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A-calculus: syntax

Given a finite set of atomic types A, simple types are:
Ta = A(Ta — Ta)

A higher order signature (HOS) is a tuple X = (A, C, 7) where:
» A is a finite set of atomic types,
» C is a finite set of constants,
» 7 is a function from C to T4.
A-terms built on X are defined as:
> for a € Ty, x* € N,
> c € /\;(C),
> if My € AP, My € AP, then (M Ms) € AZ,
» if M €AY, then Ax®2.M € A2,
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(Ml/\/l) —Bn (MQM) ()\X.Ml) —Bn ()\X.Mz)

Bn-reduction (=5 3,): reflexive transitive closure of #n-contraction
[Bn-conversion: symetric closure of Sn-reduction

Theorem (Church-Rosser)

[Bn-conversion is confluent

Theorem (Strong Normalisation)

Given M in N\s, there is no infinite sequence of Bn-contraction starting in M.
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Simply typed A-calculus generalizes trees

The ranked alphabet {e; g; f} where rank(e) = 0, rank(g) =1,
rank(f) = 2 can be represented by the following second order
constants:

e:o,g:0o—o,f:0o>0—0

the term g(f(e, g(e))) is represented by the A-term g(f e(ge))
The Bohm tree of the A-term is the same as the graphic
representation of the term:

A A-term whose normal form represent a tree is a A-tree.
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The elements of {a; b}* can be represented with the constants:

a:o—o,b:0—o0
Strings are represented by terms of type o — o:

the string aba is represented by /aba/ = Ax°.a(b(ax°))

Concatenation is then s; + s, = Ax°.s1(52(x°)):

Jab/ + /bb/ = Ax°.a(b(x°)) + Ax°.b(b(x°))
= Ax°.(Ay°.a(by®))((Az°.b(bz°))x°)
5y M®.a(b(b(b2%)))

and the empty string is Ax°.x°
A \-term whose normal form represent a string is a_A-string.
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Finite models for recognizability in the simply typed
A-calculus

Let ¥ be a HOS. Ml = ((M®)se7(x),¢) is a finite model of ¥ if:
> The sets M are finite.
» M>F s the set of all functions from M® to M?.
» . maps constants of type a to M

A variable assignment x : V' = [J,e7(x) M® so that x(x*) € M.
The semantics of A-terms in M is inductively defined by:

> [l = (o).

> [T = x(x*),

> [MNTY = IMIV(IVIY).

> Px* MDY (a) = [MIY, (., with @ € M.
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A set of \-terms R C A§ is recognizable iff there is a finite full
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Finite models for recognizability in the simply typed
A-calculus
Definition:

A set of A-terms R C A§ is recognizable iff there is a finite full
model Ml = (M®)ae7(x),t) » N € M*:

R = {M|FV(M) =0 A [M]™ e M}

g Mo

Note:
» recognizable sets are closed under =g,

> the emptiness of recognizable sets subsumes A-definability
which is undecidable (Loader 1993).



Properties of recognizable sets of A-terms

» R is a recognizable set of A-strings iff {w | /w/ € R} is a
recognizable set of strings (similarly for A-trees/trees).



Properties of recognizable sets of A-terms

» R is a recognizable set of A-strings iff {w | /w/ € R} is a
recognizable set of strings (similarly for A-trees/trees).

» The class of recognizable sets of A-terms is closed under
Boolean operations.



Properties of recognizable sets of A-terms

» R is a recognizable set of A-strings iff {w | /w/ € R} is a
recognizable set of strings (similarly for A-trees/trees).

» The class of recognizable sets of A-terms is closed under
Boolean operations.

» It is also closed under inverse homomorphism of A-terms
(CCC-functor).



Properties of recognizable sets of A-terms

» R is a recognizable set of A-strings iff {w | /w/ € R} is a
recognizable set of strings (similarly for A-trees/trees).

» The class of recognizable sets of A-terms is closed under
Boolean operations.

» It is also closed under inverse homomorphism of A-terms
(CCC-functor).

» There is a mechanical (equivalent) characterization of
recognizability in terms of intersection types.



Properties of recognizable sets of A-terms

» R is a recognizable set of A-strings iff {w | /w/ € R} is a
recognizable set of strings (similarly for A-trees/trees).

» The class of recognizable sets of A-terms is closed under
Boolean operations.

» It is also closed under inverse homomorphism of A-terms
(CCC-functor).

» There is a mechanical (equivalent) characterization of
recognizability in terms of intersection types.

