
Towards an algebraic classification of
recognizable sets of lambda-terms1

Sylvain Salvati

INRIA Bordeaux sud-ouest, LaBRI, université de Bordeaux

Automata, Concurrency and Timed Systems (ACTS) III

1With the financial support of ANR 2010 BLAN 0202 01 FREC



Outline

Recognizable sets of λ-terms

Recognizability and congruence

Eilenberg theorem: towards an algebraic classification of classes of
C-recognizable languages

Varieties of locally finite CCCs



Outline

Recognizable sets of λ-terms

Recognizability and congruence

Eilenberg theorem: towards an algebraic classification of classes of
C-recognizable languages

Varieties of locally finite CCCs



λ-calculus: syntax

Given a finite set of atomic types A, simple types are:

TA := A|(TA → TA)

A higher order signature (HOS) is a tuple Σ = (A, C, τ) where:

I A is a finite set of atomic types,

I C is a finite set of constants,

I τ is a function from C to TA.

λ-terms built on Σ are defined as:

I for α ∈ TA, xα ∈ ΛαΣ,

I c ∈ Λ
τ(c)
Σ ,

I if M1 ∈ Λα2→α1
Σ , M2 ∈ Λα2

Σ , then (M1M2) ∈ Λα1
Σ ,

I if M ∈ Λα1
Σ , then λxα2 .M ∈ Λα2→α1

Σ .



λ-calculus: syntax

Given a finite set of atomic types A, simple types are:

TA := A|(TA → TA)

A higher order signature (HOS) is a tuple Σ = (A, C, τ) where:

I A is a finite set of atomic types,

I C is a finite set of constants,

I τ is a function from C to TA.

λ-terms built on Σ are defined as:

I for α ∈ TA, xα ∈ ΛαΣ,

I c ∈ Λ
τ(c)
Σ ,

I if M1 ∈ Λα2→α1
Σ , M2 ∈ Λα2

Σ , then (M1M2) ∈ Λα1
Σ ,

I if M ∈ Λα1
Σ , then λxα2 .M ∈ Λα2→α1

Σ .



λ-calculus: syntax

Given a finite set of atomic types A, simple types are:

TA := A|(TA → TA)

A higher order signature (HOS) is a tuple Σ = (A, C, τ) where:

I A is a finite set of atomic types,

I C is a finite set of constants,

I τ is a function from C to TA.

λ-terms built on Σ are defined as:

I for α ∈ TA, xα ∈ ΛαΣ,

I c ∈ Λ
τ(c)
Σ ,

I if M1 ∈ Λα2→α1
Σ , M2 ∈ Λα2

Σ , then (M1M2) ∈ Λα1
Σ ,

I if M ∈ Λα1
Σ , then λxα2 .M ∈ Λα2→α1

Σ .



λ-calculus: operational semantics

λ-calculus is a theory of function and computation.
Computation is done with the relation of βη-contraction (→βη):

(λx .M)N

(λx .M)N →βη M[x := N]

λx .Mx x /∈ FV (M)

λx .Mx →βη M

M1 →βη M2

(MM1) →βη (MM2)

M1 →βη M2

(M1M) →βη (M2M)

M1 →βη M2

(λx .M1) →βη (λx .M2)

βη-reduction (
∗→βη): reflexive transitive closure of βη-contraction

βη-conversion: symetric closure of βη-reduction

Theorem (Church-Rosser)
βη-conversion is confluent

Theorem (Strong Normalisation)
Given M in Λα

Σ, there is no infinite sequence of βη-contraction starting in M.



λ-calculus: operational semantics

λ-calculus is a theory of function and computation.
Computation is done with the relation of βη-contraction (→βη):

(λx .M)N

(λx .M)N →βη M[x := N]

λx .Mx x /∈ FV (M)

λx .Mx →βη M

M1 →βη M2

(MM1) →βη (MM2)

M1 →βη M2

(M1M) →βη (M2M)

M1 →βη M2

(λx .M1) →βη (λx .M2)

βη-reduction (
∗→βη): reflexive transitive closure of βη-contraction

βη-conversion: symetric closure of βη-reduction

Theorem (Church-Rosser)
βη-conversion is confluent

Theorem (Strong Normalisation)
Given M in Λα

Σ, there is no infinite sequence of βη-contraction starting in M.



λ-calculus: operational semantics

λ-calculus is a theory of function and computation.
Computation is done with the relation of βη-contraction (→βη):

(λx .M)N

(λx .M)N →βη M[x := N]

λx .Mx x /∈ FV (M)

λx .Mx →βη M

M1 →βη M2

(MM1) →βη (MM2)

M1 →βη M2

(M1M) →βη (M2M)

M1 →βη M2

(λx .M1) →βη (λx .M2)

βη-reduction (
∗→βη): reflexive transitive closure of βη-contraction

βη-conversion: symetric closure of βη-reduction

Theorem (Church-Rosser)
βη-conversion is confluent

Theorem (Strong Normalisation)
Given M in Λα

Σ, there is no infinite sequence of βη-contraction starting in M.



λ-calculus: operational semantics

λ-calculus is a theory of function and computation.
Computation is done with the relation of βη-contraction (→βη):

(λx .M)N

(λx .M)N →βη M[x := N]

λx .Mx x /∈ FV (M)

λx .Mx →βη M

M1 →βη M2

(MM1) →βη (MM2)

M1 →βη M2

(M1M) →βη (M2M)

M1 →βη M2

(λx .M1) →βη (λx .M2)

βη-reduction (
∗→βη): reflexive transitive closure of βη-contraction

βη-conversion: symetric closure of βη-reduction

Theorem (Church-Rosser)
βη-conversion is confluent

Theorem (Strong Normalisation)
Given M in Λα

Σ, there is no infinite sequence of βη-contraction starting in M.



Simply typed λ-calculus generalizes trees

The ranked alphabet {e; g ; f } where rank(e) = 0, rank(g) = 1,
rank(f ) = 2 can be represented by the following second order
constants:

e : o, g : o → o, f : o → o → o

the term g(f (e, g(e))) is represented by the λ-term g(f e (g e))
The Böhm tree of the λ-term is the same as the graphic
representation of the term:

g

f

e g

e

A λ-term whose normal form represent a tree is a λ-tree.



Simply typed λ-calculus generalizes trees

The ranked alphabet {e; g ; f } where rank(e) = 0, rank(g) = 1,
rank(f ) = 2 can be represented by the following second order
constants:

e : o, g : o → o, f : o → o → o

the term g(f (e, g(e))) is represented by the λ-term g(f e (g e))

The Böhm tree of the λ-term is the same as the graphic
representation of the term:

g

f

e g

e

A λ-term whose normal form represent a tree is a λ-tree.



Simply typed λ-calculus generalizes trees

The ranked alphabet {e; g ; f } where rank(e) = 0, rank(g) = 1,
rank(f ) = 2 can be represented by the following second order
constants:

e : o, g : o → o, f : o → o → o

the term g(f (e, g(e))) is represented by the λ-term g(f e (g e))
The Böhm tree of the λ-term is the same as the graphic
representation of the term:

g

f

e g

e

A λ-term whose normal form represent a tree is a λ-tree.



Simply typed λ-calculus generalizes trees

The ranked alphabet {e; g ; f } where rank(e) = 0, rank(g) = 1,
rank(f ) = 2 can be represented by the following second order
constants:

e : o, g : o → o, f : o → o → o

the term g(f (e, g(e))) is represented by the λ-term g(f e (g e))
The Böhm tree of the λ-term is the same as the graphic
representation of the term:

g

f

e g

e

A λ-term whose normal form represent a tree is a λ-tree.



Simply typed λ-calculus generalizes strings
The elements of {a; b}∗ can be represented with the constants:

a : o → o, b : o → o

Strings are represented by terms of type o → o:

the string aba is represented by /aba/ = λxo .a(b(a xo))

Concatenation is then s1 + s2 = λxo .s1(s2(xo)):

/ab/+ /bb/ = λxo .a(b(xo)) + λxo .b(b(xo))

= λxo .(λyo .a(b yo))((λzo .b(b zo))xo)

=βη λxo .a(b(b(b zo)))

and the empty string is λxo .xo

A λ-term whose normal form represent a string is a λ-string.



