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Automata vs. Logic

@ Logic
@ Specifying properties
@ Declarative (what should happen)
@ Automata
@ Implementation model (how it should happen)

@ Tool for checking satishability

Looking for an expressive logic with reasonable
implementation model (one-way, non-deterministic)
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MSO logic for data words

® q(x) position x carries a € X
® I <11y Yy is direct successor of &
® Y1V Y2 P dx Xy zeX

¢ d'(@)=d(y) | L_th datavale at @
L ——Gguals |-th data value at y

too expressive
=> restrict access to data values
=> relate positions that automaton can access



MSO logic for data words

Signature: finite set of relation symbols <1 such that



MSO logic for data words

Signature: finite set of relation symbols <1 such that

o VYV C<



MSO logic for data words

Signature: finite set of relation symbols <1 such that

o VYV C<

@ ouf-degree at most 1
for all ¢ there is at most one j such that i <% j



MSO logic for data words

Signature: finite set of relation symbols <1 such that

o VYV C<

@ ouf-degree at most 1
for all ¢ there is at most one j such that i <% j

@ in-degree at most 1

for all ¢ there is at most one j such that 7 <* ¢



MSO logic for data words

Signature: finite set of relation symbols <1 such that

o VYV C<

@ ouf-degree at most 1
for all ¢ there is at most one j such that i <% j

@ in-degree at most 1

for all ¢ there is at most one j such that 7 <* ¢

@ monotonicity
<1V 5 A ilﬂwj/ N W; =Wy N W; = Wjr

— i< iff j<j
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MSO logic for data words

@ direct successor relation <1 <41
SN VT VTN

@ message-passing system (m=2)

|:msg
|:msg
%
! ! ! ? ? ?
1 2 1 3 2 2



EMSO(S)

where S is any signature

a(x) position x carries a € X
T <Yy €S
d"(z) = d'(x) local reasoning about data values

rT=1Y ©1V P2 P dx reX



EMSO(S)

where S is any signature

a(x) position x carries a € X
T <Yy €S
d"(z) = d'(x) local reasoning about data values

rT=1Y ©1V P2 P dx reX

Formula: 4X;...3X,¢

first-order
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Example formulas (m=1)
@ there is a request that is acknowledged o /\

dxdy (req(x) A ack(y) ANz <o y) éq req req ack agk e

@ every request is acknowledged (before next request)

VaxIy (req(z) — ack(y) Nx << y)

@ two successive requests are acknowledged
in the order they were received

VaVy ( req(z) A req(y) A <41y
— J2' 32’ (ack(Z) N ack(yY)ANe <o 2 <1y ANy <o y'))

TN, Goal:
<0 = *é

non-deterministic
way automaton for
“this kind of property

req req req ack ack ack
| Z 2 | Z 2

T y a,;/ y/
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From Logic to Automata

[related works, most of them for m=1]

® MSO — register automata (restricted use of variables)
[Bouyer 2000]

@ MSO vs. two-way and pebble automata
[Neven, Schwentick, Vianu 2004]

@ LTL with freeze quantifier = register automata
[Demri, Lazic 2006]

2
8 EMSO (=~,=<41,<,=<2) — data automata/class memory automata
[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]
[Bjorklund, Schwentick 2007]

@ Regular XPath — class automata
[Bojanczyk, Lasota 2010]

@ EMSO(S) — ? (non-deterministic, one-way)
(e.g., EN\SO(<N, <_|_1))
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Register Automata

[Kaminski & Francez, 1994]
A: (Q7R7H7QO7F)

o () finite set of states
® §o,F initial state, set of final states

® R finite set of registers
® transition relation:

(4, guard) — (q', upd)
gquard € B(R) upd C R

current value is in 1st but not in 2nd register: write current value in both registers:

Tl/\_l’l“g {7’1,7"2}

12



Register Automata

[Kaminski & Francez, 1994]

qo req , ack qo
q0 req q0 {r}
do r ack q1
d1 req , ack d1

L(A) = “some request is acknowledged”

13
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q0 req q0 {r}
do r ack q1
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q0 reg q0 {r}
do r ack q1
q1 req , ack d1
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[Kaminski & Francez, 1994]

qo req , ack qo
q0 req 40 {r}
4o r ack d1
d1 req , ack d1
L(A) = “some request is acknowledged”
req req ack req ack ack ack req
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Register Automata

[Kaminski & Francez, 1994]

qo req , ack q0
qo req 40 {r}
4o r ack d1
d1 req , ack d1
L(A) = “sgﬁg request is acknowledged”
‘every ?
req req ack req ack ack ack req
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Register Automata

[Kaminski & Francez, 1994]

qo req , ack qo
qo req 40 {r}
4o r ack d1
d1 req , ack d1
L(A) = “syﬁg request is acknowledged”
‘every ?
=> class memory automata
req req ack req ack ack ack req
3 5 3 4 2 4 5 7
qo qo0 4o do do do q1 q1 q1
1 1 5 5 4 4 4 4 4
— 3 — 3 — v = =

| Ne |
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Class Memory Automata