» An approach based on finite standard model gives a simple
proof of the decidability of the acceptance by a Biichi tree
automaton of the infinite tree generated by a higher-order
programming scheme (S., Srivathsan, Walukiewicz).
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Cartesian Closed Category

C is a Cartesian Close Category if:
> C is a category,
> it has a terminal object 1,

» for every pair of objects a and 3, there is:
» a product-object o X 3, with associated projection
miaxf—aand m:axf— g,
» an exponential-object o such that
Hom(a x 3,68) = Hom(a, 6°)
A CCC-functor is a morphism of CCC, j.e. it commutes with
products and exponentials.
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Cartesian Closed Categories and congruences

Given a HOS X, Ay (up to n-convertibility) forms a CCC:

» Objects: types and products of types
» Arrows: [ = M : « where:
» =x1:0a1,...,%, : a, is interpreted as the object
B=a1 X...Xa,
» M is an arrow 8 — a.
» remark: when [ is empty then M is an arrow 1 — a.
Given a congruence = on Ay, Ay /= forms a CCC, the arrows are
equivalence classes of A-terms.
We write F= for the surjective functor from Ay to Ay /=.
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Syntactic CCC of a language

Given a CCC C and A C Hom(3,«) and fi, f» in Hom(,0), we
have:

fi ~a o iff VC[.CIA] € A< C[f] € A

> ~4 is a congruence of CCC,

» when C = Ax, Ax/~4 is the syntactic CCC associated to the
language A,

» whenever ~ is a congruence on C and A = FZ1(B) for
B C Homp /~(8, @), then there is a surjective functor
G: /\):/% — AZ/NA,

» the syntactic CCC of a recognizable set of A-terms is locally
finite (i.e. for every a, 8, Hompg . (a, B) is finite),

> conjecture: every language of A-terms that has a locally
finite syntactic CCC is recognizable.

For the moment we call C-recognizable a language whose syntactic
CCC is locally finite.
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Embedding of syntactic monoid within syntactic CCC
Given R a recognizable set of strings, and R’ be the recognizable
set of A-terms representing the elements of R:

> u =g v iff for every wi, wo, wiuws € R < wivn € R
> /u/ ~g v/ iff for every M, M/u/ € R < M/v/ € R
> or equivalently iff for every wy,..., wy,
WoUWY ... Wp_1UW, € R & wovwy ... wph_ivw, € R
This implies:
> u=gviff Ju/ ~r v/,
> ~ps is an extension of =g to higher-order functions over
strings,
» the CCC associated to ~gs is embedding the syntactic monoid
of R (it is concretely represented by Hom(o, 0)),
> every A-string language that has a locally finite syntactic CCC
is a recognizable set of A-terms.
Remark: similar results hold for recognizable sets of trees seen as
recognizable sets of A-terms.
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Classification of recognizable sets of A-terms

We have syntactic objects that fully characterize languages of
A-terms:

» can we classify these languages in terms of properties of their
syntactic CCCs?
> we try to extend classification tools used for recognizable
string languages:
» we define varieties of locally finite CCCs,
» and varieties of languages of A-terms.



Varieties of finite monoids

A variety of finite monoids V is a class of finite monoids with the
following closure properties:

» If My and M5 are V, then My x M» is also in V,

» If My is a submonoid of M5 and M, is in V, then My is also in
Vv

» If Misin V and = is a congruence on M, then M/ =is in V



Varieties of languages

A variety of recognizable languages V is a class of recognizable
languages with the following closure properties (XV is the class of
languages in V on alphabet X):

» >V is closed under Boolean operations,
» If Risin XV, then a 1R and Ra—1 are in TV for every ain L.

> If f: " — X* is a morphism of monoid, then R € ¥V implies
f~Y A eTy .
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Eilenberg theorem

Given a recognizable language of strings R, we let Mg be its
syntactic monoid.
Given V a variety of languages and V a variety of finite monoids
we let:
» )V be the variety of finite monoids generated by
{Mgr | R € XV for some ¥},
» V be the class of languages
{R|RCX* Mg €V for some L}.
We then have:
» Visa variety of languages,
>V = ﬁ

> V:V



An application of Eilenberg Theorem

If we let:

» SF = the variety of star-free languages = first-order definable
languages

» AP = the variety of aperiodic monoids

We obtain Schiitzenberger-McNaughton-Papert’s result:

SF = AP
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Finitely generated CCCs

A CCC C is finitely generated if there is HOS ¥ and a surjective
CCC-functor F : Ay — C. F is called a finite presentation of C.

> A locally finite CCC may not be finitely generated (ex:
Heyting algebra with infinitely many generators).

