ACTS 2011

Determinization of ω -automata unified

Hrishikesh Karmarkar and Supratik Chakraborty

IIT Bombay

Plan

- Background
- Determinization of Streett automata
- Determinization of ω -automata
- Strategy for improved upper-bound
- Summary

ω -automata

- An ω -automaton is a finite state automaton that *accepts* infinite words or ω -words and extends classical NFA/DFA.
- $\mathcal{A} = (\Sigma, Q, Q_0, \delta, \phi)$ is an ω -automaton, where . . .
 - Σ is a finite alphabet.
 - Q is a finite set of states.
 - $Q_0 \subseteq Q$ is the set of initial states.
 - $\delta: Q \times \Sigma \to 2^Q$ is a transition function.
 - ϕ is the acceptance condition.
- The acceptance condition determines the set of infinite words that are accepted by A i.e the *language* of A.

Acceptance conditions

- We deal with acceptance conditions based on the notion of infinity sets i.e. the set of states visited infinitely often in a run of the automaton.
- Acceptance condition φ can be thought of as defining a predicate P_φ over 2^Q.

Definition

For every $X \subseteq Q$, we say $P_{\phi}(X) =$ True iff X, viewed as the infinity set of a run of A, satisfies the properties specified by ϕ .

Examples of acceptance conditions

- Streett condition:
 - ϕ is given by a table of pairs. $\mathcal{T} = \{(E_1, F_1), (E_2, F_2), \dots, (E_h, F_h)\},\$ where $E_i, F_i \subseteq Q$ for all $i \in \{1, \ldots, h\}$.
 - 2 $P_{\phi}(X) = \text{True iff for all } i \in \{1 \dots h\}, X \cap F_i \neq \emptyset \Rightarrow X \cap E_i \neq \emptyset$

Parity condition:

- ϕ is given by a sequence of sets $\mathcal{F} = \langle F_0, F_1, \dots, F_h \rangle$, where $F_i \subset Q$ for all $i \in \{0, ..., h\}$.
 - 2 $P_{\phi}(X) =$ True iff for some even number $i \in \{0, \ldots, h\}, X \cap F_i \neq \emptyset$ and for all $m \in \{0, \ldots, j-1\}, X \cap F_m = \emptyset$.

Determinization of ω -automata

- Many constructions exist to construct deterministic ω-automata from nondeterministic ω-automata.
- All known constructions are tailor-made to work for non-deterministic automata, each with a specific kind of acceptance condition.
- It is very hard to adapt the construction for one type of automaton to another.

Determinization of ω -automata

Construction	NBW	NSW	NMW	Output
Safra+Piterman	\checkmark	\checkmark	×	DPW
Muller-Schupp	\checkmark	×	×	DRW
Kähler and Wilke + Piterman	\checkmark	×	×	DPW

N: non-deterministic | D: deterministic B,S,M,R,P: Büchi, Streett, Muller, Rabin, parity W : over infinite words.

Determinization of ω -automata

Construction	NBW	NSW	NMW	Output
Safra+Piterman	\checkmark	\checkmark	×	DPW
Muller-Schupp	\checkmark	×	×	DRW
Kähler and Wilke + Piterman	\checkmark	×	×	DPW

N: non-deterministic | D: deterministic B,S,M,R,P: Büchi, Streett, Muller, Rabin, parity W : over infinite words.

Safra's NSW determinization construction

- Uses a tree data structures similar to Safra's determinization construction for NBW.
- States are trees, called Safra-Streett trees[Schwoon2001] with additional book-keeping information.
- Piterman describes a way to reuse Safra's method to construct DPW.

Safra-Streett trees

For every run examined by a node check if for every *j* in witness-set J ...

- Some state in E_j is visited infinitely often.
- 2 No state in $F_{j'}$ is visited infinitely often for $j' \notin J$

The NSW determinization construction: An example

Example from - Stefan Schwoon: Determinization and Complementation of Streett Automata. Automata, Logics, and Infinite Games 2001: 79-91

$$\Sigma = \{a, b\}$$
. Word $\alpha = abb \dots$

The NSW determinization construction: An example

(a3) (a4) (a5) {q3,q2} {q3,q2} 2 2 4 2 Δ $\{q_3\}$ $\{q_3\}$ $\{q_3\}$ 3 5 5 3 5 ØK $\{q_2\}$ $\{q_2\}$ $\{q_3\}$ $\{q_2\}$ Delete node **Remove duplicates** $(q_2$ F1={q2} E2={q3,q5}

93

b

The NSW determinization construction: An example

The NSW determinization construction: An example

The NSW determinization construction: An example

(g3)

F1={q2} E2={q3,q5}

Theorem

There is an accepting run of the NSW A on a word α iff there is an infinite run of Streett-Safra trees in the DPW D along which some node is reset infinitely often and removed finitely often.

Theorem

The number of states of the DPW \mathcal{D} is $2^{O(nh \log(nh))}$, while the number of parity indices in O(nh), where n is the number of states and h is the number of pairs of the NSW \mathcal{A} .