[Bjorklund & Schwentick, 2007]

A: (QvKH7QO7F)
o () finite set of states

® (o initial state
® transition relation:
p q—¢

q is current state
p is state after last position with same data value

Qa /
q —(
q is current state
data value occurs for the first time

14



Class Memory Automata

[Bjorklund & Schwentick, 2007]

A=

(Qam H7QO717)
o () finite set of states

® (o initial state
e transition relation:
<~
p q—( qg—q

q is current state

q is current state

p is state after last position with same data value data value occurs for the first time

= F:(FN7F+1)

sets of final states

14



PLJ::{Ql}
Fy1={q}
L(A) =

Class Memory Automata

[Bjorklund & Schwentick, 2007]

4o req do
qo qo ack d1
qo q1 ack d1

" every process sends one request, which is acknowledged,
every acknowledgment is preceded by a request, and req*ack* ”

15



Fo={q}
iy =1{q1}
L(A) =

Class Memory Automata

[Bjorklund & Schwentick, 2007]

do req 4o
qo qo ack d1
qo q1 ack d1

A\

qo

req
8

req
5

req
3

req
A

ack
3

ack
A

ack
5

every process sends one request, which is acknowledged,
every acknowledgment is preceded by a request, and req*ack* ”

ack
8
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[Bjorklund & Schwentick, 2007]

Fo={q}
iy =1{q1}
L(A) =

do req 4o
qo qo ack d1
qo q1 ack d1

A\

every process sends one request, which is acknowledged,
every acknowledgment is preceded by a request, and req*ack* ”

|

i
req req req req ack ack ack ack

8 5 3 4 3 4 5 8

do qo qdo
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do req 4o
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<41

i

req req req
8 5 3
4o do qo qo
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A

ack
3

ack
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Class Memory Automata

[Bjorklund & Schwentick, 2007]

do req 4o
qo qo ack d1
qo q1 ack d1

A\

<41

N

req req req req
8 5 3 4
4o do qo qo qo

ack
3

ack
/i

ack
5

every process sends one request, which is acknowledged,
every acknowledgment is preceded by a request, and req*ack* ”

ack
8
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Class Memory Automata

[Bjorklund & Schwentick, 2007]

do req 4o
qo qo ack d1
qo q1 ack d1

A\

~~
reQq req req req ack
8 5 3 4 3
40 qdo qo 40 q0 d1

ack
/i

ack
5

every process sends one request, which is acknowledged,
every acknowledgment is preceded by a request, and req*ack* ”

ack
8
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Class Memory Automata

[Bjorklund & Schwentick, 2007]

do req 4o
qo qo ack d1
qo q1 ack d1

A\

<
req req req req ack ack
8 5 3 4 3 4
40 qdo qo 40 q0 d1 d1

ack
5

every process sends one request, which is acknowledged,
every acknowledgment is preceded by a request, and req*ack* ”

ack
8
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Class Memory Automata

[Bjorklund & Schwentick, 2007]

qdo req qo

~={a} qo qdo ack q1

Fiy ={q1} 40 q1 ack q1
L(A) = " every process sends one request, which is acknowledged,

every acknowledgment is preceded by a request, and req*ack* ”

o A

req req req req ack ack ack ack

4o qo qo qo 4o d1 di d1
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L(A) =

Class Memory Automata

[Bjorklund & Schwentick, 2007]

do req 4o
qo qo ack d1
qo q1 ack d1

A\

every process sends one request, which is acknowledged,
every acknowledgment is preceded by a request, and req*ack* ”

<~
N
req req req req ack ack ack ack
8 5 3 4 3 4 5 8
40 qdo qo 40 q0 d1 q1 q1 d1
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Class Memory Automata

[Bjorklund & Schwentick, 2007]

A . USRI TRENSS
QO req qO
Fo={aq} 90 qo ack d1
F‘|‘1 — {Q1} 4o qdi ack q1
L( A) _ every process sends one request, which is acknowledged,

every acknowledgment is preceded by a request, and req*ack* ”

... and requests are acknowledged
in the order they are received ?

req req req req ack ack ack ack
8 5 3 4 3 4 5 8

do qo qo qo 4o d1 q1 d1 d1
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Class Memory Automata

[Bjorklund & Schwentick, 2007]

A . USRI TRENSS
qo req qO
Fo={aq} 90 qo ack d1
F‘|‘1 — {Q1} 4o qdi ack q1
L( A) _ every process sends one request, which is acknowledged,

every acknowledgment is preceded by a request, and req*ack* ”

... and requests are acknowledged
in the order they are received ?

