $\mathbb{M} = ((\mathcal{M}^{\alpha})_{\alpha \in \mathcal{T}(\Sigma)}, \iota)$ is a finite model of Σ if:

- The sets *M^α* are finite.
- $\mathcal{M}^{\alpha \to \beta}$ is the set of all functions from \mathcal{M}^{α} to \mathcal{M}^{β} .
- ι maps constants of type α to \mathcal{M}^{α}

A variable assignment $\chi: V \to \bigcup_{\alpha \in \mathcal{T}(\Sigma)} \mathcal{M}^{\alpha}$ so that $\chi(x^{\alpha}) \in \mathcal{M}^{\alpha}$. The semantics of λ -terms in \mathbb{M} is inductively defined by:

•
$$\llbracket c \rrbracket^{\mathbb{M}}_{\chi} = \iota(c),$$

•
$$\llbracket x^{\alpha} \rrbracket^{\mathbb{M}}_{\chi} = \chi(x^{\alpha}),$$

 $\blacktriangleright \ \llbracket MN \rrbracket^{\mathbb{M}}_{\chi} = \llbracket M \rrbracket^{\mathbb{M}}_{\chi} (\llbracket N \rrbracket^{\mathbb{M}}_{\chi}),$

Let Σ be a HOS. $\mathbb{M} = ((\mathcal{M}^{\alpha})_{\alpha \in \mathcal{T}(\Sigma)}, \iota)$ is a finite model of Σ if:

- The sets \mathcal{M}^{α} are finite.
- $\mathcal{M}^{\alpha \to \beta}$ is the set of all functions from \mathcal{M}^{α} to \mathcal{M}^{β} .
- ι maps constants of type α to \mathcal{M}^{α}

A variable assignment $\chi: V \to \bigcup_{\alpha \in \mathcal{T}(\Sigma)} \mathcal{M}^{\alpha}$ so that $\chi(x^{\alpha}) \in \mathcal{M}^{\alpha}$. The semantics of λ -terms in \mathbb{M} is inductively defined by:

•
$$\llbracket c \rrbracket^{\mathbb{M}}_{\chi} = \iota(c),$$

•
$$\llbracket x^{\alpha} \rrbracket_{\chi}^{\mathbb{M}} = \chi(x^{\alpha}),$$

$$\bullet \ \llbracket MN \rrbracket^{\mathbb{M}}_{\chi} = \llbracket M \rrbracket^{\mathbb{M}}_{\chi} (\llbracket N \rrbracket^{\mathbb{M}}_{\chi}),$$

•
$$[\![\lambda x^{\alpha}.M]\!]_{\chi}^{\mathbb{M}}(a) = [\![M]\!]_{\chi \leftarrow [x^{\alpha}:=a]}^{\mathbb{M}}$$
 with $a \in \mathcal{M}^{\alpha}$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

Definition:

A set of λ -terms $R \subseteq \Lambda_{\Sigma}^{\alpha}$ is recognizable iff there is a finite full model $\mathbb{M} = ((\mathcal{M}^{\alpha})_{\alpha \in \mathcal{T}(\Sigma)}, \iota)$, $\mathcal{N} \subseteq \mathcal{M}^{\alpha}$:

$$R = \{M | FV(M) = \emptyset \land \llbracket M \rrbracket^{\mathbb{M}} \in \mathcal{N}\}$$

Definition:

A set of λ -terms $R \subseteq \Lambda_{\Sigma}^{\alpha}$ is recognizable iff there is a finite full model $\mathbb{M} = ((\mathcal{M}^{\alpha})_{\alpha \in \mathcal{T}(\Sigma)}, \iota)$, $\mathcal{N} \subseteq \mathcal{M}^{\alpha}$:

$$R = \{M | FV(M) = \emptyset \land \llbracket M \rrbracket^{\mathbb{M}} \in \mathcal{N}\}$$

Note:

- recognizable sets are closed under $=_{\beta\eta}$
- the emptiness of recognizable sets subsumes λ-definability which is undecidable (Loader 1993).

R is a recognizable set of λ-strings iff {w | /w/ ∈ R} is a recognizable set of strings (similarly for λ-trees/trees).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- R is a recognizable set of λ-strings iff {w | /w/ ∈ R} is a recognizable set of strings (similarly for λ-trees/trees).
- The class of recognizable sets of λ-terms is closed under Boolean operations.

- R is a recognizable set of λ-strings iff {w | /w/ ∈ R} is a recognizable set of strings (similarly for λ-trees/trees).
- The class of recognizable sets of λ-terms is closed under Boolean operations.
- It is also closed under inverse homomorphism of λ-terms (CCC-functor).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- R is a recognizable set of λ-strings iff {w | /w/ ∈ R} is a recognizable set of strings (similarly for λ-trees/trees).
- The class of recognizable sets of λ-terms is closed under Boolean operations.
- It is also closed under inverse homomorphism of λ-terms (CCC-functor).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

There is a mechanical (equivalent) characterization of recognizability in terms of intersection types.

- R is a recognizable set of λ-strings iff {w | /w/ ∈ R} is a recognizable set of strings (similarly for λ-trees/trees).
- The class of recognizable sets of λ-terms is closed under Boolean operations.
- It is also closed under inverse homomorphism of λ-terms (CCC-functor).
- There is a mechanical (equivalent) characterization of recognizability in terms of intersection types.
- An approach based on finite standard model gives a simple proof of the decidability of the acceptance by a Büchi tree automaton of the infinite tree generated by a higher-order programming scheme (S., Srivathsan, Walukiewicz).