Observations on ω -determinization

- All asymptotically optimal determinization constructions for ω-automata use state trees (either Safra or Muller-Schupp).
- All commonly used acceptance conditions are described using the notion of infinity sets.

Generalized witness sets

Definition (Generalized Witness Set (GWS))

A set $W \subseteq [n]$, n = |Q| and $[n] = \{1, 2, ..., n\}$ is a generalized witness set for a run ρ of \mathcal{A} iff $inf(\rho) = Q_W$ and $P_{\phi}(Q_W) =$ True, where $Q_W = \{q_i \mid q \in Q, i \in W\}.$

- Safra-Streett witness set : Subset of indices of Streett acceptance pairs
- Generalized witness set: Subset of indices of ω-states.
- A run of a Streett automaton has at most one GWS, but possibly many Safra-Streett witness sets.

Generalized Safra trees (GST)

For every run examined by a node it checks if q_i , for all *i* in hope-set *W* is visited.

Figure: Muller automaton with $F = \{\{q_1\}\}, Word: bbbc^{\omega}$

Theorem

Given an ω -automaton A with n states, the deterministic parity automaton D constructed above has at most $n^{O(n^2)}$ states and $2n^2$ parity indices.

- Construction gives a uniform view of the determinization process.
- New upper-bound on states and parity indices is independent of the number of pairs.
- Turns out to be more powerful than expected There are classes of NSW for which new bound is better!

An improved bound for Streett determinization

Theorem

There exists a family A_S of NSW where each NSW $A_S \in A_S$ has 3n + 1 states and $2^n + 1$ accepting pairs for which the Safra-Streett+Piterman construction constructs a DPW with $2^{\Omega(n^3)}$ states, while our construction constructs a DPW with $2^{O(n^2 \log n)}$ states.

 Tree with n disjoint paths gets extended as the computation of the next Safra-Streett tree proceeds.

- Permute edge annotations for each disjoint path.
- Ensure right distribution of Streett states among the Streett pairs.
- E.g. To change 2^n to $2^n 1$ via q_k , ensure $q_k \in E_h$ of pair (E_h, F_h) .

We permute *n* pair indices with the following conditions.

- Pick $k = \lfloor \frac{2^n}{n} \rfloor$ blocks $B_1, B_2, \ldots, B_{k-2}, B_{k-1}, B_k$.
- From each block pick exactly one pair index. The *i*th pair in block B_j is $(E_{2^n-(j-1)n+(i-1)}, F_{2^n-(j-1)n+(i-1)})$, and has index idx_j^i .
- If pair index idx_j^i is already picked from block *j*, then do not pick idx_j^i for $l \neq j$, for every pair of blocks B_j and B_l that are picked.

- We start out with $h = 2^n$ pairs in the NSW.
- Partition 2^n pairs into $\lfloor \frac{2^n}{n} \rfloor$ blocks of *n* pairs each.

Block 1

$$B_1 = \langle (E_{2^n}, F_{2^n}), (E_{2^n-1}, F_{2^n-1}), \dots, (E_{2^n-(n-1)}, F_{2^n-(n-1)}) \rangle$$

Block 2

 $B_{2} = \langle (E_{2^{n}-(n)}, F_{2^{n}-(n)}), (E_{2^{n}-(n+1)}, F_{2^{n}-(n+1)}), \dots, (E_{2^{n}-(2n-1)}, F_{2^{n}-(2n-1)}) \rangle$

Let $\lfloor \frac{2^n}{n} \rfloor = k$, then last or k^{th} block $B_k = (E_{2^n - ((k-1)n)}, F_{2^n - ((k-1)n)}), (E_{2^n - ((k-1)n+1)}, F_{2^n - ((k-1)n+1)}), \dots, (E_{2^n - (kn-1)}, F_{2^n - (kn-1)})$

• To construct a permutation of length *n*. E.g. (3, 2, ..., n)

÷

$$B_{1} = \langle (E_{2^{n}}, F_{2^{n}}), (E_{2^{n}-1}, F_{2^{n}-1}), (E_{2^{n}-2}, F_{2^{n}-2}), (E_{2^{n}-3}, F_{2^{n}-3}) \dots, \\ (E_{2^{n}-(n-1)}, F_{2^{n}-(n-1)}) \rangle$$

$$B_{2} = \langle (E_{2^{n}-(n)}, F_{2^{n}-(n)}), (E_{2^{n}-(n+1)}, F_{2^{n}-(n+1)}), \dots, (E_{2^{n}-(2n-1)}, F_{2^{n}-(2n-1)}) \rangle$$

$$B_{k} = (E_{2^{n}-((k-1)n)}, F_{2^{n}-((k-1)n)}), (E_{2^{n}-((k-1)n+1)}, F_{2^{n}-((k-1)n+1)}), \dots,$$
$$(E_{2^{n}-(kn-1)}, F_{2^{n}-(kn-1)})$$

• To construct a permutation of length *n*. E.g. (3, 2, ..., n)