Simply typed λ-calculus generalizes strings
The elements of {a; b}∗ can be represented with the constants:

a : o → o, b : o → o

Strings are represented by terms of type o → o:

the string aba is represented by /aba/ = λxo .a(b(a xo))

Concatenation is then s1 + s2 = λxo .s1(s2(xo)):

/ab/+ /bb/ = λxo .a(b(xo)) + λxo .b(b(xo))

= λxo .(λyo .a(b yo))((λzo .b(b zo))xo)

=βη λxo .a(b(b(b zo)))

and the empty string is λxo .xo

A λ-term whose normal form represent a string is a λ-string.



Simply typed λ-calculus generalizes strings
The elements of {a; b}∗ can be represented with the constants:

a : o → o, b : o → o

Strings are represented by terms of type o → o:

the string aba is represented by /aba/ = λxo .a(b(a xo))

Concatenation is then s1 + s2 = λxo .s1(s2(xo)):

/ab/+ /bb/ = λxo .a(b(xo)) + λxo .b(b(xo))

= λxo .(λyo .a(b yo))((λzo .b(b zo))xo)

=βη λxo .a(b(b(b zo)))

and the empty string is λxo .xo

A λ-term whose normal form represent a string is a λ-string.



Finite models for recognizability in the simply typed
λ-calculus

Let Σ be a HOS. M = ((Mα)α∈T (Σ), ι) is a finite model of Σ if:

I The sets Mα are finite.

I Mα→β is the set of all functions from Mα to Mβ.

I ι maps constants of type α to Mα

A variable assignment χ : V →
⋃
α∈T (Σ)Mα so that χ(xα) ∈Mα.

The semantics of λ-terms in M is inductively defined by:

I [[c]]Mχ = ι(c),

I [[xα]]Mχ = χ(xα),

I [[MN]]Mχ = [[M]]Mχ ([[N]]Mχ ),

I [[λxα.M]]Mχ (a) = [[M]]Mχ←[xα:=a] with a ∈Mα.



Finite models for recognizability in the simply typed
λ-calculus

Let Σ be a HOS. M = ((Mα)α∈T (Σ), ι) is a finite model of Σ if:

I The sets Mα are finite.

I Mα→β is the set of all functions from Mα to Mβ.

I ι maps constants of type α to Mα

A variable assignment χ : V →
⋃
α∈T (Σ)Mα so that χ(xα) ∈Mα.

The semantics of λ-terms in M is inductively defined by:

I [[c]]Mχ = ι(c),

I [[xα]]Mχ = χ(xα),

I [[MN]]Mχ = [[M]]Mχ ([[N]]Mχ ),

I [[λxα.M]]Mχ (a) = [[M]]Mχ←[xα:=a] with a ∈Mα.



Finite models for recognizability in the simply typed
λ-calculus

Let Σ be a HOS. M = ((Mα)α∈T (Σ), ι) is a finite model of Σ if:

I The sets Mα are finite.

I Mα→β is the set of all functions from Mα to Mβ.

I ι maps constants of type α to Mα

A variable assignment χ : V →
⋃
α∈T (Σ)Mα so that χ(xα) ∈Mα.

The semantics of λ-terms in M is inductively defined by:

I [[c]]Mχ = ι(c),

I [[xα]]Mχ = χ(xα),

I [[MN]]Mχ = [[M]]Mχ ([[N]]Mχ ),

I [[λxα.M]]Mχ (a) = [[M]]Mχ←[xα:=a] with a ∈Mα.



Finite models for recognizability in the simply typed
λ-calculus

Let Σ be a HOS. M = ((Mα)α∈T (Σ), ι) is a finite model of Σ if:

I The sets Mα are finite.

I Mα→β is the set of all functions from Mα to Mβ.

I ι maps constants of type α to Mα

A variable assignment χ : V →
⋃
α∈T (Σ)Mα so that χ(xα) ∈Mα.

The semantics of λ-terms in M is inductively defined by:

I [[c]]Mχ = ι(c),

I [[xα]]Mχ = χ(xα),

I [[MN]]Mχ = [[M]]Mχ ([[N]]Mχ ),

I [[λxα.M]]Mχ (a) = [[M]]Mχ←[xα:=a] with a ∈Mα.



Finite models for recognizability in the simply typed
λ-calculus

Let Σ be a HOS. M = ((Mα)α∈T (Σ), ι) is a finite model of Σ if:

I The sets Mα are finite.

I Mα→β is the set of all functions from Mα to Mβ.

I ι maps constants of type α to Mα

A variable assignment χ : V →
⋃
α∈T (Σ)Mα so that χ(xα) ∈Mα.

The semantics of λ-terms in M is inductively defined by:

I [[c]]Mχ = ι(c),

I [[xα]]Mχ = χ(xα),

I [[MN]]Mχ = [[M]]Mχ ([[N]]Mχ ),

I [[λxα.M]]Mχ (a) = [[M]]Mχ←[xα:=a] with a ∈Mα.



Finite models for recognizability in the simply typed
λ-calculus

Let Σ be a HOS. M = ((Mα)α∈T (Σ), ι) is a finite model of Σ if:

I The sets Mα are finite.

I Mα→β is the set of all functions from Mα to Mβ.

I ι maps constants of type α to Mα

A variable assignment χ : V →
⋃
α∈T (Σ)Mα so that χ(xα) ∈Mα.

The semantics of λ-terms in M is inductively defined by:

I [[c]]Mχ = ι(c),

I [[xα]]Mχ = χ(xα),

I [[MN]]Mχ = [[M]]Mχ ([[N]]Mχ ),

I [[λxα.M]]Mχ (a) = [[M]]Mχ←[xα:=a] with a ∈Mα.



Finite models for recognizability in the simply typed
λ-calculus

Let Σ be a HOS. M = ((Mα)α∈T (Σ), ι) is a finite model of Σ if:

I The sets Mα are finite.

I Mα→β is the set of all functions from Mα to Mβ.

I ι maps constants of type α to Mα

A variable assignment χ : V →
⋃
α∈T (Σ)Mα so that χ(xα) ∈Mα.

The semantics of λ-terms in M is inductively defined by:

I [[c]]Mχ = ι(c),

I [[xα]]Mχ = χ(xα),

I [[MN]]Mχ = [[M]]Mχ ([[N]]Mχ ),

I [[λxα.M]]Mχ (a) = [[M]]Mχ←[xα:=a] with a ∈Mα.



Finite models for recognizability in the simply typed
λ-calculus

Let Σ be a HOS. M = ((Mα)α∈T (Σ), ι) is a finite model of Σ if:

I The sets Mα are finite.

I Mα→β is the set of all functions from Mα to Mβ.

I ι maps constants of type α to Mα

A variable assignment χ : V →
⋃
α∈T (Σ)Mα so that χ(xα) ∈Mα.

The semantics of λ-terms in M is inductively defined by:

I [[c]]Mχ = ι(c),

I [[xα]]Mχ = χ(xα),

I [[MN]]Mχ = [[M]]Mχ ([[N]]Mχ ),

I [[λxα.M]]Mχ (a) = [[M]]Mχ←[xα:=a] with a ∈Mα.



Finite models for recognizability in the simply typed
λ-calculus

Definition:
A set of λ-terms R ⊆ ΛαΣ is recognizable iff there is a finite full
model M = ((Mα)α∈T (Σ), ι) , N ⊆Mα:

R = {M|FV (M) = ∅ ∧ [[M]]M ∈ N}

R

N

ΛαΣ Mα

[[·]]−1

Note:

I recognizable sets are closed under =βη

I the emptiness of recognizable sets subsumes λ-definability
which is undecidable (Loader 1993).



Finite models for recognizability in the simply typed
λ-calculus

Definition:
A set of λ-terms R ⊆ ΛαΣ is recognizable iff there is a finite full
model M = ((Mα)α∈T (Σ), ι) , N ⊆Mα:

R = {M|FV (M) = ∅ ∧ [[M]]M ∈ N}

R

N

ΛαΣ Mα

[[·]]−1

Note:

I recognizable sets are closed under =βη

I the emptiness of recognizable sets subsumes λ-definability
which is undecidable (Loader 1993).



Properties of recognizable sets of λ-terms

I R is a recognizable set of λ-strings iff {w | /w/ ∈ R} is a
recognizable set of strings (similarly for λ-trees/trees).

