ACTS 2011

Determinization of w-automata unified

Hrishikesh Karmarkar and Supratik Chakraborty

IIT Bombay

Plan

Background

Determinization of Streett automata
Determinization of w-automata
Strategy for improved upper-bound

Summary

w-automata

@ An w-automaton is a finite state automaton that accepts infinite words or
w-words and extends classical NFA/DFA.

e A=(X,Q,Q,J,¢) is an w-automaton, where ...

¥ is a finite alphabet.

Q is afinite set of states.

Qy C Qs the set of initial states.

§: Q x ¥ — 2%is a transition function.
¢ is the acceptance condition.

@ The acceptance condition determines the set of infinite words that are
accepted by A i.e the language of A.

Acceptance conditions

@ We deal with acceptance conditions based on the notion of infinity sets
i.e. the set of states visited infinitely often in a run of the automaton.

@ Acceptance condition ¢ can be thought of as defining a predicate P,
over 29,

Definition
For every X C Q, we say P,(X) = True iff X, viewed as the infinity set of a
run of A, satisfies the properties specified by ¢.

Acceptance conditions

Examples of acceptance conditions . ..

@ Streett condition:
@ ¢ is given by a table of pairs. T = {(E;, F1), (Ez, F2), ... (En, Fn)},
where E;, F; C Qforalli e {1,...,h}.
Q Py(X)=Trueiffforallic {1...h}, XNF #0=XNE #0

@ Parity condition:
@ ¢ is given by a sequence of sets F = (Fo, Fi,... Fs), where F; C Q
foralli e {0,...h}.

@ P4(X) = True iff for some even number j € {0,...h}, X N F; # 0
andforallme {0,...j— 1}, XN Fn = 0.

Determinization of w-automata

@ Many constructions exist to construct deterministic w-automata from
nondeterministic w-automata.

@ All known constructions are tailor-made to work for non-deterministic
automata, each with a specific kind of acceptance condition.

@ ltis very hard to adapt the construction for one type of automaton to
another.

Determinization of w-automata

Construction NBW | NSW | NMW | Output
Safra+Piterman v v X DPW
Muller-Schupp v X X DRW
Kahler and Wilke + Piterman v X X DPW

N: non-deterministic | D: deterministic
B,S,M,R,P: Blichi, Streett, Muller, Rabin, parity
W : over infinite words.

Determinization of w-automata

Construction NBW | NSW | NMW | Output

Safra+Piterman v v X DPW

Muller-Schupp v X X DRW
Kahler and Wilke + Piterman v X X DPW

N: non-deterministic | D: deterministic
B,S,M,R,P: Blichi, Streett, Muller, Rabin, parity
W : over infinite words.

Safra’s NSW determinization construction

@ Uses a tree data structures similar to Safra’s determinization
construction for NBW.

@ States are trees, called Safra-Streett trees[Schwoon2001] with
additional book-keeping information.

@ Piterman describes a way to reuse Safra’s method to construct DPW.

Safra-Streett trees

{91,94,95} Node

2,1} name.
k/state
label.
2} Node
{1} { (\annotation
{q4} (Witness set)
{} 12}
{91, 95} {a5} 26——___Edge
annotation.

{as}

For every run examined by a node check if for every j in witness-set J . ..

@ Some state in E; is visited infinitely often.
© No state in F; is visited infinitely often for j/ ¢ J

The NSW determinization construction: An example

F1={q2}
E2={q3,95}

Example from - Stefan Schwoon: Determinization and Complementation of
Streett Automata. Automata, Logics, and Infinite Games 2001: 79-91

> ={ab}. Word = abb. ...

The NSW determinization construction: An example

{2,1}

(al)

@2 12,13

1

{92,93}

{a1}

{1}
192,93}
{}

{QZv q3}

The NSW determinization construction: An example
(a5)

(a3)

193,92} !

(ad)

1

1

/N

{a3.92}

/X

/N

J \{qs}
1 1

J \{q3}
1 1

3 5

5

{az} {aq2}

Remove duplicates

3
@*}

1

/

5

{a2}

Delete node

{a3}

The NSW determinization construction: An example

b (
(b) (bl) 2,1} (b2)
{91,94,95}| 1 1
;/ \ 12} ;/ \l\ Witness set
2 4 s 4 | satisfied
{ql.q4} (_aJong run.
1 2 1 2 0
i y {} y/\
5 6 5 6 7
{91,94} {a1,a5} {aa} {ar} {a5}

The NSW determinization construction: An example

© (cl) (c2)
{q1,94,95} {2,1}
i 1

{ql,05} f/ \\'\ {qu'?S} ’2/ \'«
2 4 2 4
1 2'/ \‘0 23}) {q4VQ5}él

L Node
5 6 7 5 reset.

{a1, a5} {a5} 5 {a1}

Remove
duplicates.