Outline

Recognizable sets of λ -terms

Recognizability and congruence

Eilenberg theorem: towards an algebraic classification of classes of C-recognizable languages

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Varieties of locally finite CCCs

Cartesian Closed Category

 $\ensuremath{\mathcal{C}}$ is a Cartesian Close Category if:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ C is a category,

Cartesian Closed Category

 $\ensuremath{\mathcal{C}}$ is a Cartesian Close Category if:

- C is a category,
- it has a terminal object 1,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cartesian Closed Category

 $\ensuremath{\mathcal{C}}$ is a Cartesian Close Category if:

- C is a category,
- it has a terminal object 1,
- for every pair of objects α and β , there is:
 - a product-object $\alpha \times \beta$, with associated projection $\pi_1 : \alpha \times \beta \to \alpha$ and $\pi_2 : \alpha \times \beta \to \beta$,
Cartesian Closed Category

 $\ensuremath{\mathcal{C}}$ is a Cartesian Close Category if:

- C is a category,
- it has a terminal object 1,
- for every pair of objects α and β , there is:
 - a product-object $\alpha \times \beta$, with associated projection $\pi_1 : \alpha \times \beta \to \alpha$ and $\pi_2 : \alpha \times \beta \to \beta$,

• an exponential-object α^{β} such that $Hom(\alpha \times \beta, \delta) \cong Hom(\alpha, \delta^{\beta})$

Cartesian Closed Category

 $\ensuremath{\mathcal{C}}$ is a Cartesian Close Category if:

- C is a category,
- it has a terminal object 1,
- for every pair of objects α and β , there is:
 - a product-object $\alpha \times \beta$, with associated projection $\pi_1 : \alpha \times \beta \to \alpha$ and $\pi_2 : \alpha \times \beta \to \beta$,
 - an exponential-object α^β such that Hom(α × β, δ) ≅ Hom(α, δ^β)

A CCC-functor is a morphism of CCC, *i.e.* it commutes with products and exponentials.

Given a HOS $\Sigma,\,\Lambda_\Sigma$ (up to $\beta\eta\text{-convertibility})$ forms a CCC:

Objects: types and products of types

Given a HOS Σ , Λ_{Σ} (up to $\beta\eta$ -convertibility) forms a CCC:

- Objects: types and products of types
- Arrows: $\Gamma \vdash M : \alpha$ where:
 - $\Gamma = x_1 : \alpha_1, \dots, x_n : \alpha_n$ is interpreted as the object $\beta = \alpha_1 \times \dots \times \alpha_n$

• *M* is an arrow $\beta \rightarrow \alpha$.

Given a HOS Σ , Λ_{Σ} (up to $\beta\eta$ -convertibility) forms a CCC:

- Objects: types and products of types
- Arrows: $\Gamma \vdash M : \alpha$ where:
 - $\Gamma = x_1 : \alpha_1, \dots, x_n : \alpha_n$ is interpreted as the object $\beta = \alpha_1 \times \dots \times \alpha_n$
 - *M* is an arrow $\beta \rightarrow \alpha$.
 - remark: when Γ is empty then M is an arrow $1 \rightarrow \alpha$.

Given a HOS $\Sigma,\,\Lambda_\Sigma$ (up to $\beta\eta\text{-convertibility})$ forms a CCC:

- Objects: types and products of types
- Arrows: $\Gamma \vdash M : \alpha$ where:
 - $\Gamma = x_1 : \alpha_1, \dots, x_n : \alpha_n$ is interpreted as the object $\beta = \alpha_1 \times \dots \times \alpha_n$
 - *M* is an arrow $\beta \rightarrow \alpha$.
 - remark: when Γ is empty then M is an arrow $1 \rightarrow \alpha$.

Given a congruence \equiv on Λ_{Σ} , Λ_{Σ}/\equiv forms a CCC, the arrows are equivalence classes of λ -terms.

Given a HOS $\Sigma,\,\Lambda_\Sigma$ (up to $\beta\eta\text{-convertibility})$ forms a CCC:

- Objects: types and products of types
- Arrows: $\Gamma \vdash M : \alpha$ where:
 - $\Gamma = x_1 : \alpha_1, \dots, x_n : \alpha_n$ is interpreted as the object $\beta = \alpha_1 \times \dots \times \alpha_n$
 - *M* is an arrow $\beta \rightarrow \alpha$.
 - remark: when Γ is empty then M is an arrow $1 \rightarrow \alpha$.

Given a congruence \equiv on Λ_{Σ} , Λ_{Σ}/\equiv forms a CCC, the arrows are equivalence classes of λ -terms.

We write F_{\equiv} for the surjective functor from Λ_{Σ} to Λ_{Σ}/\equiv .

Given a CCC C and $A \subseteq Hom(\beta, \alpha)$ and f_1 , f_2 in $Hom(\theta, \delta)$, we have:

$$f_1 \sim_A f_2 \text{ iff } \forall C[].C[f_1] \in A \Leftrightarrow C[f_2] \in A$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• \sim_A is a congruence of CCC,

Given a CCC C and $A \subseteq Hom(\beta, \alpha)$ and f_1 , f_2 in $Hom(\theta, \delta)$, we have:

$$f_1 \sim_A f_2 \text{ iff } \forall C[].C[f_1] \in A \Leftrightarrow C[f_2] \in A$$

- \sim_A is a congruence of CCC,
- when C = Λ_Σ, Λ_Σ/∼_A is the syntactic CCC associated to the language A,

Given a CCC C and $A \subseteq Hom(\beta, \alpha)$ and f_1 , f_2 in $Hom(\theta, \delta)$, we have:

$$f_1 \sim_A f_2 \text{ iff } \forall C[].C[f_1] \in A \Leftrightarrow C[f_2] \in A$$

- \sim_A is a congruence of CCC,
- when C = Λ_Σ, Λ_Σ/∼_A is the syntactic CCC associated to the language A,

• whenever \approx is a congruence on C and $A = F_{\approx}^{-1}(B)$ for $B \subseteq Hom_{\Lambda_{\Sigma}/\approx}(\beta, \alpha)$, then there is a surjective functor $G : \Lambda_{\Sigma}/\approx \to \Lambda_{\Sigma}/\sim_{A}$,

