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Net system, Language of a Net system

Definition

Fix a finite alphabet A and a finite set of locations Loc.
A net N = (S ,T , `, loc,F ) over A and Loc has

S a finite set of places;

T a finite set of transitions

` : T → A is the labelling function

loc : T → ℘(Loc) is location function

F ⊆ (S × T ) ∪ (T × S) is flow relation.
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Net system, Language of a Net system

A marking of a net is a function M : S → N.

A net system is a pair (N,M0).

1-bounded net systems - where the range of the marking function is
{0, 1}.
The language accepted by the net system (N,M0) is:

the set of maximal firing sequences

trace-labelled net :
two transitions with the same label also have the same locations.
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A trace labelled net system

p1 p2

p3

p4 p5

a

b

c d

T = {t1, t2, t3, t4}
A = {a, b, c, d}
l(t1) = a, l(t2) = b, l(t3) = c, l(t4) = d

Loc = {1, 2}
loc(t1) = loc(t2) = {1, 2}
and loc(t3) = {1}, loc(t4) = {2}

{p1, p2}t1{p3}t2{p4, p5}t3{p6, p5}t4{p1, p2}
t1{p3}t2{p4, p5}t3{p6, p5}t4{p1, p2}
· · ·

Hence,
abcdabcdabcd · · · ∈ Lang(N,M0)

Figure 1
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Language of Net system : maximal firing sequence

p1 p2

p3

p4 p5

p6 p7

a

b

c d

T = {t1, t2, t3, t4}
A = {a, b, c, d}
l(t1) = a, l(t2) = b, l(t3) = c, l(t4) = d

Loc = {1, 2}
loc(t1) = loc(t2) = {1, 2}
and loc(t3) = {1}, loc(t4) = {2}

{p1, p2}t1{p3}t2{p4, p5}t3{p6, p5}t4{p6, p7}
is a maximal firing sequence. Hence,
abcd ∈ Lang(N,M0)

{p1, p2}t1{p3}t2{p4, p5}
is a not a maximal firing sequence. Hence,
ab /∈ Lang(N,M0).

Figure 2
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T-systems, T-automaton

T-net : N = (S ,T ,F , l , loc)
for t1 6= t2,

•t1 ∩• t2 = ∅ and t•1 ∩ t•2 = ∅.
T-system : (N,M0)

Distributed transition : |•t| = |t•| = |loc(t)|
T-automaton :

T-system where all transitions are distributed.

trace-labelled net :
two transitions with the same label also have the same locations.

Nets given in Figure 1 and Figure 2 satisfy all above
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Categorical approach to nets

petri nets are monoids: Meseguer and Montanari (1990)

I form symmetric monoidal category.
I semantics given in terms of case graphs.
I no expressions
I uses unbounded petri nets.

many others but no expressions for nets
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C-module

Fix a category C(Obj(C),Arr(C), ·).

A C-module M = (Obj(M),Arr(M),~) is

Obj(M) are in bijection with Obj(C).

Arr(M)

left action ~

C(c , a) ~M(a, b) ∈M(c , b)

for f , g ∈ Arr(C) and m ∈ Arr(M)

f ~ (g ~ m) = (f · g) ~ m

Identities of C act as identity actions on M

I ~ m = m.

Ramchandra Phawade () A Kleene Functor for a Subclass of Net Systems January 29, 2011 8 / 28



symocat-module-pair

A C-module M=(Obj(C),Arr(M),~, ω) is

a C-module M with an

ω-power operation from Cto Msatisfying, f ~ f ω = f ω.

A special case is when Arr(M) = {f ~ gω | f , g ∈ Arr(C)}. Then

M is called a C -power

(C,M) is called a symocat-module pair.

Similar structures has been used by
I Perrin and pin in automata and semigroups,

Infinite Words: Automata, Semigroups, Logic and Games
I Esik and Kuich, Finite automata,

Handbook of weighted automata
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Symocat-module structure for T-systems: (Tsys, Tlive)

1 objects: subsets of Loc .

