Diagnosis with Dynamic MSCs (Ongoing work)

Benedikt Bollig¹, Stefan Haar², Loïc Hélouët³

¹LSV/CNRS, ²LSV/INRIA, ³IRISA/INRIA

Observation = code instrumentation, traffic sniffing & filtering, ... Diagnosis = Fault detection, explanation retreival,...

From a model H and an observation O, find all explanations for O in H.

Unfolding: synchronize execution of the observation with all compatible runs of the model (may not terminate)

From a model H and an observation O, find all explanations for O in H.

Diagnosis

Generator: build a new model in which all behaviors embed the observation (not always feasible)

Done for:

- Automata (static, fault detection) [Sampath & al]
- Petri nets (static archi, unfolding) [Benveniste & al, Chatain & al]
- High-level MSCs (static archi., generator)

[Gazagnaire & al]

Graph grammars (dynamic archi., unfolding) [Baldan & al]

Diagnosis for :

- Partial order model (can avoid costly interleavings)
- with dynamic aspects + buffering
- Compute a generator
- Compositionality issues

Outline

- Message Sequence Charts, Observations
- MSC Grammars
- MSO for MSCs
- Diagnosis
- Conclusions

Message Sequence Charts

 $M = (E, \leq, \alpha, \varphi, \mu) \in \mathbb{M} :$ $\alpha \subseteq E \times \Sigma : \text{ labeling,}$ $\varphi \subseteq E \times \mathbb{N} : \text{ locality,}$ $\mu \subseteq E \times E : \text{ messages}$

 $x \leq y$ iff

- sequential ordering on a process, or
- \blacksquare causal chain from x to y

MSC Concatenation

 $x \leq_{1 \circ 2} y$ iff

- $x \leq_1 y$, or
- $x \leq_2 y$, or

• $x \leq_1 z$, $z' \leq_2 y$ and z, z' on the same process

Observations

- Choose an observation alphabet Σ_{obs}
- Every observed process
 - reports occurrences of actions in Σ_{obs}
 - can maintain tags to retreive causality (eg vectorial clocks)
- Observer receives collected events and builds

 $O = (E_O, \leq_O, \alpha_O, \varphi_O, \mu_O)$

Explanations

Find an embedding $h: E_O \longrightarrow E_M$ that is compatible:

- with labeling : $\alpha(x) = \alpha(h(x))$
- with ordering : $x \leq_O y \Longrightarrow h(x) \leq_M h(y)$
- with locality of events : $\varphi(x) = \varphi(y) \iff \varphi(h(x)) = \varphi(h(y))$

High-level MSCs (HMSCs)

patial order model, infinite, non-regular behaviors

Diagnosis with generator works [HelouetWodes06]

But : Finite set of processes only

The important in MSC grammars is the shape of a scenario, not the identity of processes.

Named MSCs : \mathfrak{M} Rely on process identifiers: π_1, \ldots, π_k .

Named PMSCs : $\mathcal M$

- Process IDs passed from one process to another
- the name of non-identified processes is meaningless
- Glue a behavior on identified processes

<u>Concatenation:</u> $(M_1, \nu_1) \circ (M_2, \mu_2)$

<u>Concatenation:</u> $(M_1, \nu_1) \circ (M_2, \mu_2)$

Diagnosis with Dynamic MSCs - p. 17/43

In short : context free grammar with named MSCs and PMSC as terminals

- Subset of Dynamic MSCs [Leucker & al 02]
- A kind of graph grammar...

Derivations:

... as usual but writing PMSCs instead of words/hypergraphs

Axiom

Derivations:

... as usual but writing MSCs instead of words/hypergraphs

Derivations:

... as usual but writing MSCs instead of words/hypergraphs

Derivations:

... as usual but writing MSCs instead of words/hypergraphs

Parse Tree

Language of an MSC grammar G :

$$L(G) = \{ M \in \mathbb{M} \mid \iota_G \Longrightarrow^*_G (M', \nu)$$

for some $M' \cong M$ and $\nu \}.$

All the MSCs that can be derived from the axiom of *G*.

Nb: L(G) does not differentiate between isomorphic MSCs.

Tree automata

- $TA = (Q, Q_F, \mathcal{F}, \delta)$
 - $\blacksquare Q$: set of states
 - $Q_F \subseteq Q$: set of final states

\blacksquare \mathcal{F} symbols (terminal and non terminal)

• $\delta \subseteq \mathcal{F} \times \bigcup_{1..K} Q^i \times Q$: transition relation $f(q_1(x_1), \dots, q_n(x_n)) \longrightarrow q(f(x_1), \dots, f(x_n))$

A run of a TA on a tree $T = (N, \rightarrow)$ is a mapping $r: N \rightarrow Q$. r is successful if $r(root) \in Q_F$ TAs are recognizers for regular tree languages.

Tree automata

The derivation trees of a context free grammar are regular tree languages. The converse does not alway hold, except for *local tree languages*.