Given a CCC C and $A \subseteq Hom(\beta, \alpha)$ and f_1 , f_2 in $Hom(\theta, \delta)$, we have:

$$f_1 \sim_A f_2 \text{ iff } \forall C[].C[f_1] \in A \Leftrightarrow C[f_2] \in A$$

- \sim_A is a congruence of CCC,
- when C = Λ_Σ, Λ_Σ/∼_A is the syntactic CCC associated to the language A,
- whenever \approx is a congruence on C and $A = F_{\approx}^{-1}(B)$ for $B \subseteq Hom_{\Lambda_{\Sigma}/\approx}(\beta, \alpha)$, then there is a surjective functor $G : \Lambda_{\Sigma}/\approx \to \Lambda_{\Sigma}/\sim_{\mathcal{A}}$,
- the syntactic CCC of a recognizable set of λ-terms is locally finite (*i.e.* for every α, β, Hom_{Λ_Σ/∼_R}(α, β) is finite),

Given a CCC C and $A \subseteq Hom(\beta, \alpha)$ and f_1 , f_2 in $Hom(\theta, \delta)$, we have:

$$f_1 \sim_A f_2 \text{ iff } \forall C[].C[f_1] \in A \Leftrightarrow C[f_2] \in A$$

- \sim_A is a congruence of CCC,
- when C = Λ_Σ, Λ_Σ/∼_A is the syntactic CCC associated to the language A,
- whenever \approx is a congruence on C and $A = F_{\approx}^{-1}(B)$ for $B \subseteq Hom_{\Lambda_{\Sigma}/\approx}(\beta, \alpha)$, then there is a surjective functor $G : \Lambda_{\Sigma}/\approx \to \Lambda_{\Sigma}/\sim_{\mathcal{A}}$,
- the syntactic CCC of a recognizable set of λ-terms is locally finite (*i.e.* for every α, β, Hom_{Λ_Σ/∼_R}(α, β) is finite),
- conjecture: every language of λ-terms that has a locally finite syntactic CCC is recognizable.

Given a CCC C and $A \subseteq Hom(\beta, \alpha)$ and f_1 , f_2 in $Hom(\theta, \delta)$, we have:

$$f_1 \sim_A f_2 \text{ iff } \forall C[].C[f_1] \in A \Leftrightarrow C[f_2] \in A$$

- \sim_A is a congruence of CCC,
- when C = Λ_Σ, Λ_Σ/∼_A is the syntactic CCC associated to the language A,
- whenever \approx is a congruence on C and $A = F_{\approx}^{-1}(B)$ for $B \subseteq Hom_{\Lambda_{\Sigma}/\approx}(\beta, \alpha)$, then there is a surjective functor $G : \Lambda_{\Sigma}/\approx \to \Lambda_{\Sigma}/\sim_{\mathcal{A}}$,
- ► the syntactic CCC of a recognizable set of λ-terms is locally finite (*i.e.* for every α, β, Hom_{Λ_Σ/~_R}(α, β) is finite),
- conjecture: every language of λ-terms that has a locally finite syntactic CCC is recognizable.

For the moment we call C-recognizable a language whose syntactic CCC is locally finite.

Given *R* a recognizable set of strings, and *R'* be the recognizable set of λ -terms representing the elements of *R*:

• $u \equiv_R v$ iff for every w_1 , w_2 , $w_1uw_2 \in R \Leftrightarrow w_1vw_2 \in R$

Given *R* a recognizable set of strings, and *R'* be the recognizable set of λ -terms representing the elements of *R*:

- $u \equiv_R v$ iff for every w_1 , w_2 , $w_1uw_2 \in R \Leftrightarrow w_1vw_2 \in R$
- ▶ $/u/\sim_{R'}/v/$ iff for every *M*, $M/u/ \in R' \Leftrightarrow M/v/ \in R'$

Given *R* a recognizable set of strings, and *R'* be the recognizable set of λ -terms representing the elements of *R*:

- $u \equiv_R v$ iff for every w_1 , w_2 , $w_1uw_2 \in R \Leftrightarrow w_1vw_2 \in R$
- ▶ $/u/\sim_{R'}/v/$ iff for every *M*, $M/u/ \in R' \Leftrightarrow M/v/ \in R'$

► or equivalently iff for every w_0, \ldots, w_n , $w_0 u w_1 \ldots w_{n-1} u w_n \in R \Leftrightarrow w_0 v w_1 \ldots w_{n-1} v w_n \in R$

Given *R* a recognizable set of strings, and *R'* be the recognizable set of λ -terms representing the elements of *R*:

- $u \equiv_R v$ iff for every w_1 , w_2 , $w_1uw_2 \in R \Leftrightarrow w_1vw_2 \in R$
- ▶ $/u/\sim_{R'}/v/$ iff for every *M*, $M/u/ \in R' \Leftrightarrow M/v/ \in R'$

• or equivalently iff for every w_0, \ldots, w_n ,

 $w_0 u w_1 \dots w_{n-1} u w_n \in R \Leftrightarrow w_0 v w_1 \dots w_{n-1} v w_n \in R$ This implies:

•
$$u \equiv_R v$$
 iff $/u / \sim_{R'} /v /$,

Given *R* a recognizable set of strings, and *R'* be the recognizable set of λ -terms representing the elements of *R*:

- $u \equiv_R v$ iff for every w_1 , w_2 , $w_1uw_2 \in R \Leftrightarrow w_1vw_2 \in R$
- ▶ $/u/\sim_{R'}/v/$ iff for every *M*, $M/u/ \in R' \Leftrightarrow M/v/ \in R'$
- or equivalently iff for every w_0, \ldots, w_n , $w_0 u w_1 \ldots w_{n-1} u w_n \in R \Leftrightarrow w_0 v w_1 \ldots w_{n-1} v w_n \in R$ This implies:
 - $u \equiv_R v$ iff $/u / \sim_{R'} /v /$,
 - ▶ $\sim_{R'}$ is an extension of \equiv_R to higher-order functions over strings,