I The class of recognizable sets of λ-terms is closed under
Boolean operations.

I It is also closed under inverse homomorphism of λ-terms
(CCC-functor).

I There is a mechanical (equivalent) characterization of
recognizability in terms of intersection types.

I An approach based on finite standard model gives a simple
proof of the decidability of the acceptance by a Büchi tree
automaton of the infinite tree generated by a higher-order
programming scheme (S., Srivathsan, Walukiewicz).



Properties of recognizable sets of λ-terms

I R is a recognizable set of λ-strings iff {w | /w/ ∈ R} is a
recognizable set of strings (similarly for λ-trees/trees).

I The class of recognizable sets of λ-terms is closed under
Boolean operations.

I It is also closed under inverse homomorphism of λ-terms
(CCC-functor).

I There is a mechanical (equivalent) characterization of
recognizability in terms of intersection types.

I An approach based on finite standard model gives a simple
proof of the decidability of the acceptance by a Büchi tree
automaton of the infinite tree generated by a higher-order
programming scheme (S., Srivathsan, Walukiewicz).



Properties of recognizable sets of λ-terms

I R is a recognizable set of λ-strings iff {w | /w/ ∈ R} is a
recognizable set of strings (similarly for λ-trees/trees).

I The class of recognizable sets of λ-terms is closed under
Boolean operations.

I It is also closed under inverse homomorphism of λ-terms
(CCC-functor).

I There is a mechanical (equivalent) characterization of
recognizability in terms of intersection types.

I An approach based on finite standard model gives a simple
proof of the decidability of the acceptance by a Büchi tree
automaton of the infinite tree generated by a higher-order
programming scheme (S., Srivathsan, Walukiewicz).



Properties of recognizable sets of λ-terms

I R is a recognizable set of λ-strings iff {w | /w/ ∈ R} is a
recognizable set of strings (similarly for λ-trees/trees).

I The class of recognizable sets of λ-terms is closed under
Boolean operations.

I It is also closed under inverse homomorphism of λ-terms
(CCC-functor).

I There is a mechanical (equivalent) characterization of
recognizability in terms of intersection types.

I An approach based on finite standard model gives a simple
proof of the decidability of the acceptance by a Büchi tree
automaton of the infinite tree generated by a higher-order
programming scheme (S., Srivathsan, Walukiewicz).



Properties of recognizable sets of λ-terms

I R is a recognizable set of λ-strings iff {w | /w/ ∈ R} is a
recognizable set of strings (similarly for λ-trees/trees).

I The class of recognizable sets of λ-terms is closed under
Boolean operations.

I It is also closed under inverse homomorphism of λ-terms
(CCC-functor).

I There is a mechanical (equivalent) characterization of
recognizability in terms of intersection types.

I An approach based on finite standard model gives a simple
proof of the decidability of the acceptance by a Büchi tree
automaton of the infinite tree generated by a higher-order
programming scheme (S., Srivathsan, Walukiewicz).



Outline

Recognizable sets of λ-terms

Recognizability and congruence

Eilenberg theorem: towards an algebraic classification of classes of
C-recognizable languages

Varieties of locally finite CCCs



Cartesian Closed Category

C is a Cartesian Close Category if:

I C is a category,

I it has a terminal object 1,
I for every pair of objects α and β, there is:

I a product-object α× β, with associated projection
π1 : α× β → α and π2 : α× β → β,

I an exponential-object αβ such that
Hom(α× β, δ) ∼= Hom(α, δβ)

A CCC-functor is a morphism of CCC, i.e. it commutes with
products and exponentials.



Cartesian Closed Category

C is a Cartesian Close Category if:

I C is a category,

I it has a terminal object 1,

I for every pair of objects α and β, there is:

I a product-object α× β, with associated projection
π1 : α× β → α and π2 : α× β → β,

I an exponential-object αβ such that
Hom(α× β, δ) ∼= Hom(α, δβ)

A CCC-functor is a morphism of CCC, i.e. it commutes with
products and exponentials.



Cartesian Closed Category

C is a Cartesian Close Category if:

I C is a category,

I it has a terminal object 1,
I for every pair of objects α and β, there is:

I a product-object α× β, with associated projection
π1 : α× β → α and π2 : α× β → β,

I an exponential-object αβ such that
Hom(α× β, δ) ∼= Hom(α, δβ)

A CCC-functor is a morphism of CCC, i.e. it commutes with
products and exponentials.



Cartesian Closed Category

C is a Cartesian Close Category if:

I C is a category,

I it has a terminal object 1,
I for every pair of objects α and β, there is:

I a product-object α× β, with associated projection
π1 : α× β → α and π2 : α× β → β,

I an exponential-object αβ such that
Hom(α× β, δ) ∼= Hom(α, δβ)

A CCC-functor is a morphism of CCC, i.e. it commutes with
products and exponentials.



Cartesian Closed Category

C is a Cartesian Close Category if:

I C is a category,

I it has a terminal object 1,
I for every pair of objects α and β, there is:

I a product-object α× β, with associated projection
π1 : α× β → α and π2 : α× β → β,

I an exponential-object αβ such that
Hom(α× β, δ) ∼= Hom(α, δβ)

A CCC-functor is a morphism of CCC, i.e. it commutes with
products and exponentials.



Cartesian Closed Categories and congruences

Given a HOS Σ, ΛΣ (up to βη-convertibility) forms a CCC:

I Objects: types and products of types

I Arrows: Γ ` M : α where:
I Γ = x1 : α1, . . . , xn : αn is interpreted as the object
β = α1 × . . .× αn

I M is an arrow β → α.

I remark: when Γ is empty then M is an arrow 1→ α.

Given a congruence ≡ on ΛΣ, ΛΣ/≡ forms a CCC, the arrows are
equivalence classes of λ-terms.
We write F≡ for the surjective functor from ΛΣ to ΛΣ/≡.



Cartesian Closed Categories and congruences

Given a HOS Σ, ΛΣ (up to βη-convertibility) forms a CCC:

I Objects: types and products of types
I Arrows: Γ ` M : α where:

I Γ = x1 : α1, . . . , xn : αn is interpreted as the object
β = α1 × . . .× αn

I M is an arrow β → α.

I remark: when Γ is empty then M is an arrow 1→ α.

Given a congruence ≡ on ΛΣ, ΛΣ/≡ forms a CCC, the arrows are
equivalence classes of λ-terms.
We write F≡ for the surjective functor from ΛΣ to ΛΣ/≡.



Cartesian Closed Categories and congruences

Given a HOS Σ, ΛΣ (up to βη-convertibility) forms a CCC:

I Objects: types and products of types
I Arrows: Γ ` M : α where:

I Γ = x1 : α1, . . . , xn : αn is interpreted as the object
β = α1 × . . .× αn

I M is an arrow β → α.
I remark: when Γ is empty then M is an arrow 1→ α.

Given a congruence ≡ on ΛΣ, ΛΣ/≡ forms a CCC, the arrows are
equivalence classes of λ-terms.
We write F≡ for the surjective functor from ΛΣ to ΛΣ/≡.



Cartesian Closed Categories and congruences

Given a HOS Σ, ΛΣ (up to βη-convertibility) forms a CCC:

I Objects: types and products of types
I Arrows: Γ ` M : α where:

I Γ = x1 : α1, . . . , xn : αn is interpreted as the object
β = α1 × . . .× αn

I M is an arrow β → α.
I remark: when Γ is empty then M is an arrow 1→ α.

Given a congruence ≡ on ΛΣ, ΛΣ/≡ forms a CCC, the arrows are
equivalence classes of λ-terms.

We write F≡ for the surjective functor from ΛΣ to ΛΣ/≡.



Cartesian Closed Categories and congruences

Given a HOS Σ, ΛΣ (up to βη-convertibility) forms a CCC:

I Objects: types and products of types
I Arrows: Γ ` M : α where:

I Γ = x1 : α1, . . . , xn : αn is interpreted as the object
β = α1 × . . .× αn

I M is an arrow β → α.
I remark: when Γ is empty then M is an arrow 1→ α.

Given a congruence ≡ on ΛΣ, ΛΣ/≡ forms a CCC, the arrows are
equivalence classes of λ-terms.
We write F≡ for the surjective functor from ΛΣ to ΛΣ/≡.