2 arrows:

I Given L ⊆ Loc, the arrows L→ L are acyclic T-automata (N,M0),
such that |M0| = |L| = the cardinality of the sink places of N. There
are no arrows L→ M for L and M different.

I The identity for L denoted by 1L : L→ L is the T-automaton consisting
of just |M0| marked places and no transitions.

I There is also a zero arrow denoted by zL : L→ L, the empty
T-automaton. It consists of |M0| unmarked places and no transitions.
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Symocat-module structure for T-systems:(Tsys, Tlive)

Arrow Composition with an intermediate set of locations L is defined by
identifying the sink places of the first (acyclic) T-automaton with the
initially marked places of the second.

Let f : L→ L and g : L→ L be two arrows.

f and g both non-zero and non-identity; result is easy to see. It is
concatenation of two T-systems.

f · 1L = f = 1L · f
f · zL = zL = zL · f
composition is associative.
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Categorical structure for T-systems: (Tsys, Tlive)

tensor (⊗) operation:
Let L,M ⊆ Loc.
⊗ : Tsys× Tsys→ Tsys:
⊗ : L×M → L ∪M.
⊗ : ( f : L→ L)× ( g : M → M)→ (f ⊗ g : (L ∪M)→ (L ∪M)).
⊗ performs union on the objects and synchronization on the arrows.
resultant T-automaton is the union of the two T -automata except
that the transitions with common labels are fused.

This operation has a natural symmetry. Partial distributivity
(f 1⊗ f 2) · (g1⊗ g2) = (f 1 · g1)⊗ (f 2 · g2) holds provided that both
sides are not zero.

1L acts as the idenitity for composition while zL acts as the
annihilator for composition in Tsys(L, L). Also, (Tsys(L, L), ·, 1L) is a
monoid.
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Expressions for nets

Grabowski (1981)

I uses ·,+, ‖,∗ and rename operation..
I semantics of expressions in pomsets
I translation between expressions and 1-bounded systems given.

Ochmanski (1985)

I star-connected expressions
I ‖ and concurrent star operation
I translation between net systems to expressions is given.

Garg and Raghunath (1992)

I uses Grabowski’s syntax along with shuffle closure operation.
I translation between expressions and (unbounded) nets given.
I size of expressions have exponential lowerbound as one component

treated as finite automata.
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Expression syntax

Let A be a finite alphabet.

Definition

Our expressions come in three syntactic sorts: sequences s, connected
expressions c and T-expressions e.

s ::= ε|a ∈ A|s1s2
c ::= ∅|s|sync(c1, c2)

e ::= cω|e1||e2

The alphabetic width wd(e) of expression e is defined to be the number of
occurrences of letters (from A) in e.
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Semantics of expressions
Let Loc be a set of locations.
For the connected expressions c it is a language of finite words, for the
T-expressions e it is a language of infinite words.
Formally,

Lang(s) = {s}.
Each sequence s is also assigned a location l , which is disjoint from
other locations.

sync(c1, c2) common letters are X = α(c1) ∩ α(c2)

Lang(sync(c1, c2)) =
⋃
{syncX (w1,w2) | w1 ∈ L1, w2 ∈ L2}.

computing locations:
I c1 location function loc1 , locations Loc1
I c2 location function loc2 , locations Loc2
I sync(c1, c2) has loc over the locations Loc1 ∪ Loc2

F a ∈ X , loc(a) = loc1(a) ∩ loc2(a)
F For the other letters in A, loc(a) is inherited from loc1 or loc2
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Semantics of expressions

In c , aIb, if loc(a) and loc(b) are disjoint.

I is irreflexive and transitive

equivalence relation ∼ on A∗ by letting wabv ∼ wbav , for aIb
independent occurrences, and taking the reflexive and transitive
closure. This is usually called trace equivalence. We write [w ] for the
equivalence class of w .

Note that our semantics for the sync operator yields unions of equivalence

classes under the trace equivalence. We let [L] =
⋃
{[w ] | w ∈ L}.