÷

$$B_{1} = \langle (E_{2^{n}}, F_{2^{n}}), (E_{2^{n}-1}, F_{2^{n}-1}), (E_{2^{n}-2}, F_{2^{n}-2}), (E_{2^{n}-3}, F_{2^{n}-3}) \dots, \\ (E_{2^{n}-(n-1)}, F_{2^{n}-(n-1)}) \rangle$$

$$B_{2} = \langle (E_{2^{n}-(n)}, F_{2^{n}-(n)}), (E_{2^{n}-(n+1)}, F_{2^{n}-(n+1)}), \dots, (E_{2^{n}-(2n-1)}, F_{2^{n}-(2n-1)}) \rangle$$

$$B_{k} = (E_{2^{n}-((k-1)n)}, F_{2^{n}-((k-1)n)}), (E_{2^{n}-((k-1)n+1)}, F_{2^{n}-((k-1)n+1)}), \dots,$$
$$(E_{2^{n}-(kn-1)}, F_{2^{n}-(kn-1)})$$

• To construct a permutation of length *n*. E.g. (3, 2, ..., n)

÷

$$B_{1} = \langle (E_{2^{n}}, F_{2^{n}}), (E_{2^{n}-1}, F_{2^{n}-1}), (E_{2^{n}-2}, F_{2^{n}-2}), (E_{2^{n}-3}, F_{2^{n}-3}) \dots, \\ (E_{2^{n}-(n-1)}, F_{2^{n}-(n-1)}) \rangle$$

$$B_{2} = \langle (E_{2^{n}-(n)}, F_{2^{n}-(n)}), (E_{2^{n}-(n+1)}, F_{2^{n}-(n+1)}), \dots, (E_{2^{n}-(2n-1)}, F_{2^{n}-(2n-1)}) \rangle$$

$$B_{k} = (E_{2^{n}-((k-1)n)}, F_{2^{n}-((k-1)n)}), (E_{2^{n}-((k-1)n+1)}, F_{2^{n}-((k-1)n+1)}), \dots,$$
$$(E_{2^{n}-(kn-1)}, F_{2^{n}-(kn-1)})$$

Constructing family A_S: An example

 $(E_4, F_4) = (\{r0\}, \{s0, s1\}) (E_3, F_3) = (\{r1\}, \{\}) (E_2, F_2) = (\{r0\}, \{\}) (E_1, F_1) = (\{r1\}, \{\})$

Example

 $n = 2, 2^n = 4$. Permutation of length $2 \dots \langle 4, 1 \rangle$ $(E_4, F_4) = (\{r0\}, \{s0, s1\}) (E_3, F_3) = (\{r1\}, \{\}) (E_2, F_2) = (\{r0\}, \{\}) (E_1, F_1) = (\{r1\}, \{\})$

Example

 $n = 2, 2^n = 4$. Permutation of length $2 \dots \langle 2, 3 \rangle$ $(E_4, F_4) = (\{r0\}, \{s0, s1\}) (E_3, F_3) = (\{r1\}, \{\}) (E_2, F_2) = (\{r0\}, \{\}) (E_1, F_1) = (\{r1\}, \{\})$

Counting for the lower bound

- Permutation of length n.
- $k = \lfloor \frac{2^n}{n} \rfloor$ blocks of Streett pairs, with *n* elements in each block.
- Each element $2^n ni j$, for all $i, j \in \{0, ..., n-1\}$ can be chosen from one of k blocks. k^n choices.
- n! ways of ordering the elements of blocks. Hence there are n! × kⁿ ways of choosing a block permutation in each disjoint branch.
- $(n! \times k^n)^n$ ways of choosing block permutations in all branches.
- Lower bound can be shown to be $2^{\Omega(n^3)}$.

Another lower bound for ω -automata

Rabin Index

Let $\mathcal{L}(k)$ be the set of all ω -regular languages that are accepted by DRW with k or less number of pairs. For any ω -regular language L the smallest k such that $L \in \mathcal{L}(k)$ is called the Rabin index of L.

Theorem

Given an ω -regular language L with Rabin index k, any ω -automaton (deterministic or non-deterministic) that uses an acceptance condition based on infinity sets and accepts L must have at least \sqrt{k} states.

- DPW can be interpreted as an equivalent DRW with at most n² Rabin acceptance pairs.
- **2** By definition of Rabin index we must have $n^2 \ge k$. It follows that $n \ge \sqrt{k}$.

Summary

- Unified determinization construction for ω-automata with acceptance conditions based on infinity sets.
- Direct determinization construction for non-deterministic Muller automata.
- Beats the best known upper bound for determinization of non-deterministic Streett automata for classes of NSW.
 - Upper bound is a function of only the number of states of the Streett automaton.
 - Earlier upper bound was a function of the number of states and number of acceptance pairs of the Streett automaton.

Summary

- A new lower bound on the number of states of any ω-automaton (deterministic or non-deterministic) accepting a given ω-regular language.
- Cons: Upper bound for Büchi determinization also 2^{O(n² log(n))}, while best known upper bound is 2^{O(n log(n))}.
- Future Work: Show that new bound is better than earlier bound for all h > n.

Thank you