Given *R* a recognizable set of strings, and *R'* be the recognizable set of λ -terms representing the elements of *R*:

- $u \equiv_R v$ iff for every w_1 , w_2 , $w_1uw_2 \in R \Leftrightarrow w_1vw_2 \in R$
- ▶ $/u/\sim_{R'}/v/$ iff for every *M*, $M/u/ \in R' \Leftrightarrow M/v/ \in R'$
- or equivalently iff for every w_0, \ldots, w_n ,

 $w_0 u w_1 \dots w_{n-1} u w_n \in R \Leftrightarrow w_0 v w_1 \dots w_{n-1} v w_n \in R$

This implies:

•
$$u \equiv_R v$$
 iff $/u / \sim_{R'} /v /$,

- ▶ $\sim_{R'}$ is an extension of \equiv_R to higher-order functions over strings,
- ► the CCC associated to ~_{R'} is embedding the syntactic monoid of R (it is concretely represented by Hom(o, o)),

Given *R* a recognizable set of strings, and *R'* be the recognizable set of λ -terms representing the elements of *R*:

- $u \equiv_R v$ iff for every w_1 , w_2 , $w_1uw_2 \in R \Leftrightarrow w_1vw_2 \in R$
- ▶ $/u/\sim_{R'}/v/$ iff for every *M*, $M/u/ \in R' \Leftrightarrow M/v/ \in R'$
- or equivalently iff for every w_0, \ldots, w_n ,

 $w_0 u w_1 \dots w_{n-1} u w_n \in R \Leftrightarrow w_0 v w_1 \dots w_{n-1} v w_n \in R$

This implies:

•
$$u \equiv_R v$$
 iff $/u / \sim_{R'} /v /$,

- ~_{R'} is an extension of ≡_R to higher-order functions over strings,
- ► the CCC associated to ~_{R'} is embedding the syntactic monoid of R (it is concretely represented by Hom(o, o)),
- every λ-string language that has a locally finite syntactic CCC is a recognizable set of λ-terms.

Given *R* a recognizable set of strings, and *R'* be the recognizable set of λ -terms representing the elements of *R*:

- $u \equiv_R v$ iff for every w_1 , w_2 , $w_1uw_2 \in R \Leftrightarrow w_1vw_2 \in R$
- ▶ $/u/ \sim_{R'} /v/$ iff for every *M*, $M/u/ \in R' \Leftrightarrow M/v/ \in R'$
- or equivalently iff for every w_0, \ldots, w_n ,

 $w_0 u w_1 \dots w_{n-1} u w_n \in R \Leftrightarrow w_0 v w_1 \dots w_{n-1} v w_n \in R$

This implies:

•
$$u \equiv_R v$$
 iff $/u / \sim_{R'} /v /$,

- ▶ $\sim_{R'}$ is an extension of \equiv_R to higher-order functions over strings,
- ► the CCC associated to ~_{R'} is embedding the syntactic monoid of R (it is concretely represented by Hom(o, o)),
- every λ-string language that has a locally finite syntactic CCC is a recognizable set of λ-terms.

Remark: similar results hold for recognizable sets of trees seen as recognizable sets of λ -terms.

Outline

Recognizable sets of λ -terms

Recognizability and congruence

Eilenberg theorem: towards an algebraic classification of classes of C-recognizable languages

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Varieties of locally finite CCCs

We have syntactic objects that fully characterize languages of $\lambda\text{-terms:}$

can we classify these languages in terms of properties of their syntactic CCCs?

We have syntactic objects that fully characterize languages of $\lambda\text{-terms:}$

can we classify these languages in terms of properties of their syntactic CCCs?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

we try to extend classification tools used for recognizable string languages:

We have syntactic objects that fully characterize languages of $\lambda\text{-terms:}$

can we classify these languages in terms of properties of their syntactic CCCs?

- we try to extend classification tools used for recognizable string languages:
 - we define varieties of locally finite CCCs,

We have syntactic objects that fully characterize languages of $\lambda\text{-terms:}$

can we classify these languages in terms of properties of their syntactic CCCs?

- we try to extend classification tools used for recognizable string languages:
 - we define varieties of locally finite CCCs,
 - and varieties of languages of λ -terms.

A variety of finite monoids \mathbf{V} is a class of finite monoids with the following closure properties:

- If M_1 and M_2 are **V**, then $M_1 \times M_2$ is also in **V**,
- If M₁ is a submonoid of M₂ and M₂ is in V, then M₁ is also in V
- If *M* is in **V** and \equiv is a congruence on *M*, then *M*/ \equiv is in **V**

A variety of recognizable languages \mathcal{V} is a class of recognizable languages with the following closure properties ($\Sigma \mathcal{V}$ is the class of languages in \mathcal{V} on alphabet Σ):

- $\Sigma \mathcal{V}$ is closed under Boolean operations,
- If R is in ΣV, then a⁻¹R and Ra⁻¹ are in ΣV for every a in Σ.
- If $f: \Gamma^* \to \Sigma^*$ is a morphism of monoid, then $R \in \Sigma \mathcal{V}$ implies $f^{-1}(A) \in \Gamma \mathcal{V}$.

Given a recognizable language of strings R, we let M_R be its syntactic monoid.

Given ${\mathcal V}$ a variety of languages and ${\boldsymbol V}$ a variety of finite monoids we let:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $\overline{\mathcal{V}}$ be the variety of finite monoids generated by $\{M_R \mid R \in \Sigma \mathcal{V} \text{ for some } \Sigma\},\$

Given a recognizable language of strings R, we let M_R be its syntactic monoid.

