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Regular expressions

Let Σ = {a, b, c · · · , z} is an alphabet.

E,F := 0
| 1
| a a ∈ Σ
| E + F
| E · F
| E∗
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Language model
Standard interpretation

We interpret inductiveley a regular expression into a language,
that is a set of words.

L(0) = ∅
L(1) = {ε}
L(a) = { a }

L(E + F ) = L(E) ∪ L(F )

L(E · F ) = L(E) · L(F )

= {ww′ | w ∈ L(E) ∧ w′ ∈ L(F )}

L(E∗) =
⋃
n∈N

L(E)n
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Some axioms

For any expression A, B and C, we have some basic identities:

(A+B) + C = A+ (B + C)

(AB)C = A(BC)

A+ 0 = A

...

A∗∗ = A∗

(A+B)∗ = A∗(BA∗)∗

(AB)∗ = 1 +A(BA)∗B

...

Open Problem (Kleene 1951)

Is there a complete axiomatisation for the equality ?
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A negative result

Theorem (Redko 1964)

Any complete axiomatisation for the equality of regular
expressions must involve infinitely many axioms.
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Axiomatisation: a long history

Axiomatisations of regular languages has a long history because
it is at the crossroads of algebra, computer science with
theoretical and practical impact.

• Kleene (1956)

• Redko (1964)

• Salomaa (1966)

• Conway (1971)

• Kozen (1991)

• Pratt (1991)

• Bloom-Esik (1993)
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Salomaa’s axiomatisation
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Idempotent Semiring

• (+, 0) is a commutative semigroup

(A+B) + C = A+ (B + C) (1)

A+ 0 = 0 +A = A (2)

A+B = B +A (3)

• (·, 1) is a semigroup

(A ·B) · C = A · (B · C) (4)

1 ·A = A · 1 = A (5)

• distributivity of · over +

A · (B + C) = A ·B +A · C (6)

(A+B) · C = A · C +B · C (7)

• 0 is an annihilator for ·
0 ·A = A · 0 = 0 (8)

• Idempotence of +

A+A = A (9)
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Salomaa’s Axiomatisation (1966)

Salomaa’s axiomatisation consists in the axioms of idempotent
semiring, plus the following axioms for Kleene star operator.

(A+ 1)∗ = A∗ (S1)

1 +A ·A∗ = A∗ (S2)

X = AX +B and ε /∈ A ⇒ X = A∗B (SI3)

The axiomatisation contains only one non-equational axiom, all
the others are equational.
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A complete axiomatisation

Theorem (Salomaa 1966)

Salomaa’s Axiomatisation is complete.
For all expressions A and B, if L(A) = L(B) then the equality
A = B can be proved using Salomaa’s axiomatisation.

Proof sketch:

• Construct a system of equations conresponding to a
deterministic automaton.
(a+ b)∗L = a ·X1 + b ·X2 + 1
X1 = a ·Xa,1 + · · · + z ·Xz,1 + δ1
...

...
...

Xn = a ·Xa,n + · · · + z ·Xz,n + δn
• Unify the 2 systems: duplicate equations.

• Use axiom (SI3) to eliminate variable and obtain a
common expression C such that A = C and B = C.
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Kozen’s axiomatisation
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Relational model
Let D be a set. We consider binary relations on D. We
consider the composition of relations ◦.

ρ ◦ ρ′ = {(x, z) | ∃y, (x, y) ∈ ρ ∧ (y, z) ∈ ρ′}

Suppose you are given some relations Ra associated to each
letter a ∈ Σ. We interpret regular expressions as relations as
the following:

R(0) = ∅
R(1) = { (x, x) | x ∈ D}
R(a) = Ra

R(E + F ) = R(E) ∪R(F )

R(E · F ) = R(E) ◦R(F )

R(E∗) =
⋃
n∈N

R(E)n



Axiomatisations Implementation

Kozen’s Axiomatisation (1991)

Kozen’s Axiomatisation consists in the axioms of idempotent
semiring, plus the following axioms for the Kleene star operator.

A ≤ B def
= A+B = B

1 +AA∗ ≤ A∗ (K1)

1 +A∗A ≤ A∗ (K2)

AB + C ≤ B ⇒ A∗C ≤ B (K3)

BA+ C ≤ B ⇒ CA∗ ≤ B (K4)

Kozen axiomatisation gets rid of the guarded condition of
Salomaa (SI3) in the implication rules, which make them Horn
clauses.

Definition (Kozen 1991)

Kozen’s axiomatisation is the definition of Kleene Algebras.
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Another complete axiomatisation

Theorem (Kozen 1991)

Kozen’s Axiomatisation is complete.
For all expressions A and B, if L(A) = L(B) then the equality
A = B can be proved using Kozen’s axiomatisation.

Proof: Elegant proof using the fact that matrices (automata)
form also a Kleene algebra. Determinisation and Minimisation
are operations provable with the axiomatisation.

Kozen’s axiomatisation defines what is now called as
Kleene algebras
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Pratt’s axiomatisation
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Pratt’s Axiomatisation (1991)
Action Algebra

(first version)

Consider two new operators called residuations ← and →,
interpreted as the following on the language model:

A→ B = {v | ∀u ∈ A, uv ∈ B}

B ← A = {v | ∀u ∈ A, vu ∈ B}

Using these new operators, Pratt propose the following
axiomatisation:

AB ≤ C ⇔ B ≤ A→ C (P1)

AB ≤ C ⇔ A ≤ C ← B (P2)

1 +A∗A∗ +A ≤ A∗ (P3)

1 +BB +A ≤ B ⇒ A∗ ≤ B (P4)
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Pratt’s Axiomatisation (1991)
Action Algebra

(second version)

This presentation can be restated avoiding any implication rule.
The axioms for the residuations are the following:

A→ B ≤ A→ (B +B′)

B ≤ A→ AB

A(A→ B) ≤ B

B ← A ≤ (B +B′)← A

B ≤ BA← A

(B ← A)A ≤ B

Axioms for Kleene Star ∗ are the following:

1 +A∗A∗ +A ≤ A∗

A∗ ≤ (A+B)∗

(A→ A)∗ ≤ A→ A (P5)
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A conservative extension

Theorem (Pratt 1991)

Pratt’s Action Algebras are a conservative extension of
Kleene Algebras.
For all expressions A and B, if A = B is provable in Kleene
Algebra then it is provable in Action Algebra.
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Implementation
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Thank you !
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