Syntactic CCC of a language
Given a CCC C and A ⊆ Hom(β, α) and f1, f2 in Hom(θ, δ), we
have:

f1 ∼A f2 iff ∀C [].C [f1] ∈ A⇔ C [f2] ∈ A

I ∼A is a congruence of CCC,

I when C = ΛΣ, ΛΣ/∼A is the syntactic CCC associated to the
language A,

I whenever ≈ is a congruence on C and A = F−1
≈ (B) for

B ⊆ HomΛΣ/≈(β, α), then there is a surjective functor
G : ΛΣ/≈ → ΛΣ/∼A,

I the syntactic CCC of a recognizable set of λ-terms is locally
finite (i.e. for every α, β, HomΛΣ/∼R

(α, β) is finite),

I conjecture: every language of λ-terms that has a locally
finite syntactic CCC is recognizable.

For the moment we call C-recognizable a language whose syntactic
CCC is locally finite.



Syntactic CCC of a language
Given a CCC C and A ⊆ Hom(β, α) and f1, f2 in Hom(θ, δ), we
have:

f1 ∼A f2 iff ∀C [].C [f1] ∈ A⇔ C [f2] ∈ A

I ∼A is a congruence of CCC,

I when C = ΛΣ, ΛΣ/∼A is the syntactic CCC associated to the
language A,

I whenever ≈ is a congruence on C and A = F−1
≈ (B) for

B ⊆ HomΛΣ/≈(β, α), then there is a surjective functor
G : ΛΣ/≈ → ΛΣ/∼A,

I the syntactic CCC of a recognizable set of λ-terms is locally
finite (i.e. for every α, β, HomΛΣ/∼R

(α, β) is finite),

I conjecture: every language of λ-terms that has a locally
finite syntactic CCC is recognizable.

For the moment we call C-recognizable a language whose syntactic
CCC is locally finite.



Syntactic CCC of a language
Given a CCC C and A ⊆ Hom(β, α) and f1, f2 in Hom(θ, δ), we
have:

f1 ∼A f2 iff ∀C [].C [f1] ∈ A⇔ C [f2] ∈ A

I ∼A is a congruence of CCC,

I when C = ΛΣ, ΛΣ/∼A is the syntactic CCC associated to the
language A,

I whenever ≈ is a congruence on C and A = F−1
≈ (B) for

B ⊆ HomΛΣ/≈(β, α), then there is a surjective functor
G : ΛΣ/≈ → ΛΣ/∼A,

I the syntactic CCC of a recognizable set of λ-terms is locally
finite (i.e. for every α, β, HomΛΣ/∼R

(α, β) is finite),

I conjecture: every language of λ-terms that has a locally
finite syntactic CCC is recognizable.

For the moment we call C-recognizable a language whose syntactic
CCC is locally finite.



Syntactic CCC of a language
Given a CCC C and A ⊆ Hom(β, α) and f1, f2 in Hom(θ, δ), we
have:

f1 ∼A f2 iff ∀C [].C [f1] ∈ A⇔ C [f2] ∈ A

I ∼A is a congruence of CCC,

I when C = ΛΣ, ΛΣ/∼A is the syntactic CCC associated to the
language A,

I whenever ≈ is a congruence on C and A = F−1
≈ (B) for

B ⊆ HomΛΣ/≈(β, α), then there is a surjective functor
G : ΛΣ/≈ → ΛΣ/∼A,

I the syntactic CCC of a recognizable set of λ-terms is locally
finite (i.e. for every α, β, HomΛΣ/∼R

(α, β) is finite),

I conjecture: every language of λ-terms that has a locally
finite syntactic CCC is recognizable.

For the moment we call C-recognizable a language whose syntactic
CCC is locally finite.



Syntactic CCC of a language
Given a CCC C and A ⊆ Hom(β, α) and f1, f2 in Hom(θ, δ), we
have:

f1 ∼A f2 iff ∀C [].C [f1] ∈ A⇔ C [f2] ∈ A

I ∼A is a congruence of CCC,

I when C = ΛΣ, ΛΣ/∼A is the syntactic CCC associated to the
language A,

I whenever ≈ is a congruence on C and A = F−1
≈ (B) for

B ⊆ HomΛΣ/≈(β, α), then there is a surjective functor
G : ΛΣ/≈ → ΛΣ/∼A,

I the syntactic CCC of a recognizable set of λ-terms is locally
finite (i.e. for every α, β, HomΛΣ/∼R

(α, β) is finite),

I conjecture: every language of λ-terms that has a locally
finite syntactic CCC is recognizable.

For the moment we call C-recognizable a language whose syntactic
CCC is locally finite.



Syntactic CCC of a language
Given a CCC C and A ⊆ Hom(β, α) and f1, f2 in Hom(θ, δ), we
have:

f1 ∼A f2 iff ∀C [].C [f1] ∈ A⇔ C [f2] ∈ A

I ∼A is a congruence of CCC,

I when C = ΛΣ, ΛΣ/∼A is the syntactic CCC associated to the
language A,

I whenever ≈ is a congruence on C and A = F−1
≈ (B) for

B ⊆ HomΛΣ/≈(β, α), then there is a surjective functor
G : ΛΣ/≈ → ΛΣ/∼A,

I the syntactic CCC of a recognizable set of λ-terms is locally
finite (i.e. for every α, β, HomΛΣ/∼R

(α, β) is finite),

I conjecture: every language of λ-terms that has a locally
finite syntactic CCC is recognizable.

For the moment we call C-recognizable a language whose syntactic
CCC is locally finite.



Embedding of syntactic monoid within syntactic CCC
Given R a recognizable set of strings, and R ′ be the recognizable
set of λ-terms representing the elements of R:

I u ≡R v iff for every w1, w2, w1uw2 ∈ R ⇔ w1vw2 ∈ R

I /u/ ∼R′ /v/ iff for every M, M/u/ ∈ R ′ ⇔ M/v/ ∈ R ′

I or equivalently iff for every w0,. . . , wn,
w0uw1 . . .wn−1uwn ∈ R ⇔ w0vw1 . . .wn−1vwn ∈ R

This implies:

I u ≡R v iff /u/ ∼R′ /v/,

I ∼R′ is an extension of ≡R to higher-order functions over
strings,

I the CCC associated to ∼R′ is embedding the syntactic monoid
of R (it is concretely represented by Hom(o, o)),

I every λ-string language that has a locally finite syntactic CCC
is a recognizable set of λ-terms.

Remark: similar results hold for recognizable sets of trees seen as
recognizable sets of λ-terms.



Embedding of syntactic monoid within syntactic CCC
Given R a recognizable set of strings, and R ′ be the recognizable
set of λ-terms representing the elements of R:

I u ≡R v iff for every w1, w2, w1uw2 ∈ R ⇔ w1vw2 ∈ R

I /u/ ∼R′ /v/ iff for every M, M/u/ ∈ R ′ ⇔ M/v/ ∈ R ′

I or equivalently iff for every w0,. . . , wn,
w0uw1 . . .wn−1uwn ∈ R ⇔ w0vw1 . . .wn−1vwn ∈ R

This implies:

I u ≡R v iff /u/ ∼R′ /v/,

I ∼R′ is an extension of ≡R to higher-order functions over
strings,

I the CCC associated to ∼R′ is embedding the syntactic monoid
of R (it is concretely represented by Hom(o, o)),

I every λ-string language that has a locally finite syntactic CCC
is a recognizable set of λ-terms.

Remark: similar results hold for recognizable sets of trees seen as
recognizable sets of λ-terms.



Embedding of syntactic monoid within syntactic CCC
Given R a recognizable set of strings, and R ′ be the recognizable
set of λ-terms representing the elements of R:

I u ≡R v iff for every w1, w2, w1uw2 ∈ R ⇔ w1vw2 ∈ R

I /u/ ∼R′ /v/ iff for every M, M/u/ ∈ R ′ ⇔ M/v/ ∈ R ′

I or equivalently iff for every w0,. . . , wn,
w0uw1 . . .wn−1uwn ∈ R ⇔ w0vw1 . . .wn−1vwn ∈ R

This implies:

I u ≡R v iff /u/ ∼R′ /v/,

I ∼R′ is an extension of ≡R to higher-order functions over
strings,

I the CCC associated to ∼R′ is embedding the syntactic monoid
of R (it is concretely represented by Hom(o, o)),

I every λ-string language that has a locally finite syntactic CCC
is a recognizable set of λ-terms.