» To obtain an extension of Eilenberg Theorem we need to
impose that we only consider finitely generated CCCs.
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Product of CCCs

Given C;1 and C; two locally finite and finitely generated CCCs,
that have the same objects, a simple idea to generalize the direct
product of monoids is to take C; x Cy with:

> the objects of C; x C; is the same as the ones of C; and C»,
» Home, xc,(e, B) = Home, (e, ) x Home, (o, B)

» C1 x Cy, is a locally finite CCC,

» but C; x C2 may not be finitely generated. ..

Thus given two finite presentation F; and F, of C1 and Ca, we
define C1 XF, F, C> to be the sub-CCC of C; x C; generated by the
arrows:

U {F(e)} x Home,(1,71(c)) U | ) Home,(1,72(c)) x {Fa(c)}

ceEY] ceEXr



Direct product of monoids and product of CCCs

Given C; and C, two locally finite and finitely generated CCCs,
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Direct product of monoids and product of CCCs

Given C; and C, two locally finite and finitely generated CCCs,
that have the same objects and which are generated only by string
signatures:

» for every presentation F;, G; and Fp, Gy of respectively C;
and C» we have

C1 XF,F, C2 = C1 Xg,,6, C2

> a question is whether for every locally finite and finitely
generated CCC, C; and Cy we can find a canonical sub-CCC of
C1 x Cy that is finitely generated.
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a-syntactic and a-separated CCC

A CCC C is said a-syntactic if there is a subset of A of Hom(1, )
such that for every f1, f, in Hom(6,4):

fl ~ A f2 if and only if fl = f-2

We then have:

» if C1, Cy are two a-syntactic CCC, then for every presentation
Fi and F> of C1 and Co, C1 XFi,F Co is a-syntactic.

> it can be the case that a locally finite finitely generated CCC
C can not be constructed from a-syntactic CCCs using
product, sub-CCC and quotient.

» but this is the case when C is a-separated:

» for every fi, f in Hom(6,4), f; # f, iff there is C[] such that
C[fi], C[f] are in Hom(1, «) and C[f] # Cl[f].
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Varieties of locally finite CCC

A variety of locally finite CCC V is a class of pairs (C, «) such
that:

» C is a locally finite and finitely generated CCC
> « is an object of C and C is a-separated

» for every (C1, ) and (Cz, @), and every presentation of F; and
F2 of Cl and Cg, (Cl XFy,F> CQ,Oé) isinV

» if (C,) isin V and C' is a sub-CCC, then if C” is the
[-separated CCC obtained from C’, (C”, ) is in V

» if (C,a) isin V, = is a congruence of C, and C’ is the
[-separated CCC obtained from C/~ then (C’,8) is in V.

we write (C1, 8) < (C2, ) when Cy is an [-separated CCC
obtained by taking and quotienting a sub-CCC of Cs.
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Towards varieties of languages

Given C a locally finite, finitely generated and a-separated CCC, A
and A’ included in Hom(1, ) we have:

» C/~p=C/~p with B=Hom(1,a) — A

> (C/~pnar, @) < (C/~a xfF C/~ar, ) for every presentation
F of C,

» Given C[] such that for every f € Hom(1, 5), C[f] is in
Hom(1,a), if C71[A] = {f € Hom(1, B) | C[f] € A} then
C/~c-14) is a quotient CCC of C/~a

Given a CCC-functor F : D — C and § such that F(3) = «, and
B = F~Y(A) N Homp(1, 3) then (D/~g, ) < (C/~a, ).
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Varieties of A-languages

A variety of C-recognizable sets of A-terms V is a class of
C-recognizable languages with the following closure properties
((X, @)V is the class of languages in V on a HOS X whose
elements have type «):
» (X, )V is closed under Boolean operations
» Given M € /\g%a, and R in (¥, a)V, then
M~IR = {N e AJ | MN € R} is in (Z, 8)V,
» Given F : Ay, — Ay, a CCC-functor, if R € (X2,a)V and
F(B) = a, then FY(R)N AL, € (T1, B)V.
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The correspondence

Given a C-recognizable set of A-terms R, we let Cr be its syntactic
CCC.

Given V a variety of A-languages and V a variety of locally finite
CCCs we let:

» V be the variety of locally finite CCC generated by
{(Cr,) | R € (X, a)V for some ¥ and a},

» V be the class of languages
{R|RCAY,(Cr,) € V for some X and a}.
We then have:
» Visa variety of A-languages,
>V = ﬁ

> V:V
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Conclusion and future work.

» We have proved of an extension of the variety Theorem for
C-recognizable languages.
» Variations on varieties:
> tuning the relation <
» using deduction systems to obtain structures similar so
semigroups
» Equational definition of varieties.

» Applications of this work to languages of A-terms that are
neither \-strings nor A-trees rely on the conjecture
recognizable = C-recognizable.
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