Safra’s NSW determinization construction

Theorem

There is an accepting run of the NSW A on a word « iff there is an infinite run
of Streett-Safra trees in the DPW D along which some node is reset infinitely
often and removed finitely often.

v

Theorem

The number of states of the DPW D is 2°("°9("M) " while the number of parity
indices in O(nh), where n is the number of states and h is the number of
pairs of the NSW A.

Observations on w-determinization

@ All asymptotically optimal determinization constructions for w-automata
use state trees (either Safra or Muller-Schupp).

@ All commonly used acceptance conditions are described using the
notion of infinity sets.

Generalized witness sets

Definition (Generalized Witness Set (GWS))

Aset W C[n],n=|Q|and [n] = {1,2,...,n}is a generalized witness set for
arun p of Aiff inf(p) = Qw and Py,(Qw) = True, where
Qv={q|lgeQqQ,icW}

@ Safra-Streett witness set : Subset of indices of Streett acceptance pairs
@ Generalized witness set: Subset of indices of w-states.

@ A run of a Streett automaton has at most one GWS, but possibly many
Safra-Streett witness sets.

Generalized Safra trees (GST)

{91,92,95} {5,4,3,2,1}
Node

annotation
3 \/- (Hope set).
{q1,92,95} 9 {5,4,2,1}
4

4211 (3) L/fafgf
4 {s:}
{21} e Edge

9 £ annotation
(State Index)

{a,6} {a}

For every run examined by a node it checks if g;, for all / in hope-set W is
visited.

w-determinization: An example

Figure: Muller automaton with F = {{qg:}}, Word: bbbc*”

w-determinization: An example

(a1) (b1)

o O

{a} 5
{a5}

e =31, f = 31] @)

Extend tree at leaves. 4

Edge annotation —
@) matches state-index [6 2* f

3 Max({4,3,2,1,0})
Edge annotations :

are state indices, not
pair indices. 4

2 Duplicates removed.
1. Lower edge annotation
2. Left-right sibling order

w-determinization: An example

o

(c2) (e3)

{e} {a} Aa}
[e=2,f=31]

OOz

-~
=
S
[

w-determinization: An example

{a.as} {a}

Theorem

Given an w-automaton A with n states, the deterministic parity automaton D
constructed above has at most n°"™) states and 21 parity indices.

@ Construction gives a uniform view of the determinization process.

@ New upper-bound on states and parity indices is independent of the
number of pairs.

@ Turns out to be more powerful than expected - There are classes of
NSW for which new bound is better!

An improved bound for Streett determinization

Theorem

There exists a family As of NSW where each NSW As € As has 3n+ 1

states and 2" + 1 accepting pairs for which the Safra-Streett+Piterman

construction constructs a DPW with 2%™) states, while our construction
constructs a DPW with 2007108 states.

Constructing family Ag: A Strategy

h
h—1
@ From a Safra-Streett tree with a h—2
single path, obtain a tree with n
disjoint paths.
@ Ensure that g4, ..., g, all belong
to the Fj in the Streett pair
(En, Fn). 2
1
O

{1,420}

{ai} {a2} {an}

Constructing family As: A Strategy

@ Tree with n disjoint paths gets
extended as the computation of
the next Safra-Streett tree
proceeds.

{ai} {e} - : - Aad

Constructing family As: A Strategy

@ Permute edge annotations for
each disjoint path. 2 -2 % —2
O -

@ Ensure right distribution of Streett
states among the Streett pairs.

@ E.g. Tochange 2" to 2" — 1 via
Qk, ensure gk € Ep, of pair
(En, Fn).

O=
O=0<=0-

=
a9

{a;}
(1) (p2)

{a} {a}
(pa) (ps)

Constructing family Ag: A strategy

We permute n pair indices with the following conditions.

@ Pick k = |Z'] blocks By, B, .. ., Bc_2, Bi_1, Bx.

@ From each block pick exactly one pair index. The i”" pair in block B; is
(Ezn,(/‘,1)n+(,‘,1), an,(j,1)n+(,',1)), and has index IdeI

@ If pair index idx; is already picked from block j, then do not pick idx; for
I # j, for every pair of blocks B; and B; that are picked.

Constructing family Ag: A strategy

@ We start out with h = 2" pairs in the NSW.