Consider expression cω.
Assume a given loc : α(c)→ ℘(Loc). The independence relation is
the one computed for the expression c . The semantics of cω is the
trace equivalence closure:

Lang(cω) = [(Lang(c))ω], where Lω = {w1w2 · · · | ∀i ,wi ∈ L}.
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Categorical structure for expressions:(Texp, Tinf)

1 objects are subsets of Loc .

2 arrows

I Given L ⊆ Loc, The arrows L→ L are connected expressions over L.
There are no arrows L→ M for L and M different.

I The identity for L denoted by εL : L→ L is the empty sequence. wlg
we can assume that εL = ε.

I There is also a zero arrow denoted by ∅L : L→ L, is ∅ expression. wlg
we can assume that ∅L = ∅.
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Categorical structure for expressions:(Texp, Tinf)

Arrow Composition:
Composition of arrows, of sequences is provided in the syntax. By
inductively applying partial distributivity and associativity of the sync
operation we get composition for all connected expressions.

Let f and g be two arrows in Texp(L, L).

1 f and g both non-zero and non-identity; result is easy to see. It is
concatenation of two c-expressions as explained above.

2 f · 1L = f = 1L · f since 1L = ε

3 f · zL = zL = zL · f since zL = ∅
4 composition is associative.
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Categorical structure for expressions:(Texp, Tinf)

Tensor (⊗) operation:
Let L,M ⊆ Loc.
⊗ : Texp× Texp→ Texp:
⊗ : L×M → L ∪M.
⊗ : ( f : L→ L)× ( g : M → M)→ (f ⊗ g : (L ∪M)→ (L ∪M)).
⊗ performs union on the objects and synchronization on the arrows.
Arrrows here being expressions, f ⊗ g is written as sync(f , g).

This operation has natural symmetry. Partial distributivity
(f 1⊗ f 2) · (g1⊗ g2) = (f 1 · g1)⊗ (f 2 · g2) holds provided that both
sides are defined (that is, not zero).

εL acts as the idenitity for composition while ∅L acts as the
annihilator for composition in Texp(L, L). Also, (Texp(L, L), ·, εL) is
a monoid.
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Expressions to T-automaton (sequences, c-expressions)

Definition

A nonempty 1-bounded T-system where every transition has pre- and
post-sets of size 1 is called a line. An acyclic connected trace-labelled
1-bounded T-system is called a dag.

Lemma ( s-expression to path T-automaton)

For s ∈ A∗, we can construct a line T-automaton of size O(wd(s))
accepting Lang(s), and it can be computed in linear time

Lemma ( c-expression to dag T-automaton)

Let c be a connected expression. Then there exists a dag T-automaton
(N,M0) accepting the same language which is covered by a set Loc of
initially marked lines. The size of the constructed system is O(wd(c)) and
it can be computed in linear time
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Functor: F1 : Tsys→ Texp

object L is mapped to itself i.e., F1(L) = L.

arrow f : L→ L is mapped to F1(f ) : F1L→ F1L i.e., F1(f ) : L→ L.

1L of Tsys(L, L) is mapped to a an expression εL of Texp(L, L).

zL of Tsys(L, L) is mapped to an expression ∅L of Texp(L, L).
I Let f , g ∈ Tsys(L, L), which when composed give f · g in Tsys(L, L).
I Now let F1(f ) = sync(c1, c2) and F1(g) = sync(c3, c4).
I By inductively applying partial distributivity and associativity of the

sync operation we get composition for connected expressions which is
of form sync(c , c ′) ∈ Texp(L, L).

For f in Tsys(L, L) and g in Tsys(M,M),
F1(f ⊗ g) = sync(F1(f ),F1(g)) which is an arrow in
Texp(L ∪M, L ∪M).
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Net systems to Expressions (lines, dags)

Lemma ( line T-automaton to s-expression)

Let (N = (S ,T ,F ),M0, `) be a nonempty line. Then there exists an
equivalent expression s for its language. The alphabetic width of this
expression is O(|T |) and it can be computed in time O(|N|).