Given ${\mathcal V}$ a variety of languages and ${\boldsymbol V}$ a variety of finite monoids we let:

- ► $\overline{\mathcal{V}}$ be the variety of finite monoids generated by { $M_R \mid R \in \Sigma \mathcal{V}$ for some Σ },
- $\widetilde{\mathbf{V}}$ be the class of languages $\{R \mid R \subseteq \Sigma^*, M_R \in \mathbf{V} \text{ for some } \Sigma\}.$

Given a recognizable language of strings R, we let M_R be its syntactic monoid.

Given ${\mathcal V}$ a variety of languages and ${\boldsymbol V}$ a variety of finite monoids we let:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► $\overline{\mathcal{V}}$ be the variety of finite monoids generated by { $M_R \mid R \in \Sigma \mathcal{V}$ for some Σ },

V be the class of languages

 $\{R \mid R \subseteq \Sigma^*, M_R \in \mathbf{V} \text{ for some } \Sigma\}.$

We then have:

• $\widetilde{\mathbf{V}}$ is a variety of languages,

Given a recognizable language of strings R, we let M_R be its syntactic monoid.

Given ${\mathcal V}$ a variety of languages and ${\boldsymbol V}$ a variety of finite monoids we let:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► $\overline{\mathcal{V}}$ be the variety of finite monoids generated by { $M_R \mid R \in \Sigma \mathcal{V}$ for some Σ },

► $\widetilde{\mathbf{V}}$ be the class of languages $\{R \mid R \subseteq \Sigma^*, M_R \in \mathbf{V} \text{ for some } \Sigma\}.$

We then have:

• $\widetilde{\mathbf{V}}$ is a variety of languages,

$$\blacktriangleright \mathcal{V} = \widetilde{\overline{\mathcal{V}}},$$

Given a recognizable language of strings R, we let M_R be its syntactic monoid.

Given ${\mathcal V}$ a variety of languages and ${\boldsymbol V}$ a variety of finite monoids we let:

► $\overline{\mathcal{V}}$ be the variety of finite monoids generated by { $M_R \mid R \in \Sigma \mathcal{V}$ for some Σ },

► $\widetilde{\mathbf{V}}$ be the class of languages $\{R \mid R \subseteq \Sigma^*, M_R \in \mathbf{V} \text{ for some } \Sigma\}.$

We then have:

• $\widetilde{\mathbf{V}}$ is a variety of languages,

$$\blacktriangleright \ \mathcal{V} = \widetilde{\overline{\mathcal{V}}}$$

$$\blacktriangleright V = \overline{\widetilde{V}}$$

An application of Eilenberg Theorem

If we let:

- ► SF = the variety of star-free languages = first-order definable languages
- $\mathcal{AP} =$ the variety of aperiodic monoids

We obtain Schützenberger-McNaughton-Papert's result:

$$\overline{\mathcal{SF}}=\mathcal{AP}$$

Outline

Recognizable sets of λ -terms

Recognizability and congruence

Eilenberg theorem: towards an algebraic classification of classes of C-recognizable languages

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Varieties of locally finite CCCs

A CCC C is finitely generated if there is HOS Σ and a surjective CCC-functor $F : \Lambda_{\Sigma} \to C$. F is called *a finite presentation* of C.
A CCC C is finitely generated if there is HOS Σ and a surjective CCC-functor $F : \Lambda_{\Sigma} \to C$. F is called *a finite presentation* of C.

 A locally finite CCC may not be finitely generated (ex: Heyting algebra with infinitely many generators). A CCC C is finitely generated if there is HOS Σ and a surjective CCC-functor $F : \Lambda_{\Sigma} \to C$. F is called *a finite presentation* of C.

- A locally finite CCC may not be finitely generated (ex: Heyting algebra with infinitely many generators).
- To obtain an extension of Eilenberg Theorem we need to impose that we only consider finitely generated CCCs.

Given C_1 and C_2 two locally finite and finitely generated CCCs, that have the same objects, a simple idea to generalize the direct product of monoids is to take $C_1 \times C_2$ with:

• the objects of $C_1 \times C_2$ is the same as the ones of C_1 and C_2 ,

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Given C_1 and C_2 two locally finite and finitely generated CCCs, that have the same objects, a simple idea to generalize the direct product of monoids is to take $C_1 \times C_2$ with:

• the objects of $C_1 \times C_2$ is the same as the ones of C_1 and C_2 ,

 $\blacktriangleright \operatorname{Hom}_{\mathcal{C}_1 \times \mathcal{C}_2}(\alpha, \beta) = \operatorname{Hom}_{\mathcal{C}_1}(\alpha, \beta) \times \operatorname{Hom}_{\mathcal{C}_2}(\alpha, \beta)$

Given C_1 and C_2 two locally finite and finitely generated CCCs, that have the same objects, a simple idea to generalize the direct product of monoids is to take $C_1 \times C_2$ with:

▶ the objects of $C_1 \times C_2$ is the same as the ones of C_1 and C_2 ,

- $\blacktriangleright \operatorname{Hom}_{\mathcal{C}_1 \times \mathcal{C}_2}(\alpha, \beta) = \operatorname{Hom}_{\mathcal{C}_1}(\alpha, \beta) \times \operatorname{Hom}_{\mathcal{C}_2}(\alpha, \beta)$
- $C_1 \times C_2$, is a locally finite CCC,

Given C_1 and C_2 two locally finite and finitely generated CCCs, that have the same objects, a simple idea to generalize the direct product of monoids is to take $C_1 \times C_2$ with:

• the objects of $C_1 \times C_2$ is the same as the ones of C_1 and C_2 ,

- $\blacktriangleright \operatorname{Hom}_{\mathcal{C}_1 \times \mathcal{C}_2}(\alpha, \beta) = \operatorname{Hom}_{\mathcal{C}_1}(\alpha, \beta) \times \operatorname{Hom}_{\mathcal{C}_2}(\alpha, \beta)$
- $C_1 \times C_2$, is a locally finite CCC,
- but $\mathcal{C}_1 \times \mathcal{C}_2$ may not be finitely generated...