@ Partition 2" pairs into | 2’| blocks of n pairs each.
Block 1

B1 == <(E2n, F2!7)7 (E2n,1 5 F2n,1)7 ey (Egn_(n_”, F2n_(n_1))>

Block 2

By = ((Eon—(n)s For—(n))s (E2n—(n41ys Fon—(ns1)), - - -, (Bon—(2n—1y, Fon—(2n—1))

Let | 2] = k, then last or k™ block
Bic = (Ean—((k—1)n)> Fon—((k—1)n))s (E2n—((k—1)n11), Fon—((k=1)n11)), - - -

(E2n—(kn—1y, Fan—(kn—1))

Constructing family Ag: A strategy

@ To construct a permutation of length n. E.g. (3,2,...,n)

By = ((Ean, Fan), (Ean 1, Fan 1), (E2n 2, Fon 2), (Ean—3, Fon_3) .. .,
(Ean—(n—1y, For—(n—1)))

By = ((Eon—(nys For—(n))s (E2n—(n41ys Fon—(ns1)), - - -, (Ban—(2n—1y, Fon—(2n—1)))

By = (Eor—((k—1)n)> For—(k—1yn))s (E2n—((k=1)n1)> Fon—((k=1)nt1)) 5 - - -5

(Ear—(kn—1, For—(kn-1))

Constructing family Ag: A strategy

@ To construct a permutation of length n. E.g. (3,2,...,n)

By = ((Ean, Fan), (Ean 1, Fan 1), (E2n 2, Fon 2), (Ean—3, Fon_3) .. .,
(Ean—(n—1y, For—(n—1)))

Bz = {(Ean—(ny, Fon—(n)): (E2n—(n+1)s Fon—(n1)), - - - » (Eon—_(2n—1y, Fon_(2n—1)))

Bk:(Ezﬂ—((k—1)n)7F2"—((k—1)"))7(E2" (k—1)n+1) an (k— 1)n+1))7-..7
(EZ”—(k"—U? FQ”—("”—U)

Constructing family Ag: A strategy

@ To construct a permutation of length n. E.g. (3,2,...,n)

B1 = <(E2"7 F2n)7 (E2”—1) F2”—1)7 (E2n—2~, F2”—2)7 (E2"—37 F2”—3) ey
(Ean—(n—1y, For—(n—1)))

By = ((Eon—(nys For—(n))s (E2n—(ns1ys Fon—(ns1)), - - -, (Ban—(2n—1y, Fon—(2n—1))

By = (Eor—((k—1)n)> For—(k—1yn))s (E2n—((k=1)n1)> Fon—((k=1)nt1)) 5 - - -5

(E2n—(kn—1y, Fan—(kn—1))

Constructing family As: An example

(o QQ
/ « Ja

X@“’T@Q

(Ea, Fa) = ({r0}, {80, s1}) (Ea, F3) = ({r1},{}) (B2, F2) = ({r0}, {})
(B, F) = ({1} {})

Example

n=2,2" = 4. Permutation of length 2 ... (4,1)
(Ea, Fa) = ({r0},{80, s1}) (Es, F3) = ({r1},{}) (B2, F2) = ({r0}, {})
(Ev, F) = ({r1}.{})

: ‘?@‘U@‘U@T@
(D)=

-~
il
o
-
-~
v
=)
-

Example

n=2,2" = 4. Permutation of length 2 ... (2,3)
(Ea, Fa) = ({r0},{s0, s1}) (Es, F5) = ({r1},{}) (B2, F2) = ({r0}, {})
(Ev, F) = ({r1},{})

D D
2

2 2
4 4 4

3 3
3 1

O D
1 1

® ® ®

{r1} {r1} {r0}

2 2 1
s0 2% r0 & r1 nZrnr

Counting for the lower bound

Permutation of length n.
k= L%J blocks of Streett pairs, with n elements in each block.

Each element 2" — ni — j, for all i,j € {0,...,n— 1} can be chosen from
one of k blocks. k" choices.

n! ways of ordering the elements of blocks. Hence there are n! x k"
ways of choosing a block permutation in each disjoint branch.

(n! x k™)™ ways of choosing block permutations in all branches.

Lower bound can be shown to be 2%,

Another lower bound for w-automata

Rabin Index

Let £(k) be the set of all w-regular languages that are accepted by DRW with
k or less number of pairs. For any w-regular language L the smallest k such
that L € L(k) is called the Rabin index of L.

Theorem

Given an w-regular language L with Rabin index k, any w-automaton
(deterministic or non-deterministic) that uses an acceptance condition based
on infinity sets and accepts L must have at least vk states.

@ DPW can be interpreted as an equivalent DRW with at most n? Rabin
acceptance pairs.

@ By definition of Rabin index we must have m? > k. It follows that n > Vk.

Summary

Unified determinization construction for w-automata with acceptance
conditions based on infinity sets.

Direct determinization construction for non-deterministic Muller
automata.

Beats the best known upper bound for determinization of
non-deterministic Streett automata for classes of NSW.

e Upper bound is a function of only the number of states of the
Streett automaton.

e Earlier upper bound was a function of the number of states and
number of acceptance pairs of the Streett automaton.

Summary

@ A new lower bound on the number of states of any w-automaton
(deterministic or non-deterministic) accepting a given w-regular
language.

@ Cons: Upper bound for Biichi determinization also 200" °9(") while best
known upper bound is 20(71°9(M)

@ Future Work: Show that new bound is better than earlier bound for all
h> n.

Thank you