=> class register automata

req req req req ack ack ack ack
8 5 3 4 3 4 5 8

do qo qo qo 4o d1 q1 d1 d1
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Class Register Automata

over S = {<1,...,<n}

A: (Qv&ﬁpC_ZOvF)
@, finite set of states

- | aog - RS

..... “‘c -ﬂmgu:RG!-_A\c_nn

11 hiile oo 1 UV i i69l3i6l3

transition relation:

d1 .« .. dn (CL, q/)
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Class Register Automata

over S = {<1,...,<n}

A = (Q,KH,%,F)

Q) finite set of states o = (F,,,.

LB ‘C'A:-!-:—-: - ~d4 _A,_-c -_AA,A::P'!'A-!‘!:
11 RIRARAEEC A YA iCHlDiOIO

transition relation:
__ ¢an be missing

L Fq )
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Class Register Automata
over S = {41,...,47,,}
A= (vaﬁvﬁvF) G
Q) finite set of states o F=(F4,,....F4 )
i) finite-set-of-registers- ® G € B(“¢ < N”)

transition relation:
__ ¢an be missing
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Class Register Automata

over S = {<{1,...,<p}
A = (QvRvﬁvﬁvF) G

@, finite set of states ® ['=(Fq,,...,Fq,)

R finite set of registers ® G € B(“q < N7)

transition relation:
_ can be missing
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A = (QaRvﬁava) G

® () finite set of states o F=(F4,,....F4 )
® R finite set of registers ® G € B(“¢ < N7)
o transition relation:

_ can be missing

guard 41 y dn (ayq")

guard € B(((S x R)U{1,..., m})?)
contents of r; at <1 = contents of r; at <o

(<1,71) = (g, 12) "



Class Register Automata

over S = {<1,...,<n}

A = (QaRvﬁava) G

® () finite set of states o F=(F4,,....F4 )
® R finite set of registers ® G € B(“¢ < N7)
o transition relation:

_ can be missing

/
guard 41 y dn (a,q) upd
guard € B(((S x R)U{1,...,m})?) upd : B — ((S x R)U{L,..., m})
contents of r at <1 = contents of r> at <o new value of r; := value of rz at <2

(<1,71) = (Q2,72) upd(r1) = (<2,72) »



Class Regls’rer Aufoma’ra

Input rarget
Fo={q} (req.d) | qo |71 :=
Foi={q} qo (req,d) oy ri:=d ro:=(<41,71)
G = true qdo qdo (<N, 7“2) = | (ack , d) d1 r1 =
Qo | @1 |(R~y72) = (R41,71)| (ack,d) | @1 | 7m1=

\\

L(A) = every process sends one request, which is acknowledged,
~ every acknowledgment is preceded by a request, and req*ack* ”

... and requests are acknowledged
in the order they are received !

req req req req ack ack ack ack
8 5 3 4 8 5 3 4
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@ EMSO(S) — class register automata ?
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Class Register Automata win ges

over S = {<1,...,<n}

A=(Q,R,—, F,G)

@, finite set of states ® ['=(Fq,,...,Fq,)
R finite set of registers ® G € B(“¢ < N7)
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Class Register Automata win ges

over S = {<1,...,<n}

A=(Q,R,—, F,G)

@, finite set of states ® ['=(Fq,,...,Fq,)
R finite set of registers ® G € B(“q < N7)

transition relation:
<1
<n
/\ /
guard 41 y dn (a,q) upd

upd : R — (S x R)U{1,..., m})

guessing register automata: U {gUGSS}

[Kaminski, Zeitlin 2010]
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Class Register Automata win ges

Theorem: For every signature S, EMSO(S) € 4CRA(S).

Proof:

@ Use Hanf's Theorem (1965):
normal form of first-order formulas

@ Sufficient fo detect local patterns and count them up to

some threshold ) 1

@ Local pattern:

@ => Build class register automaton that detects spheres
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Sphere Automaton

(al,dl) (Gq,dl) (al,dl) (CL2,CZ2) (CL2,CZ2)

~

Q. Q» (P

How can we be sure that a cycle is closed?

Suppose it is not closed.

1) we carry along labels and data values
2) relations are monotone

=> infinite descending chain 4
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From Automata to Logic

(m=1)

MSO(< 1) ; RA

CRA(<41,<~) € MSO(=<41, <)
gCRA(<41,<~) € MSO(=<41,<~) ?

MSO (<41, <) € gCRA(<41, <)
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Class register automata subsume
dynamic communicating automata [B., Hélouet, 2010]

o upd(r) = (Csg, T) receive process id

8 (<procs”) = (Cmsg,T0) receive from r

Finitely branching transition system
=> partial satisfiability checking

Tool to show that a property is not EMSO-definable

Study of combined expressive power of existing concepts
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Conclusion

@ General framework for specification and
implementation of data-word languages

@ Synthesis of dynamic communicating systems

@ Next: synthesize more practical automata
=> restricted specification languages
=> temporal logics
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