Remark: similar results hold for recognizable sets of trees seen as
recognizable sets of λ-terms.



Embedding of syntactic monoid within syntactic CCC
Given R a recognizable set of strings, and R ′ be the recognizable
set of λ-terms representing the elements of R:

I u ≡R v iff for every w1, w2, w1uw2 ∈ R ⇔ w1vw2 ∈ R

I /u/ ∼R′ /v/ iff for every M, M/u/ ∈ R ′ ⇔ M/v/ ∈ R ′

I or equivalently iff for every w0,. . . , wn,
w0uw1 . . .wn−1uwn ∈ R ⇔ w0vw1 . . .wn−1vwn ∈ R

This implies:

I u ≡R v iff /u/ ∼R′ /v/,

I ∼R′ is an extension of ≡R to higher-order functions over
strings,

I the CCC associated to ∼R′ is embedding the syntactic monoid
of R (it is concretely represented by Hom(o, o)),

I every λ-string language that has a locally finite syntactic CCC
is a recognizable set of λ-terms.

Remark: similar results hold for recognizable sets of trees seen as
recognizable sets of λ-terms.



Embedding of syntactic monoid within syntactic CCC
Given R a recognizable set of strings, and R ′ be the recognizable
set of λ-terms representing the elements of R:

I u ≡R v iff for every w1, w2, w1uw2 ∈ R ⇔ w1vw2 ∈ R

I /u/ ∼R′ /v/ iff for every M, M/u/ ∈ R ′ ⇔ M/v/ ∈ R ′

I or equivalently iff for every w0,. . . , wn,
w0uw1 . . .wn−1uwn ∈ R ⇔ w0vw1 . . .wn−1vwn ∈ R

This implies:

I u ≡R v iff /u/ ∼R′ /v/,

I ∼R′ is an extension of ≡R to higher-order functions over
strings,

I the CCC associated to ∼R′ is embedding the syntactic monoid
of R (it is concretely represented by Hom(o, o)),

I every λ-string language that has a locally finite syntactic CCC
is a recognizable set of λ-terms.

Remark: similar results hold for recognizable sets of trees seen as
recognizable sets of λ-terms.



Embedding of syntactic monoid within syntactic CCC
Given R a recognizable set of strings, and R ′ be the recognizable
set of λ-terms representing the elements of R:

I u ≡R v iff for every w1, w2, w1uw2 ∈ R ⇔ w1vw2 ∈ R

I /u/ ∼R′ /v/ iff for every M, M/u/ ∈ R ′ ⇔ M/v/ ∈ R ′

I or equivalently iff for every w0,. . . , wn,
w0uw1 . . .wn−1uwn ∈ R ⇔ w0vw1 . . .wn−1vwn ∈ R

This implies:

I u ≡R v iff /u/ ∼R′ /v/,

I ∼R′ is an extension of ≡R to higher-order functions over
strings,

I the CCC associated to ∼R′ is embedding the syntactic monoid
of R (it is concretely represented by Hom(o, o)),

I every λ-string language that has a locally finite syntactic CCC
is a recognizable set of λ-terms.

Remark: similar results hold for recognizable sets of trees seen as
recognizable sets of λ-terms.



Embedding of syntactic monoid within syntactic CCC
Given R a recognizable set of strings, and R ′ be the recognizable
set of λ-terms representing the elements of R:

I u ≡R v iff for every w1, w2, w1uw2 ∈ R ⇔ w1vw2 ∈ R

I /u/ ∼R′ /v/ iff for every M, M/u/ ∈ R ′ ⇔ M/v/ ∈ R ′

I or equivalently iff for every w0,. . . , wn,
w0uw1 . . .wn−1uwn ∈ R ⇔ w0vw1 . . .wn−1vwn ∈ R

This implies:

I u ≡R v iff /u/ ∼R′ /v/,

I ∼R′ is an extension of ≡R to higher-order functions over
strings,

I the CCC associated to ∼R′ is embedding the syntactic monoid
of R (it is concretely represented by Hom(o, o)),

I every λ-string language that has a locally finite syntactic CCC
is a recognizable set of λ-terms.

Remark: similar results hold for recognizable sets of trees seen as
recognizable sets of λ-terms.



Embedding of syntactic monoid within syntactic CCC
Given R a recognizable set of strings, and R ′ be the recognizable
set of λ-terms representing the elements of R:

I u ≡R v iff for every w1, w2, w1uw2 ∈ R ⇔ w1vw2 ∈ R

I /u/ ∼R′ /v/ iff for every M, M/u/ ∈ R ′ ⇔ M/v/ ∈ R ′

I or equivalently iff for every w0,. . . , wn,
w0uw1 . . .wn−1uwn ∈ R ⇔ w0vw1 . . .wn−1vwn ∈ R

This implies:

I u ≡R v iff /u/ ∼R′ /v/,

I ∼R′ is an extension of ≡R to higher-order functions over
strings,

I the CCC associated to ∼R′ is embedding the syntactic monoid
of R (it is concretely represented by Hom(o, o)),

I every λ-string language that has a locally finite syntactic CCC
is a recognizable set of λ-terms.

Remark: similar results hold for recognizable sets of trees seen as
recognizable sets of λ-terms.



Outline

Recognizable sets of λ-terms

Recognizability and congruence

Eilenberg theorem: towards an algebraic classification of classes of
C-recognizable languages

Varieties of locally finite CCCs



Classification of recognizable sets of λ-terms

We have syntactic objects that fully characterize languages of
λ-terms:

I can we classify these languages in terms of properties of their
syntactic CCCs?

I we try to extend classification tools used for recognizable
string languages:

I we define varieties of locally finite CCCs,
I and varieties of languages of λ-terms.



Classification of recognizable sets of λ-terms

We have syntactic objects that fully characterize languages of
λ-terms:

I can we classify these languages in terms of properties of their
syntactic CCCs?

I we try to extend classification tools used for recognizable
string languages:

I we define varieties of locally finite CCCs,
I and varieties of languages of λ-terms.



Classification of recognizable sets of λ-terms

We have syntactic objects that fully characterize languages of
λ-terms:

I can we classify these languages in terms of properties of their
syntactic CCCs?

I we try to extend classification tools used for recognizable
string languages:

I we define varieties of locally finite CCCs,

I and varieties of languages of λ-terms.



Classification of recognizable sets of λ-terms

We have syntactic objects that fully characterize languages of
λ-terms:

I can we classify these languages in terms of properties of their
syntactic CCCs?

I we try to extend classification tools used for recognizable
string languages:

I we define varieties of locally finite CCCs,
I and varieties of languages of λ-terms.



Varieties of finite monoids

A variety of finite monoids V is a class of finite monoids with the
following closure properties:

I If M1 and M2 are V, then M1 ×M2 is also in V,

I If M1 is a submonoid of M2 and M2 is in V, then M1 is also in
V

I If M is in V and ≡ is a congruence on M, then M/ ≡ is in V



Varieties of languages

A variety of recognizable languages V is a class of recognizable
languages with the following closure properties (ΣV is the class of
languages in V on alphabet Σ):

I ΣV is closed under Boolean operations,

I If R is in ΣV, then a−1R and Ra−1 are in ΣV for every a in Σ.

I If f : Γ∗ → Σ∗ is a morphism of monoid, then R ∈ ΣV implies
f −1(A) ∈ ΓV .



Eilenberg theorem

Given a recognizable language of strings R, we let MR be its
syntactic monoid.
Given V a variety of languages and V a variety of finite monoids
we let:

I V be the variety of finite monoids generated by
{MR | R ∈ ΣV for some Σ},

I Ṽ be the class of languages
{R | R ⊆ Σ∗,MR ∈ V for some Σ}.

We then have:

I Ṽ is a variety of languages,

I V = Ṽ,

I V = Ṽ



Eilenberg theorem

Given a recognizable language of strings R, we let MR be its
syntactic monoid.
Given V a variety of languages and V a variety of finite monoids
we let:

I V be the variety of finite monoids generated by
{MR | R ∈ ΣV for some Σ},

I Ṽ be the class of languages
{R | R ⊆ Σ∗,MR ∈ V for some Σ}.

