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ω-automata

An ω-automaton is a finite state automaton that accepts infinite words or
ω-words and extends classical NFA/DFA.

A = (Σ,Q,Q0, δ, φ) is an ω-automaton, where . . .

Σ is a finite alphabet.
Q is a finite set of states.
Q0 ⊆ Q is the set of initial states.
δ : Q × Σ→ 2Q is a transition function.
φ is the acceptance condition.

The acceptance condition determines the set of infinite words that are
accepted by A i.e the language of A.



Acceptance conditions

We deal with acceptance conditions based on the notion of infinity sets
i.e. the set of states visited infinitely often in a run of the automaton.

Acceptance condition φ can be thought of as defining a predicate Pφ
over 2Q .

Definition
For every X ⊆ Q, we say Pφ(X ) = True iff X , viewed as the infinity set of a
run of A, satisfies the properties specified by φ.



Acceptance conditions

Examples of acceptance conditions . . .

Streett condition:
1 φ is given by a table of pairs. T = {(E1,F1), (E2,F2), . . . (Eh,Fh)},

where Ei ,Fi ⊆ Q for all i ∈ {1, . . . , h}.

2 Pφ(X ) = True iff for all i ∈ {1 . . . h}, X ∩ Fi 6= ∅ ⇒ X ∩ Ei 6= ∅

Parity condition:
1 φ is given by a sequence of sets F = 〈F0,F1, . . .Fh〉, where Fi ⊆ Q

for all i ∈ {0, . . . h}.

2 Pφ(X ) = True iff for some even number j ∈ {0, . . . h}, X ∩ Fj 6= ∅
and for all m ∈ {0, . . . j − 1}, X ∩ Fm = ∅.



Determinization of ω-automata

Many constructions exist to construct deterministic ω-automata from
nondeterministic ω-automata.

All known constructions are tailor-made to work for non-deterministic
automata, each with a specific kind of acceptance condition.

It is very hard to adapt the construction for one type of automaton to
another.



Determinization of ω-automata

Construction NBW NSW NMW Output
Safra+Piterman X X × DPW
Muller-Schupp X × × DRW

Kähler and Wilke + Piterman X × × DPW

N: non-deterministic | D: deterministic
B,S,M,R,P: Büchi, Streett, Muller, Rabin, parity

W : over infinite words.
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Safra’s NSW determinization construction

Uses a tree data structures similar to Safra’s determinization
construction for NBW.

States are trees, called Safra-Streett trees[Schwoon2001] with
additional book-keeping information.

Piterman describes a way to reuse Safra’s method to construct DPW.



Safra-Streett trees

q1
q2 q3

q4 q5
ab a b

b bb b
b b

For every run examined by a node check if for every j in witness-set J . . .

1 Some state in Ej is visited infinitely often.
2 No state in Fj′ is visited infinitely often for j ′ /∈ J



The NSW determinization construction: An example

Example from - Stefan Schwoon: Determinization and Complementation of
Streett Automata. Automata, Logics, and Infinite Games 2001: 79-91

Σ = {a, b}. Word α = abb . . ..
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Safra’s NSW determinization construction

Theorem
There is an accepting run of the NSW A on a word α iff there is an infinite run
of Streett-Safra trees in the DPW D along which some node is reset infinitely
often and removed finitely often.

Theorem
The number of states of the DPW D is 2O(nh log(nh)), while the number of parity
indices in O(nh), where n is the number of states and h is the number of
pairs of the NSW A.



Observations on ω-determinization

All asymptotically optimal determinization constructions for ω-automata
use state trees (either Safra or Muller-Schupp).

All commonly used acceptance conditions are described using the
notion of infinity sets.



Generalized witness sets

Definition (Generalized Witness Set (GWS))
A set W ⊆ [n], n = |Q| and [n] = {1, 2, . . . , n} is a generalized witness set for
a run ρ of A iff inf (ρ) = QW and Pφ(QW ) = True, where
QW = {qi | q ∈ Q, i ∈ W}.

Safra-Streett witness set : Subset of indices of Streett acceptance pairs

Generalized witness set: Subset of indices of ω-states.

A run of a Streett automaton has at most one GWS, but possibly many
Safra-Streett witness sets.



Generalized Safra trees (GST)

For every run examined by a node it checks if qi , for all i in hope-set W is
visited.



ω-determinization: An example

Figure: Muller automaton with F = {{q1}}, Word: bbbcω
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ω-determinization: An example



Theorem

Given an ω-automaton A with n states, the deterministic parity automaton D
constructed above has at most nO(n2) states and 2n2 parity indices.

Construction gives a uniform view of the determinization process.

New upper-bound on states and parity indices is independent of the
number of pairs.

Turns out to be more powerful than expected - There are classes of
NSW for which new bound is better!



An improved bound for Streett determinization

Theorem

There exists a family AS of NSW where each NSW AS ∈ AS has 3n + 1
states and 2n + 1 accepting pairs for which the Safra-Streett+Piterman
construction constructs a DPW with 2Ω(n3) states, while our construction
constructs a DPW with 2O(n2 log n) states.