Lemma ( dag T-automaton to c-expression)

Let (N = (S ,T ,F ),M0) be a dag. There is a connected expression c for
Lang(N,M0) of alphabetic width O(|S | × |T |) which can be computed in
time O(|N|3).
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Functor: G1 : Texp→ Tsys

object L is mapped to itself i.e., G1(L) = L.

arrow f : L→ L is mapped to G1(f ) : G1L→ G1L i.e., G1(f ) : L→ L.

1L = εL of Texp(L, L) is mapped to an T-automaton 1L of Tsys(L, L)

zL = ∅L of Tsys(L, L) is mapped to an T-automaton zL

Let f = sync(c1, c2) and g = sync(c3, c4) be two expressions in
Texp(L, L) which when composed (using associativity and
distributivity) give f · g = sync(c , c

′
) in Texp(L, L).

For f = sync(c1, c2) in Texp(L, L) and g = sync(c3, c4) in
Texp(M,M), G1(sync(f , g)) = G1(f )⊗ G1(g) is an arrow in
Tsys(L ∪M, L ∪M).
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Functor: F2 : Tlive→ Tinf

Theorem

Let (N,M0) be a trace-labelled live, 1-bounded T-system. Then we can
compute in O(|N|3) time a T-expression of alphabetic width O(|N|2) for
the accepted language.

object mapping: F2(L) = L

arrow f of Tlive(L, L) is mapped to F2(f ) : F2(L)→ F2L in
Tinf(L, L).

for f in Tsys(L, L) and f ω in Tlive(L, L) we get f ω in Tlive(L, L) by
defn of arrows in module, i.e., f ω = f ~ f ω.

Let F1(f ) = c .
F1 is the underlying functor of F2.
Then, F1(f ) ~ (F1(f ))ω = c ~ cω = cω in Tinf(L, L).
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Functor: F2 : Tlive→ Tinf

How do we get the expression of form e1||e2 in Tinf?

If f is a map in Tsys(L, L) and g is a map in Tsys(M,M) then f ω is
a map in Tlive(L, L) and gω is a map in Tlive(M,M).

The f ⊗ g in Tlive(L ∪M, L ∪M) is disjoint union in
Tlive(L ∪M, L ∪M) by definition of module Tlive.

Therefore if F2(f ) = c1 and F2(g) = c2 then cω
1 || cω

2 is the
expression in Tinf(L ∪M, L ∪M).
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Functor G2 : Tinf→ Tlive

Theorem

Let e = cω be an expression over alphabet A. Then there exists a
trace-labelled, live T -automaton (N,M0) such that
Lang(e) = Lang(N,M0). The size of the system is O(wd(e)) and it can
be constructed in linear time

G2(L) = L

G2(f ) : G2(L)→ G2(L) in Tlive(L, L).

for c in Texp(L, L) and cω in Tinf(L, L) we get cω in Tinf(L, L) by
defn of arrows in module, i.e., cω = c ~ cω.

Let G1(c) = f .
G1 is the underlying functor of G2.
Then, G1(c) ~ (G1(c))ω = f ~ f ω = f ω in Tlive(L, L).
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Functor G2 : Tinf→ Tlive

How do we get two live, 1-bdd disjoint nets in Tlive?

If c1 is a map in Texp(L, L) and c2 is a map in Texp(L, L), then cω
1 is

a map in Tinf(L, L), then cω
2 is a map in Tinf(L, L).

The c1 ⊗ c2 in Tinf(L ∪M, L ∪M) is shuffle operator in Tinf.

Therefore, if G2(c1) = f and G2(c2) = g then, disjoint union of two
nets f ω and gω is the resultant net in Tlive(L ∪M, L ∪M).
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Conclusion

From the early work of Elgot, Bloom, Ésik, Ştefănescu and Cazanescu
it is known that the Kleene theorem can be seen as functors between
the categories of regular expressions and finite automata. The regular
expression constructed from an automaton can be exponential in the
worst case (Ehrenfeucht and Zeiger).

We showed that a similar result can be obtained for trace-labelled live
and 1-bounded T-systems. Because of the T-system property we get
polynomial constructions in both directions.

We believe this result can be extended to 1-bounded free choice
systems (which subsume automata as well as T-systems), but quite
likely this will involve symmetric semiringal categories which have two
tensor operations.
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