We then have:

I Ṽ is a variety of languages,

I V = Ṽ,

I V = Ṽ



Eilenberg theorem

Given a recognizable language of strings R, we let MR be its
syntactic monoid.
Given V a variety of languages and V a variety of finite monoids
we let:

I V be the variety of finite monoids generated by
{MR | R ∈ ΣV for some Σ},

I Ṽ be the class of languages
{R | R ⊆ Σ∗,MR ∈ V for some Σ}.

We then have:

I Ṽ is a variety of languages,

I V = Ṽ,

I V = Ṽ



Eilenberg theorem

Given a recognizable language of strings R, we let MR be its
syntactic monoid.
Given V a variety of languages and V a variety of finite monoids
we let:

I V be the variety of finite monoids generated by
{MR | R ∈ ΣV for some Σ},

I Ṽ be the class of languages
{R | R ⊆ Σ∗,MR ∈ V for some Σ}.

We then have:

I Ṽ is a variety of languages,

I V = Ṽ,

I V = Ṽ



Eilenberg theorem

Given a recognizable language of strings R, we let MR be its
syntactic monoid.
Given V a variety of languages and V a variety of finite monoids
we let:

I V be the variety of finite monoids generated by
{MR | R ∈ ΣV for some Σ},

I Ṽ be the class of languages
{R | R ⊆ Σ∗,MR ∈ V for some Σ}.

We then have:

I Ṽ is a variety of languages,

I V = Ṽ,

I V = Ṽ



An application of Eilenberg Theorem

If we let:

I SF = the variety of star-free languages = first-order definable
languages

I AP = the variety of aperiodic monoids

We obtain Schützenberger-McNaughton-Papert’s result:

SF = AP



Outline

Recognizable sets of λ-terms

Recognizability and congruence

Eilenberg theorem: towards an algebraic classification of classes of
C-recognizable languages

Varieties of locally finite CCCs



Finitely generated CCCs

A CCC C is finitely generated if there is HOS Σ and a surjective
CCC-functor F : ΛΣ → C. F is called a finite presentation of C.

I A locally finite CCC may not be finitely generated (ex:
Heyting algebra with infinitely many generators).

I To obtain an extension of Eilenberg Theorem we need to
impose that we only consider finitely generated CCCs.



Finitely generated CCCs

A CCC C is finitely generated if there is HOS Σ and a surjective
CCC-functor F : ΛΣ → C. F is called a finite presentation of C.

I A locally finite CCC may not be finitely generated (ex:
Heyting algebra with infinitely many generators).

I To obtain an extension of Eilenberg Theorem we need to
impose that we only consider finitely generated CCCs.



Finitely generated CCCs

A CCC C is finitely generated if there is HOS Σ and a surjective
CCC-functor F : ΛΣ → C. F is called a finite presentation of C.

I A locally finite CCC may not be finitely generated (ex:
Heyting algebra with infinitely many generators).

I To obtain an extension of Eilenberg Theorem we need to
impose that we only consider finitely generated CCCs.



Product of CCCs

Given C1 and C2 two locally finite and finitely generated CCCs,
that have the same objects, a simple idea to generalize the direct
product of monoids is to take C1 × C2 with:

I the objects of C1 × C2 is the same as the ones of C1 and C2,

I HomC1×C2(α, β) = HomC1(α, β)× HomC2(α, β)

I C1 × C2, is a locally finite CCC,

I but C1 × C2 may not be finitely generated. . .

Thus given two finite presentation F1 and F2 of C1 and C2, we
define C1 ×F1,F2 C2 to be the sub-CCC of C1 × C2 generated by the
arrows:⋃
c∈Σ1

{F1(c)} × HomC2(1, τ1(c)) ∪
⋃
c∈Σ2

HomC1(1, τ2(c))× {F2(c)}



Product of CCCs

Given C1 and C2 two locally finite and finitely generated CCCs,
that have the same objects, a simple idea to generalize the direct
product of monoids is to take C1 × C2 with:

I the objects of C1 × C2 is the same as the ones of C1 and C2,

I HomC1×C2(α, β) = HomC1(α, β)× HomC2(α, β)

I C1 × C2, is a locally finite CCC,

I but C1 × C2 may not be finitely generated. . .

Thus given two finite presentation F1 and F2 of C1 and C2, we
define C1 ×F1,F2 C2 to be the sub-CCC of C1 × C2 generated by the
arrows:⋃
c∈Σ1

{F1(c)} × HomC2(1, τ1(c)) ∪
⋃
c∈Σ2

HomC1(1, τ2(c))× {F2(c)}



Product of CCCs

Given C1 and C2 two locally finite and finitely generated CCCs,
that have the same objects, a simple idea to generalize the direct
product of monoids is to take C1 × C2 with:

I the objects of C1 × C2 is the same as the ones of C1 and C2,

I HomC1×C2(α, β) = HomC1(α, β)× HomC2(α, β)

I C1 × C2, is a locally finite CCC,

I but C1 × C2 may not be finitely generated. . .

Thus given two finite presentation F1 and F2 of C1 and C2, we
define C1 ×F1,F2 C2 to be the sub-CCC of C1 × C2 generated by the
arrows:⋃
c∈Σ1

{F1(c)} × HomC2(1, τ1(c)) ∪
⋃
c∈Σ2

HomC1(1, τ2(c))× {F2(c)}



Product of CCCs

Given C1 and C2 two locally finite and finitely generated CCCs,
that have the same objects, a simple idea to generalize the direct
product of monoids is to take C1 × C2 with:

I the objects of C1 × C2 is the same as the ones of C1 and C2,

I HomC1×C2(α, β) = HomC1(α, β)× HomC2(α, β)

I C1 × C2, is a locally finite CCC,

I but C1 × C2 may not be finitely generated. . .

Thus given two finite presentation F1 and F2 of C1 and C2, we
define C1 ×F1,F2 C2 to be the sub-CCC of C1 × C2 generated by the
arrows:⋃
c∈Σ1

{F1(c)} × HomC2(1, τ1(c)) ∪
⋃
c∈Σ2

HomC1(1, τ2(c))× {F2(c)}



Product of CCCs

Given C1 and C2 two locally finite and finitely generated CCCs,
that have the same objects, a simple idea to generalize the direct
product of monoids is to take C1 × C2 with:

I the objects of C1 × C2 is the same as the ones of C1 and C2,

I HomC1×C2(α, β) = HomC1(α, β)× HomC2(α, β)

I C1 × C2, is a locally finite CCC,

I but C1 × C2 may not be finitely generated. . .

Thus given two finite presentation F1 and F2 of C1 and C2, we
define C1 ×F1,F2 C2 to be the sub-CCC of C1 × C2 generated by the
arrows:⋃
c∈Σ1

{F1(c)} × HomC2(1, τ1(c)) ∪
⋃
c∈Σ2

HomC1(1, τ2(c))× {F2(c)}



Direct product of monoids and product of CCCs

Given C1 and C2 two locally finite and finitely generated CCCs,
that have the same objects and which are generated only by string
signatures:

I for every presentation F1, G1 and F2, G2 of respectively C1

and C2 we have

C1 ×F1,F2 C2 = C1 ×G1,G2 C2

I a question is whether for every locally finite and finitely
generated CCC, C1 and C2 we can find a canonical sub-CCC of
C1 × C2 that is finitely generated.



Direct product of monoids and product of CCCs

Given C1 and C2 two locally finite and finitely generated CCCs,
that have the same objects and which are generated only by string
signatures:

I for every presentation F1, G1 and F2, G2 of respectively C1

and C2 we have

C1 ×F1,F2 C2 = C1 ×G1,G2 C2

I a question is whether for every locally finite and finitely
generated CCC, C1 and C2 we can find a canonical sub-CCC of
C1 × C2 that is finitely generated.



α-syntactic and α-separated CCC

A CCC C is said α-syntactic if there is a subset of A of Hom(1, α)
such that for every f1, f2 in Hom(θ, δ):

f1 ∼A f2 if and only if f1 = f2

We then have:

I if C1, C2 are two α-syntactic CCC, then for every presentation
F1 and F2 of C1 and C2, C1 ×F1,F2 C2 is α-syntactic.