Tree automata

 $\mathcal{G} \longleftrightarrow TA_{\mathcal{G}}(local)$

MSO over MSCs [Leucker& al02]

 $\varphi ::= lab_a(x)$ x is an event labelled by a | $(u, x) \rightarrow (v, y)$ (x,y) is a message from u to v x is the immediate predecessor $x \lessdot y$ of y on some process $x \in X \mid u \in U$ $\neg \varphi \mid \varphi_1 \land \varphi_2$ event/event set quantifier $\exists x \varphi \mid \exists X \varphi$ $\exists u \varphi \mid \exists U \varphi$ process/process set quantifier

MSO over MSCs

Theorem 1 Let *O* be an observation over a set of events $e_1 \ldots, e_n$, and *M* be a MSC and Σ_{Obs} be the observation alphabet. Then $O \triangleright_{\Sigma_{obs}} M$ if and only if $M \models \varphi_O$, where φ_O is the formula

$$\exists x_1, \dots x_n, \quad \bigwedge_{x \leq Oy} causalChain(x, y) \\ \land \quad \bigwedge_{i \in 1..n} lab(x_i) = \lambda_O(e_i) \\ \land \quad \bigwedge_{i \in 1..n} \nexists z, LocalPredecessor(x_i, z) \land lab(z) \in \Sigma_{Obs} \\ \land z \notin x_1, \dots x_n$$

MSO over MSCs

 $\varphi_{O} ::= \exists x, y, z, t, u, v, w,$ $lab_{a}(x) \wedge lab_{b}(y) \wedge lab_{b}(z) \wedge lab_{?n}(t)$ $\wedge LocalPredecessor(x, t)$ $\wedge (u, x) \leq (v, y) \wedge (u, x) \leq (w, z)$

Diagnosis with Dynamic MSCs - p. 30/43

Results

Theorem 2 *MSO* over *MSCs* is decidable for *MSC* grammars

Corollary 1 Diagnosis with MSC grammars is decidable

Proof sketch [Leucker&al]

Interpreted tree automata that recognise parse trees

• guess $\gamma: V_{\varphi_O} \longrightarrow E_M \cup \mathcal{P}_M$

• infer
$$\pi_i \leq x$$
, $x \leq \pi'_i$, ...

• infer $\pi_i \leq \pi'_i$

• infer atoms of φ_O that hold at M

 $\exists x, y, z, u, lab_a(x), lab_b(y), lab_b(z)$ $\pi_1 \leq x, y, z \land \pi_2 \leq y, z \land x \leq \pi'_1, \pi'_2 \land z \leq \pi'_1$ $\pi_1 \leq \pi'_1 \land \pi_1 \leq \pi'_2 \land \pi_2 \leq \pi'_1 \land \pi_2 \leq \pi'_2$

Proof sketch [Leucker&al]

Accepting states : $q_{ax} \times \varphi$ such that $\varphi \Longrightarrow \varphi_O$

Diagnosis

Parse trees are decorated with:

- Interpretations over V_{φ_O} on leaves (MSCs) (finite)
- predicates denoting causal chains in a subtree (finite, involves identifiers or chosen proces in the subtree)
- Communication structure (mobility of processes identifiers)
- **sub-formulae of** φ_O that hold in the subtree

Tree automata transitions depend on consistence of labelings

We obtain a generator for all explanations of O

Conclusion

We have:

- Dynamic scenario model
- MSO/diagnosis decidable for it
- Generator comes for free as a consequence of decorated parse tree
- Compositionnality comes for free as a consequence of embeddings properties (NB : \neq obs., same grammar)

Future Work

Not a surprising result:

- MSC Grammars are graph grammars : all results apply [Courcelle]
- also subset of Dynamic MSCs [Leucker]
- Decidability only : MSO usually means exponential blowup !

Future Work

- ... that gives clues for efficient algorithms
 - MSC Grammars as Hyperedge replacement + activation rule
 - Not any MSO formula, not any kind of graph :
 - use the information on the model to avoid useless transitions in the TA
 - formula \approx looking a sequence on each process, plus some inter process ordering ?

On compositionality

MSC grammars (Formal defs)

Definition 1 A (dynamic) MSC grammar is a quadruple $G = (\Pi, \mathcal{N}, S, \longrightarrow)$ where

- IT and N and are nonempty finite sets of process identifiers and non-terminals, respectively,
- S $\in \mathcal{N}$ is the start non-terminal, and
- $\blacksquare \longrightarrow is a finite set of rules$

MSC Grammars (Formal defs)

Definition 2 A rule is a triple $r = (A, \alpha, f)$ with

- $A \in \mathcal{N}$ non-terminal,
- α expression over \mathcal{N} and Π
- $f: Free(\alpha) \to \Pi$ associates process identifiers to free processes of α .

We may write $A \longrightarrow_f \alpha$.

MSO over MSCs

Causal chain : folklore [Madhusudan&al05]

$$causalChain(x, y) ::= \exists X, x \in X, y \in X, \\ \forall Y \subset X, \exists x' \in max(X \setminus Y), \\ closed(Y) \Longrightarrow \exists y' \in min(Y), \\ x' \lessdot y' \lor x \longrightarrow y$$

 $closed(Y) ::= \quad \nexists x, \nexists y \in Y, (x \lessdot y \lor x \longrightarrow y) \land x \not\in Y$

MSC Grammars vs Dynamic MSCs [Leucker& al02]

- Dyn. MSCs more expressive than MSC grammars
- L(G) has to be evaluated recursively (LR in MSC grammars)
- Implementation model for MSC grammars
- Questions on MSC grammars
 - $\blacksquare L(G) = \emptyset?$
 - Realizability
 - Implementation