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Figure: Hopcroft and Pansiot’s example Petri net

Initial marking: (0, 1, 1, 0, 0)
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Current marking: (1, 0, 1, 0, 0)
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Figure: Hopcroft and Pansiot’s example Petri net

Current marking: (0, 2, 0, 1, 0)
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Figure: Hopcroft and Pansiot’s example Petri net

Current marking: (2, 0, 1, 0, 1)
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Figure: Hopcroft and Pansiot’s example Petri net

Current marking: (0, 4, 0, 1, 1)
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Figure: Hopcroft and Pansiot’s example Petri net

Current marking: (0, 4, 0, 1, 1)
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Figure: Hopcroft and Pansiot’s example Petri net

Current marking: (0, 4, 1, 0, 2)



Problem definition

I Coverability: given a target marking Mcov , can we reach a
marking M such that M(p) ≥ Mcov (p) for each place p?

I Boundedness: is there a bound on the number of tokens in
any place in any reachable marking?

I [R. J. Lipton 75]: Exponential space lower bound.

I [C. Rackoff 78]: Almost matching upper bound.



Logic [Lodaya, P. 2009]

τ ::= p, p ∈ P | τ1 + τ2 | cτ, c ∈ N
κ ::= τ ≥ c , c ∈ N | κ1 ∧ κ2 | κ1 ∨ κ2 | EFκ

β ::= {τ1, . . . , τr} < ω | ¬β | β1 ∨ β2

φ ::= β | κ | φ1 ∧ φ2 | φ1 ∨ φ2



Petri net analysis problems — related work

I [L.E. Rosier and H.-C. Yen 1986]: A multi-parameter analysis
of the coverability and boundedness problems. They showed
that space requirement is exponential in the number of places
and logarithmic in the number of transitions and maximum
arc weight. They showed corresponding lower bounds too.

I [P. Habermehl 1997]: Model checking linear time µ-calculus
needs space polynomial in the size of the formula and
exponential in the size of the net. Corresponding lower
bounds are shown too.

I [S. Demri, F. Laroussinie and Ph. Schnoebelen 2002]:
Parameterized analysis of reachability and other problems in
synchronized transition systems, which are 1-safe nets.

I [Flum and Grohe 2003]: Describing parameterized classes.
Fundamental results about parameterizing many standard
complexity classes.



Our results

Let k be the vertex cover number of the graph underlying the Petri
net.

Figure: A synchronizing transition

Let W be the maximum arc weight.
We show that coverability and boundedness problems can be
solved in space f (k,W )poly(n).
Similar result for model checking the logic mentioned earlier,
assuming nesting depth of EF to be a constant.
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Vertex Cover Example
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Motivation

I Classifying Petri nets according to hardness.

I Some insight into what makes them so hard.



Overview of the technique

Vertex cover of size k implies that remaining vertices can be
classified into 2k groups, each having “similar” vertices.

. . . Vertex cover

Other vertices. . .

Similar classification can be done in Petri nets. Places in the same
group will have same type of transitions incident on them.
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Technique continued (Truncation lemma)
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Using truncation lemma for better length bounds

I Pigeon hole principle for bounding the length of firing
sequences: In a Petri net with two places, suppose there is a
firing sequence with at most c tokens in all intermediate
markings. Then we can obtain a sequence of length at most
(c + 1)2 reaching the same final marking.

I If the two places are similar, truncation lemma gives a better
bound: 2c + 1.

I If there is a firing sequence covering the given target marking,
Rackoff gives a recurrence relation for the length of a shortest
such sequence.

I Using truncation lemma, we can modify the recurrence
relation to get better bounds.
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Conclusion

I If a Petri net with maximum arc weight W has a vertex cover
of size k , coverability and boundedness problems can be
solved in space f (k ,W )poly(n).

I A fragment of Computational Tree Logic, capable of
expressing coverability, boundedness and some extensions can
be model checked in paraPspace.

I Future work:
I Time complexity.
I Size of smallest feedback vertex set instead of vertex cover.

Thank you. Questions?
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