Given C_1 and C_2 two locally finite and finitely generated CCCs, that have the same objects, a simple idea to generalize the direct product of monoids is to take $C_1 \times C_2$ with:

- the objects of $C_1 \times C_2$ is the same as the ones of C_1 and C_2 ,
- $\blacktriangleright \operatorname{Hom}_{\mathcal{C}_1 \times \mathcal{C}_2}(\alpha, \beta) = \operatorname{Hom}_{\mathcal{C}_1}(\alpha, \beta) \times \operatorname{Hom}_{\mathcal{C}_2}(\alpha, \beta)$
- $C_1 \times C_2$, is a locally finite CCC,
- but $C_1 \times C_2$ may not be finitely generated...

Thus given two finite presentation F_1 and F_2 of C_1 and C_2 , we define $C_1 \times_{F_1,F_2} C_2$ to be the sub-CCC of $C_1 \times C_2$ generated by the arrows:

$$\bigcup_{c\in\Sigma_1} \{F_1(c)\} \times \textit{Hom}_{\mathcal{C}_2}(1,\tau_1(c)) \cup \bigcup_{c\in\Sigma_2}\textit{Hom}_{\mathcal{C}_1}(1,\tau_2(c)) \times \{F_2(c)\}$$

Direct product of monoids and product of CCCs

Given C_1 and C_2 two locally finite and finitely generated CCCs, that have the same objects and which are generated only by string signatures:

▶ for every presentation F₁, G₁ and F₂, G₂ of respectively C₁ and C₂ we have

$$\mathcal{C}_1 \times_{\mathit{F}_1,\mathit{F}_2} \mathcal{C}_2 = \mathcal{C}_1 \times_{\mathit{G}_1,\mathit{G}_2} \mathcal{C}_2$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Direct product of monoids and product of CCCs

Given C_1 and C_2 two locally finite and finitely generated CCCs, that have the same objects and which are generated only by string signatures:

▶ for every presentation F₁, G₁ and F₂, G₂ of respectively C₁ and C₂ we have

$$\mathcal{C}_1 \times_{\mathcal{F}_1, \mathcal{F}_2} \mathcal{C}_2 = \mathcal{C}_1 \times_{\mathcal{G}_1, \mathcal{G}_2} \mathcal{C}_2$$

► a question is whether for every locally finite and finitely generated CCC, C₁ and C₂ we can find a canonical sub-CCC of C₁ × C₂ that is finitely generated.

A CCC C is said α -syntactic if there is a subset of A of $Hom(1, \alpha)$ such that for every f_1 , f_2 in $Hom(\theta, \delta)$:

 $f_1 \sim_A f_2$ if and only if $f_1 = f_2$

A CCC C is said α -syntactic if there is a subset of A of $Hom(1, \alpha)$ such that for every f_1 , f_2 in $Hom(\theta, \delta)$:

 $f_1 \sim_A f_2$ if and only if $f_1 = f_2$

We then have:

If C₁, C₂ are two α-syntactic CCC, then for every presentation F₁ and F₂ of C₁ and C₂, C₁ ×_{F1,F2} C₂ is α-syntactic.

A CCC C is said α -syntactic if there is a subset of A of $Hom(1, \alpha)$ such that for every f_1 , f_2 in $Hom(\theta, \delta)$:

 $f_1 \sim_A f_2$ if and only if $f_1 = f_2$

We then have:

- If C₁, C₂ are two α-syntactic CCC, then for every presentation F₁ and F₂ of C₁ and C₂, C₁ ×_{F1,F2} C₂ is α-syntactic.
- it can be the case that a locally finite finitely generated CCC
 C can not be constructed from α-syntactic CCCs using product, sub-CCC and quotient.

A CCC C is said α -syntactic if there is a subset of A of $Hom(1, \alpha)$ such that for every f_1 , f_2 in $Hom(\theta, \delta)$:

 $f_1 \sim_A f_2$ if and only if $f_1 = f_2$

We then have:

- If C₁, C₂ are two α-syntactic CCC, then for every presentation F₁ and F₂ of C₁ and C₂, C₁ ×_{F1,F2} C₂ is α-syntactic.
- it can be the case that a locally finite finitely generated CCC
 C can not be constructed from α-syntactic CCCs using product, sub-CCC and quotient.
- but this is the case when C is α-separated:
 - ▶ for every f_1 , f_2 in $Hom(\theta, \delta)$, $f_1 \neq f_2$ iff there is C[] such that $C[f_1]$, $C[f_2]$ are in $Hom(1, \alpha)$ and $C[f_1] \neq C[f_2]$.

A variety of locally finite CCC ${\bf V}$ is a class of pairs $({\cal C},\alpha)$ such that:

 \blacktriangleright ${\cal C}$ is a locally finite and finitely generated CCC

A variety of locally finite CCC ${\bf V}$ is a class of pairs $({\cal C},\alpha)$ such that:

- \blacktriangleright ${\cal C}$ is a locally finite and finitely generated CCC
- α is an object of $\mathcal C$ and $\mathcal C$ is α -separated

A variety of locally finite CCC **V** is a class of pairs (\mathcal{C}, α) such that:

- ► C is a locally finite and finitely generated CCC
- α is an object of $\mathcal C$ and $\mathcal C$ is α -separated
- ▶ for every (C_1, α) and (C_2, α) , and every presentation of F_1 and F_2 of C_1 and C_2 , $(C_1 \times_{F_1, F_2} C_2, \alpha)$ is in **V**

A variety of locally finite CCC **V** is a class of pairs (\mathcal{C}, α) such that:

- C is a locally finite and finitely generated CCC
- α is an object of C and C is α -separated
- ▶ for every (C_1, α) and (C_2, α) , and every presentation of F_1 and F_2 of C_1 and C_2 , $(C_1 \times_{F_1, F_2} C_2, \alpha)$ is in **V**

If (C, α) is in V and C' is a sub-CCC, then if C" is the β-separated CCC obtained from C', (C", β) is in V

A variety of locally finite CCC **V** is a class of pairs (\mathcal{C}, α) such that:

- C is a locally finite and finitely generated CCC
- α is an object of C and C is α -separated
- ▶ for every (C_1, α) and (C_2, α) , and every presentation of F_1 and F_2 of C_1 and C_2 , $(C_1 \times_{F_1, F_2} C_2, \alpha)$ is in **V**
- If (C, α) is in V and C' is a sub-CCC, then if C" is the β-separated CCC obtained from C', (C", β) is in V
- if (C, α) is in V, ≈ is a congruence of C, and C' is the β-separated CCC obtained from C/≈ then (C', β) is in V.

A variety of locally finite CCC **V** is a class of pairs (\mathcal{C}, α) such that:

- \blacktriangleright C is a locally finite and finitely generated CCC
- α is an object of C and C is α -separated
- ▶ for every (C_1, α) and (C_2, α) , and every presentation of F_1 and F_2 of C_1 and C_2 , $(C_1 \times_{F_1, F_2} C_2, \alpha)$ is in **V**
- If (C, α) is in V and C' is a sub-CCC, then if C" is the β-separated CCC obtained from C', (C", β) is in V
- if (C, α) is in V, ≈ is a congruence of C, and C' is the β-separated CCC obtained from C/≈ then (C', β) is in V.

we write $(C_1, \beta) \prec (C_2, \alpha)$ when C_1 is an β -separated CCC obtained by taking and quotienting a sub-CCC of C_2 .

Given C a locally finite, finitely generated and α -separated CCC, A and A' included in $Hom(1, \alpha)$ we have:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $\mathcal{C}/\sim_{\mathcal{A}} = \mathcal{C}/\sim_{\mathcal{B}}$ with $\mathcal{B} = Hom(1, \alpha) - \mathcal{A}$

Given C a locally finite, finitely generated and α -separated CCC, A and A' included in $Hom(1, \alpha)$ we have:

•
$$\mathcal{C}/\sim_{\mathcal{A}} = \mathcal{C}/\sim_{\mathcal{B}}$$
 with $\mathcal{B} = Hom(1, \alpha) - \mathcal{A}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given C a locally finite, finitely generated and α -separated CCC, A and A' included in $Hom(1, \alpha)$ we have:

- $\mathcal{C}/\sim_{A} = \mathcal{C}/\sim_{B}$ with $B = Hom(1, \alpha) A$
- (C/~_{A∩A'}, α) ≺ (C/~_A×_{F,F} C/~_{A'}, α) for every presentation F of C,

• Given C[] such that for every $f \in Hom(1, \beta)$, C[f] is in $Hom(1, \alpha)$, if $C^{-1}[A] = \{f \in Hom(1, \beta) \mid C[f] \in A\}$ then $C/\sim_{C^{-1}[A]}$ is a quotient CCC of C/\sim_A

Given C a locally finite, finitely generated and α -separated CCC, A and A' included in $Hom(1, \alpha)$ we have:

- $\mathcal{C}/\sim_{\mathcal{A}} = \mathcal{C}/\sim_{\mathcal{B}}$ with $\mathcal{B} = Hom(1, \alpha) \mathcal{A}$
- $(\mathcal{C}/\sim_{\mathcal{A}\cap\mathcal{A}'}, \alpha) \prec (\mathcal{C}/\sim_{\mathcal{A}} \times_{F,F} \mathcal{C}/\sim_{\mathcal{A}'}, \alpha)$ for every presentation F of \mathcal{C} ,
- Given C[] such that for every $f \in Hom(1,\beta)$, C[f] is in $Hom(1,\alpha)$, if $C^{-1}[A] = \{f \in Hom(1,\beta) \mid C[f] \in A\}$ then $C/\sim_{C^{-1}[A]}$ is a quotient CCC of C/\sim_A

Given a CCC-functor $F : \mathcal{D} \to \mathcal{C}$ and β such that $F(\beta) = \alpha$, and $B = F^{-1}(A) \cap Hom_{\mathcal{D}}(1,\beta)$ then $(\mathcal{D}/\sim_B,\beta) \prec (\mathcal{C}/\sim_A,\alpha)$.

Varieties of λ -languages

A variety of C-recognizable sets of λ -terms \mathcal{V} is a class of C-recognizable languages with the following closure properties ((Σ, α) \mathcal{V} is the class of languages in \mathcal{V} on a HOS Σ whose elements have type α):

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $(\Sigma, \alpha)\mathcal{V}$ is closed under Boolean operations

Varieties of λ -languages

A variety of C-recognizable sets of λ -terms \mathcal{V} is a class of C-recognizable languages with the following closure properties $((\Sigma, \alpha)\mathcal{V} \text{ is the class of languages in } \mathcal{V} \text{ on a HOS } \Sigma \text{ whose elements have type } \alpha)$:

- $(\Sigma, \alpha)\mathcal{V}$ is closed under Boolean operations
- ► Given $M \in \Lambda_{\Sigma}^{\beta \to \alpha}$, and R in $(\Sigma, \alpha)\mathcal{V}$, then $M^{-1}R = \{N \in \Lambda_{\Sigma}^{\beta} \mid MN \in R\}$ is in $(\Sigma, \beta)\mathcal{V}$,

Varieties of λ -languages

A variety of C-recognizable sets of λ -terms \mathcal{V} is a class of C-recognizable languages with the following closure properties ((Σ, α) \mathcal{V} is the class of languages in \mathcal{V} on a HOS Σ whose elements have type α):

- $(\Sigma, \alpha)\mathcal{V}$ is closed under Boolean operations
- ► Given $M \in \Lambda_{\Sigma}^{\beta \to \alpha}$, and R in $(\Sigma, \alpha)\mathcal{V}$, then $M^{-1}R = \{N \in \Lambda_{\Sigma}^{\beta} \mid MN \in R\}$ is in $(\Sigma, \beta)\mathcal{V}$,
- Given $F : \Lambda_{\Sigma_1} \to \Lambda_{\Sigma_2}$ a CCC-functor, if $R \in (\Sigma_2, \alpha)\mathcal{V}$ and $F(\beta) = \alpha$, then $F^{-1}(R) \cap \Lambda_{\Sigma_1}^{\beta} \in (\Sigma_1, \beta)\mathcal{V}$.

