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Automata vs. Logic 
Logic

Specifying properties

Declarative (what should happen)

Automata

Implementation model (how it should happen)

Tool for checking satisfiability

Looking for an expressive logic with reasonable 
implementation model (one-way, non-deterministic)
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xposition carries a ∈ Σ



ϕ1 ∨ ϕ2 ¬ϕ ∃Xϕ∃xϕ

x ≺+1 y y is direct successor of x



   too expressive
=> restrict access to data values
=> relate positions that automaton can access

a(x)

5


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k
l
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Signature: finite set of relation symbols � such that

 
for all i there is at most one j such that i�w j

out-degree at most 1

 

for all i there is at most one j such that j �w i

in-degree at most 1

 monotonicity
i�w j ∧ i� �w j� ∧ wi = wi� ∧ wj = wj�

=⇒ i < i� iff j < j�

�w ⊆ < 
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EMSO(S)

xposition carries a ∈ Σ



a(x)

x� y

ϕ1 ∨ ϕ2 ¬ϕ ∃xϕ x = y

where S is any signature

� ∈ S

Formula: 

first-order 

∃X1 . . . ∃Xnϕ

dk(x) = dl(x) local reasoning about data values
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Example formulas (m=1)
there is a request that is acknowledged

every request is acknowledged (before next request)

∃x∃y (req(x) ∧ ack(y) ∧ x ≺∼ y)
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Goal:
non-deterministic

one way automaton for
this kind of property
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[related works, most of them for m=1]

MSO → register automata (restricted use of variables)     
[Bouyer 2000]

MSO vs. two-way and pebble automata                  
[Neven, Schwentick, Vianu 2004]

LTL with freeze quantifier → register automata                  
[Demri, Lazic 2006]

2EMSO                       → data automata/class memory automata           
[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]                                  
[Björklund, Schwentick 2007]

(≺∼,≺+1, <,≺∗
∼)

Regular XPath → class automata                    
[Bojanczyk, Lasota 2010]

EMSO(S) → ? (non-deterministic, one-way)                                                
(e.g., EMSO            )(≺∼,≺+1)
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A = (Q,R,−→, q0, F )

 finite set of states
initial state, set of final states

Q

q0, F

finite set of registersR

(q, guard)
a−→ (q�, upd)

 transition relation:

guard ∈ B(R) upd ⊆ R

r1 ∧ ¬r2 {r1, r2}
current value is in 1st but not in 2nd register: write current value in both registers:
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q is current state
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Class Memory Automata
[Björklund & Schwentick, 2007]
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L(A) = ‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0F∼ = {q1}
F+1 = {q1}

≺∼ ≺+1
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Class Register Automata (with guess)

 finite set of statesQ

finite set of registersR

 transition relation:

over S = {             }�1, . . . ,�n
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over S = {             }�1, . . . ,�n

 F = (F�1 , . . . , F�n)

guard

�1

�n

q1 . . . qn (a, q�)

upd : R � ((S ×R) ∪ {1, . . . ,m})

upd

G ∈ B(“q ≤ N”)

20

⋃ {guess}

A = (Q,R,−→, F,G)

guessing register automata: 
[Kaminski, Zeitlin 2010]
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Class Register Automata (with guess)

21

Theorem: For every signature S, EMSO(S) ⊆ gCRA(S).

Proof:
Use Hanf‘s Theorem (1965):                                  
normal form of first-order formulas

Sufficient to detect local patterns and count them up to 
some threshold

Local pattern:
≺1

∼ ≺1
∼

≺2
∼

≺2
∼

≠≠ ≠≠

=> Build class register automaton that detects spheres
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23

How can we be sure that a cycle is closed?
Suppose it is not closed.

(a1, d1) (a2, d2)(a2, d2)(a1, d1)

2) relations are monotone
1) we carry along labels and data values

=> infinite descending chain

(a1, d1)

...

↯
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Synthesis of dynamic communicating systems

Class register automata subsume                          
dynamic communicating automata [B., Hélouët, 2010]

                               receive process id

                               receive from r

Finitely branching transition system                             
=> partial satisfiability checking

Tool to show that a property is not EMSO-definable

Study of combined expressive power of existing concepts

upd(r) = (�msg, r
�)

(≺proc, r) = (�msg, r0)
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Conclusion

General framework for specification and 
implementation of data-word languages

Synthesis of dynamic communicating systems

Next: synthesize more practical automata       
=> restricted specification languages            
=> temporal logics

26