I it can be the case that a locally finite finitely generated CCC
C can not be constructed from α-syntactic CCCs using
product, sub-CCC and quotient.

I but this is the case when C is α-separated:

I for every f1, f2 in Hom(θ, δ), f1 6= f2 iff there is C [] such that
C [f1], C [f2] are in Hom(1, α) and C [f1] 6= C [f2].



α-syntactic and α-separated CCC

A CCC C is said α-syntactic if there is a subset of A of Hom(1, α)
such that for every f1, f2 in Hom(θ, δ):

f1 ∼A f2 if and only if f1 = f2

We then have:

I if C1, C2 are two α-syntactic CCC, then for every presentation
F1 and F2 of C1 and C2, C1 ×F1,F2 C2 is α-syntactic.

I it can be the case that a locally finite finitely generated CCC
C can not be constructed from α-syntactic CCCs using
product, sub-CCC and quotient.

I but this is the case when C is α-separated:

I for every f1, f2 in Hom(θ, δ), f1 6= f2 iff there is C [] such that
C [f1], C [f2] are in Hom(1, α) and C [f1] 6= C [f2].



α-syntactic and α-separated CCC

A CCC C is said α-syntactic if there is a subset of A of Hom(1, α)
such that for every f1, f2 in Hom(θ, δ):

f1 ∼A f2 if and only if f1 = f2

We then have:

I if C1, C2 are two α-syntactic CCC, then for every presentation
F1 and F2 of C1 and C2, C1 ×F1,F2 C2 is α-syntactic.

I it can be the case that a locally finite finitely generated CCC
C can not be constructed from α-syntactic CCCs using
product, sub-CCC and quotient.

I but this is the case when C is α-separated:

I for every f1, f2 in Hom(θ, δ), f1 6= f2 iff there is C [] such that
C [f1], C [f2] are in Hom(1, α) and C [f1] 6= C [f2].



α-syntactic and α-separated CCC

A CCC C is said α-syntactic if there is a subset of A of Hom(1, α)
such that for every f1, f2 in Hom(θ, δ):

f1 ∼A f2 if and only if f1 = f2

We then have:

I if C1, C2 are two α-syntactic CCC, then for every presentation
F1 and F2 of C1 and C2, C1 ×F1,F2 C2 is α-syntactic.

I it can be the case that a locally finite finitely generated CCC
C can not be constructed from α-syntactic CCCs using
product, sub-CCC and quotient.

I but this is the case when C is α-separated:
I for every f1, f2 in Hom(θ, δ), f1 6= f2 iff there is C [] such that

C [f1], C [f2] are in Hom(1, α) and C [f1] 6= C [f2].



Varieties of locally finite CCC

A variety of locally finite CCC V is a class of pairs (C, α) such
that:

I C is a locally finite and finitely generated CCC

I α is an object of C and C is α-separated

I for every (C1, α) and (C2, α), and every presentation of F1 and
F2 of C1 and C2, (C1 ×F1,F2 C2, α) is in V

I if (C, α) is in V and C′ is a sub-CCC, then if C ′′ is the
β-separated CCC obtained from C ′, (C ′′, β) is in V

I if (C, α) is in V, ≈ is a congruence of C, and C′ is the
β-separated CCC obtained from C/≈ then (C′, β) is in V.

we write (C1, β) ≺ (C2, α) when C1 is an β-separated CCC
obtained by taking and quotienting a sub-CCC of C2.



Varieties of locally finite CCC

A variety of locally finite CCC V is a class of pairs (C, α) such
that:

I C is a locally finite and finitely generated CCC

I α is an object of C and C is α-separated

I for every (C1, α) and (C2, α), and every presentation of F1 and
F2 of C1 and C2, (C1 ×F1,F2 C2, α) is in V

I if (C, α) is in V and C′ is a sub-CCC, then if C ′′ is the
β-separated CCC obtained from C ′, (C ′′, β) is in V

I if (C, α) is in V, ≈ is a congruence of C, and C′ is the
β-separated CCC obtained from C/≈ then (C′, β) is in V.

we write (C1, β) ≺ (C2, α) when C1 is an β-separated CCC
obtained by taking and quotienting a sub-CCC of C2.



Varieties of locally finite CCC

A variety of locally finite CCC V is a class of pairs (C, α) such
that:

I C is a locally finite and finitely generated CCC

I α is an object of C and C is α-separated

I for every (C1, α) and (C2, α), and every presentation of F1 and
F2 of C1 and C2, (C1 ×F1,F2 C2, α) is in V

I if (C, α) is in V and C′ is a sub-CCC, then if C ′′ is the
β-separated CCC obtained from C ′, (C ′′, β) is in V

I if (C, α) is in V, ≈ is a congruence of C, and C′ is the
β-separated CCC obtained from C/≈ then (C′, β) is in V.

we write (C1, β) ≺ (C2, α) when C1 is an β-separated CCC
obtained by taking and quotienting a sub-CCC of C2.



Varieties of locally finite CCC

A variety of locally finite CCC V is a class of pairs (C, α) such
that:

I C is a locally finite and finitely generated CCC

I α is an object of C and C is α-separated

I for every (C1, α) and (C2, α), and every presentation of F1 and
F2 of C1 and C2, (C1 ×F1,F2 C2, α) is in V

I if (C, α) is in V and C′ is a sub-CCC, then if C ′′ is the
β-separated CCC obtained from C ′, (C ′′, β) is in V

I if (C, α) is in V, ≈ is a congruence of C, and C′ is the
β-separated CCC obtained from C/≈ then (C′, β) is in V.

we write (C1, β) ≺ (C2, α) when C1 is an β-separated CCC
obtained by taking and quotienting a sub-CCC of C2.



Varieties of locally finite CCC

A variety of locally finite CCC V is a class of pairs (C, α) such
that:

I C is a locally finite and finitely generated CCC

I α is an object of C and C is α-separated

I for every (C1, α) and (C2, α), and every presentation of F1 and
F2 of C1 and C2, (C1 ×F1,F2 C2, α) is in V

I if (C, α) is in V and C′ is a sub-CCC, then if C ′′ is the
β-separated CCC obtained from C ′, (C ′′, β) is in V

I if (C, α) is in V, ≈ is a congruence of C, and C′ is the
β-separated CCC obtained from C/≈ then (C′, β) is in V.

we write (C1, β) ≺ (C2, α) when C1 is an β-separated CCC
obtained by taking and quotienting a sub-CCC of C2.



Varieties of locally finite CCC

A variety of locally finite CCC V is a class of pairs (C, α) such
that:

I C is a locally finite and finitely generated CCC

I α is an object of C and C is α-separated

I for every (C1, α) and (C2, α), and every presentation of F1 and
F2 of C1 and C2, (C1 ×F1,F2 C2, α) is in V

I if (C, α) is in V and C′ is a sub-CCC, then if C ′′ is the
β-separated CCC obtained from C ′, (C ′′, β) is in V

I if (C, α) is in V, ≈ is a congruence of C, and C′ is the
β-separated CCC obtained from C/≈ then (C′, β) is in V.

we write (C1, β) ≺ (C2, α) when C1 is an β-separated CCC
obtained by taking and quotienting a sub-CCC of C2.



Towards varieties of languages

Given C a locally finite, finitely generated and α-separated CCC, A
and A′ included in Hom(1, α) we have:

I C/∼A = C/∼B with B = Hom(1, α)− A

I (C/∼A∩A′ , α) ≺ (C/∼A ×F ,F C/∼A′ , α) for every presentation
F of C,

I Given C [] such that for every f ∈ Hom(1, β), C [f ] is in
Hom(1, α), if C−1[A] = {f ∈ Hom(1, β) | C [f ] ∈ A} then
C/∼C−1[A] is a quotient CCC of C/∼A

Given a CCC-functor F : D → C and β such that F (β) = α, and
B = F−1(A) ∩ HomD(1, β) then (D/∼B , β) ≺ (C/∼A, α).