Given a C-recognizable set of λ -terms R, we let C_R be its syntactic CCC.

Given ${\mathcal V}$ a variety of $\lambda\text{-languages}$ and ${\bf V}$ a variety of locally finite CCCs we let:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ $\overline{\mathcal{V}}$ be the variety of locally finite CCC generated by $\{(\mathcal{C}_R, \alpha) \mid R \in (\Sigma, \alpha)\mathcal{V} \text{ for some } \Sigma \text{ and } \alpha\},\$

Given a C-recognizable set of λ -terms R, we let C_R be its syntactic CCC.

Given ${\mathcal V}$ a variety of $\lambda\text{-languages}$ and ${\bf V}$ a variety of locally finite CCCs we let:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► $\overline{\mathcal{V}}$ be the variety of locally finite CCC generated by $\{(\mathcal{C}_R, \alpha) \mid R \in (\Sigma, \alpha)\mathcal{V} \text{ for some } \Sigma \text{ and } \alpha\},\$
- $\widetilde{\mathbf{V}}$ be the class of languages $\{R \mid R \subseteq \Lambda_{\Sigma}^{\alpha}, (\mathcal{C}_{R}, \alpha) \in \mathbf{V} \text{ for some } \Sigma \text{ and } \alpha\}.$

Given a C-recognizable set of λ -terms R, we let C_R be its syntactic CCC.

Given ${\mathcal V}$ a variety of $\lambda\text{-languages}$ and ${\bf V}$ a variety of locally finite CCCs we let:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► $\overline{\mathcal{V}}$ be the variety of locally finite CCC generated by $\{(\mathcal{C}_R, \alpha) \mid R \in (\Sigma, \alpha)\mathcal{V} \text{ for some } \Sigma \text{ and } \alpha\},\$
- ► $\widetilde{\mathbf{V}}$ be the class of languages $\{ B \mid B \subset \Lambda^{\alpha} \ (C_{P}, \alpha) \in \mathbf{V} \text{ for some } \Sigma \}$

 $\{R \mid R \subseteq \Lambda^{\alpha}_{\Sigma}, (\mathcal{C}_R, \alpha) \in \mathbf{V} \text{ for some } \Sigma \text{ and } \alpha\}.$

We then have:

• $\widetilde{\mathbf{V}}$ is a variety of λ -languages,

Given a C-recognizable set of λ -terms R, we let C_R be its syntactic CCC.

Given ${\mathcal V}$ a variety of $\lambda\text{-languages}$ and ${\bf V}$ a variety of locally finite CCCs we let:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► $\overline{\mathcal{V}}$ be the variety of locally finite CCC generated by $\{(\mathcal{C}_R, \alpha) \mid R \in (\Sigma, \alpha)\mathcal{V} \text{ for some } \Sigma \text{ and } \alpha\},\$
- ► $\widetilde{\mathbf{V}}$ be the class of languages { $R \mid R \subseteq \Lambda_{\Sigma}^{\alpha}, (\mathcal{C}_{R}, \alpha) \in \mathbf{V}$ for some Σ and α }.

We then have:

- V
 is a variety of λ-languages,
- $\blacktriangleright \mathcal{V} = \widetilde{\overline{\mathcal{V}}},$

Given a C-recognizable set of λ -terms R, we let C_R be its syntactic CCC.

Given ${\mathcal V}$ a variety of $\lambda\text{-languages}$ and ${\bf V}$ a variety of locally finite CCCs we let:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► $\overline{\mathcal{V}}$ be the variety of locally finite CCC generated by $\{(\mathcal{C}_R, \alpha) \mid R \in (\Sigma, \alpha)\mathcal{V} \text{ for some } \Sigma \text{ and } \alpha\},\$
- ► $\widetilde{\mathbf{V}}$ be the class of languages { $R \mid R \subseteq \Lambda_{\Sigma}^{\alpha}, (\mathcal{C}_{R}, \alpha) \in \mathbf{V}$ for some Σ and α }.

We then have:

- V
 is a variety of λ-languages,
- $\blacktriangleright \mathcal{V} = \overline{\mathcal{V}},$
- $\mathbf{V} = \overline{\widetilde{\mathbf{V}}}$

 We have proved of an extension of the variety Theorem for C-recognizable languages.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- We have proved of an extension of the variety Theorem for C-recognizable languages.
- Variations on varieties:
 - \blacktriangleright tuning the relation \prec
 - using deduction systems to obtain structures similar so semigroups

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- We have proved of an extension of the variety Theorem for C-recognizable languages.
- Variations on varieties:
 - \blacktriangleright tuning the relation \prec
 - using deduction systems to obtain structures similar so semigroups

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Equational definition of varieties.

- We have proved of an extension of the variety Theorem for C-recognizable languages.
- Variations on varieties:
 - \blacktriangleright tuning the relation \prec
 - using deduction systems to obtain structures similar so semigroups
- Equational definition of varieties.
- Applications of this work to languages of λ-terms that are neither λ-strings nor λ-trees rely on the conjecture recognizable = C-recognizable.