Constructing family AS: A Strategy

From a Safra-Streett tree with a
single path, obtain a tree with n
disjoint paths.

Ensure that q1, . . . , qn all belong
to the Fh in the Streett pair
(Eh,Fh).



Constructing family AS: A Strategy

Tree with n disjoint paths gets
extended as the computation of
the next Safra-Streett tree
proceeds.



Constructing family AS: A Strategy

Permute edge annotations for
each disjoint path.

Ensure right distribution of Streett
states among the Streett pairs.

E.g. To change 2n to 2n − 1 via
qk , ensure qk ∈ Eh of pair
(Eh,Fh).
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Constructing family AS: A strategy

We permute n pair indices with the following conditions.

Pick k = b 2n

n c blocks B1,B2, . . . ,Bk−2,Bk−1,Bk .

From each block pick exactly one pair index. The i th pair in block Bj is
(E2n−(j−1)n+(i−1),F2n−(j−1)n+(i−1)), and has index idxi

j .

If pair index idxi
j is already picked from block j , then do not pick idxi

l for
l 6= j , for every pair of blocks Bj and Bl that are picked.



Constructing family AS: A strategy

We start out with h = 2n pairs in the NSW.

Partition 2n pairs into b 2n

n c blocks of n pairs each.

Block 1

B1 = 〈(E2n ,F2n ), (E2n−1,F2n−1), . . . , (E2n−(n−1),F2n−(n−1))〉

Block 2

B2 = 〈(E2n−(n),F2n−(n)), (E2n−(n+1),F2n−(n+1)), . . . , (E2n−(2n−1),F2n−(2n−1))〉

Let b 2n

n c = k , then last or k th block

Bk = (E2n−((k−1)n),F2n−((k−1)n)), (E2n−((k−1)n+1),F2n−((k−1)n+1)), . . . ,

(E2n−(kn−1),F2n−(kn−1))



Constructing family AS: A strategy

To construct a permutation of length n. E.g. 〈3, 2, . . . , n〉

B1 = 〈(E2n ,F2n ), (E2n−1,F2n−1), (E2n−2,F2n−2), (E2n−3,F2n−3) . . . ,

(E2n−(n−1),F2n−(n−1))〉

B2 = 〈(E2n−(n),F2n−(n)), (E2n−(n+1),F2n−(n+1)), . . . , (E2n−(2n−1),F2n−(2n−1))〉

...

Bk = (E2n−((k−1)n),F2n−((k−1)n)), (E2n−((k−1)n+1),F2n−((k−1)n+1)), . . . ,

(E2n−(kn−1),F2n−(kn−1))
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Constructing family AS: An example
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(E4,F4) = ({r0}, {s0, s1}) (E3,F3) = ({r1}, {}) (E2,F2) = ({r0}, {})
(E1,F1) = ({r1}, {})



Example

n = 2, 2n = 4. Permutation of length 2 . . . 〈4, 1〉
(E4,F4) = ({r0}, {s0, s1}) (E3,F3) = ({r1}, {}) (E2,F2) = ({r0}, {})
(E1,F1) = ({r1}, {})
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Example
n = 2, 2n = 4. Permutation of length 2 . . . 〈2, 3〉
(E4,F4) = ({r0}, {s0, s1}) (E3,F3) = ({r1}, {}) (E2,F2) = ({r0}, {})
(E1,F1) = ({r1}, {})
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Counting for the lower bound

Permutation of length n.

k = b 2n

n c blocks of Streett pairs, with n elements in each block.

Each element 2n − ni − j , for all i, j ∈ {0, . . . , n − 1} can be chosen from
one of k blocks. kn choices.

n! ways of ordering the elements of blocks. Hence there are n!× kn

ways of choosing a block permutation in each disjoint branch.

(n!× kn)
n ways of choosing block permutations in all branches.

Lower bound can be shown to be 2Ω(n3).



Another lower bound for ω-automata

Rabin Index
Let L(k) be the set of all ω-regular languages that are accepted by DRW with
k or less number of pairs. For any ω-regular language L the smallest k such
that L ∈ L(k) is called the Rabin index of L.

Theorem
Given an ω-regular language L with Rabin index k, any ω-automaton
(deterministic or non-deterministic) that uses an acceptance condition based
on infinity sets and accepts L must have at least

√
k states.

1 DPW can be interpreted as an equivalent DRW with at most n2 Rabin
acceptance pairs.

2 By definition of Rabin index we must have n2 ≥ k . It follows that n ≥
√

k .



Summary

Unified determinization construction for ω-automata with acceptance
conditions based on infinity sets.

Direct determinization construction for non-deterministic Muller
automata.

Beats the best known upper bound for determinization of
non-deterministic Streett automata for classes of NSW.

Upper bound is a function of only the number of states of the
Streett automaton.
Earlier upper bound was a function of the number of states and
number of acceptance pairs of the Streett automaton.



Summary

A new lower bound on the number of states of any ω-automaton
(deterministic or non-deterministic) accepting a given ω-regular
language.

Cons: Upper bound for Büchi determinization also 2O(n2 log(n)), while best
known upper bound is 2O(n log(n)).

Future Work: Show that new bound is better than earlier bound for all
h > n.
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