Towards varieties of languages

Given C a locally finite, finitely generated and α-separated CCC, A
and A′ included in Hom(1, α) we have:

I C/∼A = C/∼B with B = Hom(1, α)− A

I (C/∼A∩A′ , α) ≺ (C/∼A ×F ,F C/∼A′ , α) for every presentation
F of C,

I Given C [] such that for every f ∈ Hom(1, β), C [f ] is in
Hom(1, α), if C−1[A] = {f ∈ Hom(1, β) | C [f ] ∈ A} then
C/∼C−1[A] is a quotient CCC of C/∼A

Given a CCC-functor F : D → C and β such that F (β) = α, and
B = F−1(A) ∩ HomD(1, β) then (D/∼B , β) ≺ (C/∼A, α).



Towards varieties of languages

Given C a locally finite, finitely generated and α-separated CCC, A
and A′ included in Hom(1, α) we have:

I C/∼A = C/∼B with B = Hom(1, α)− A

I (C/∼A∩A′ , α) ≺ (C/∼A ×F ,F C/∼A′ , α) for every presentation
F of C,

I Given C [] such that for every f ∈ Hom(1, β), C [f ] is in
Hom(1, α), if C−1[A] = {f ∈ Hom(1, β) | C [f ] ∈ A} then
C/∼C−1[A] is a quotient CCC of C/∼A

Given a CCC-functor F : D → C and β such that F (β) = α, and
B = F−1(A) ∩ HomD(1, β) then (D/∼B , β) ≺ (C/∼A, α).



Towards varieties of languages

Given C a locally finite, finitely generated and α-separated CCC, A
and A′ included in Hom(1, α) we have:

I C/∼A = C/∼B with B = Hom(1, α)− A

I (C/∼A∩A′ , α) ≺ (C/∼A ×F ,F C/∼A′ , α) for every presentation
F of C,

I Given C [] such that for every f ∈ Hom(1, β), C [f ] is in
Hom(1, α), if C−1[A] = {f ∈ Hom(1, β) | C [f ] ∈ A} then
C/∼C−1[A] is a quotient CCC of C/∼A

Given a CCC-functor F : D → C and β such that F (β) = α, and
B = F−1(A) ∩ HomD(1, β) then (D/∼B , β) ≺ (C/∼A, α).



Varieties of λ-languages

A variety of C-recognizable sets of λ-terms V is a class of
C-recognizable languages with the following closure properties
((Σ, α)V is the class of languages in V on a HOS Σ whose
elements have type α):

I (Σ, α)V is closed under Boolean operations

I Given M ∈ Λβ→αΣ , and R in (Σ, α)V, then

M−1R = {N ∈ ΛβΣ | MN ∈ R} is in (Σ, β)V,

I Given F : ΛΣ1 → ΛΣ2 a CCC-functor, if R ∈ (Σ2, α)V and

F (β) = α, then F−1(R) ∩ ΛβΣ1
∈ (Σ1, β)V.



Varieties of λ-languages

A variety of C-recognizable sets of λ-terms V is a class of
C-recognizable languages with the following closure properties
((Σ, α)V is the class of languages in V on a HOS Σ whose
elements have type α):

I (Σ, α)V is closed under Boolean operations

I Given M ∈ Λβ→αΣ , and R in (Σ, α)V, then

M−1R = {N ∈ ΛβΣ | MN ∈ R} is in (Σ, β)V,

I Given F : ΛΣ1 → ΛΣ2 a CCC-functor, if R ∈ (Σ2, α)V and

F (β) = α, then F−1(R) ∩ ΛβΣ1
∈ (Σ1, β)V.



Varieties of λ-languages

A variety of C-recognizable sets of λ-terms V is a class of
C-recognizable languages with the following closure properties
((Σ, α)V is the class of languages in V on a HOS Σ whose
elements have type α):

I (Σ, α)V is closed under Boolean operations

I Given M ∈ Λβ→αΣ , and R in (Σ, α)V, then

M−1R = {N ∈ ΛβΣ | MN ∈ R} is in (Σ, β)V,

I Given F : ΛΣ1 → ΛΣ2 a CCC-functor, if R ∈ (Σ2, α)V and

F (β) = α, then F−1(R) ∩ ΛβΣ1
∈ (Σ1, β)V.



The correspondence

Given a C-recognizable set of λ-terms R, we let CR be its syntactic
CCC.
Given V a variety of λ-languages and V a variety of locally finite
CCCs we let:

I V be the variety of locally finite CCC generated by
{(CR , α) | R ∈ (Σ, α)V for some Σ and α},

I Ṽ be the class of languages
{R | R ⊆ ΛαΣ, (CR , α) ∈ V for some Σ and α}.

We then have:

I Ṽ is a variety of λ-languages,

I V = Ṽ,

I V = Ṽ



The correspondence

Given a C-recognizable set of λ-terms R, we let CR be its syntactic
CCC.
Given V a variety of λ-languages and V a variety of locally finite
CCCs we let:

I V be the variety of locally finite CCC generated by
{(CR , α) | R ∈ (Σ, α)V for some Σ and α},

I Ṽ be the class of languages
{R | R ⊆ ΛαΣ, (CR , α) ∈ V for some Σ and α}.

We then have:

I Ṽ is a variety of λ-languages,

I V = Ṽ,

I V = Ṽ



The correspondence

Given a C-recognizable set of λ-terms R, we let CR be its syntactic
CCC.
Given V a variety of λ-languages and V a variety of locally finite
CCCs we let:

I V be the variety of locally finite CCC generated by
{(CR , α) | R ∈ (Σ, α)V for some Σ and α},

I Ṽ be the class of languages
{R | R ⊆ ΛαΣ, (CR , α) ∈ V for some Σ and α}.

We then have:

I Ṽ is a variety of λ-languages,

I V = Ṽ,

I V = Ṽ



The correspondence

Given a C-recognizable set of λ-terms R, we let CR be its syntactic
CCC.
Given V a variety of λ-languages and V a variety of locally finite
CCCs we let:

I V be the variety of locally finite CCC generated by
{(CR , α) | R ∈ (Σ, α)V for some Σ and α},

I Ṽ be the class of languages
{R | R ⊆ ΛαΣ, (CR , α) ∈ V for some Σ and α}.

We then have:

I Ṽ is a variety of λ-languages,

I V = Ṽ,

I V = Ṽ



The correspondence

Given a C-recognizable set of λ-terms R, we let CR be its syntactic
CCC.
Given V a variety of λ-languages and V a variety of locally finite
CCCs we let:

I V be the variety of locally finite CCC generated by
{(CR , α) | R ∈ (Σ, α)V for some Σ and α},

I Ṽ be the class of languages
{R | R ⊆ ΛαΣ, (CR , α) ∈ V for some Σ and α}.

We then have:

I Ṽ is a variety of λ-languages,

I V = Ṽ,

I V = Ṽ



Conclusion and future work.

I We have proved of an extension of the variety Theorem for
C-recognizable languages.

I Variations on varieties:

I tuning the relation ≺
I using deduction systems to obtain structures similar so

semigroups

I Equational definition of varieties.

I Applications of this work to languages of λ-terms that are
neither λ-strings nor λ-trees rely on the conjecture
recognizable = C-recognizable.



Conclusion and future work.

I We have proved of an extension of the variety Theorem for
C-recognizable languages.

I Variations on varieties:
I tuning the relation ≺
I using deduction systems to obtain structures similar so

semigroups

I Equational definition of varieties.

I Applications of this work to languages of λ-terms that are
neither λ-strings nor λ-trees rely on the conjecture
recognizable = C-recognizable.



Conclusion and future work.

I We have proved of an extension of the variety Theorem for
C-recognizable languages.

I Variations on varieties:
I tuning the relation ≺
I using deduction systems to obtain structures similar so

semigroups

I Equational definition of varieties.

I Applications of this work to languages of λ-terms that are
neither λ-strings nor λ-trees rely on the conjecture
recognizable = C-recognizable.



Conclusion and future work.

I We have proved of an extension of the variety Theorem for
C-recognizable languages.

I Variations on varieties:
I tuning the relation ≺
I using deduction systems to obtain structures similar so

semigroups

I Equational definition of varieties.

I Applications of this work to languages of λ-terms that are
neither λ-strings nor λ-trees rely on the conjecture
recognizable = C-recognizable.


	Recognizable sets of -terms
	Recognizability and congruence
	Eilenberg theorem: towards an algebraic classification of classes of C-recognizable languages
	Varieties of locally finite CCCs

