
An automaton over data words 
that captures EMSO logic

Benedikt Bollig
LSV, ENS Cachan & CNRS

Automata, Concurrency and Timed Systems (ACTS) III

Chennai Mathematical Institute, January 27–29, 2011



Data words
finite words over Σ×Dm

finite infinite m ≥ 0

2

label data values



Data words

XML          tag             contents 

finite words over Σ×Dm

finite infinite m ≥ 0

2

m = 1

label data values



Data words

m = 1

XML          tag             contents 

finite words over Σ×Dm

finite infinite m ≥ 0

≥0time         action              ℝ      

2

m = 1

label data values



Data words

m = 1

XML          tag             contents 

finite words over Σ×Dm

finite infinite m ≥ 0

m = 2

≥0time         action              ℝ      

messages   { ! , ? , fork }      ℕ

2

fork
1
2

fork
2
3

!
2
1

?
1
2

!
1
3

?
3
1

m = 1

label data values



Automata vs. Logic 

3



Automata vs. Logic 
Logic

Specifying properties

Declarative (what should happen)

3



Automata vs. Logic 
Logic

Specifying properties

Declarative (what should happen)

Automata

Implementation model (how it should happen)

Tool for checking satisfiability

3



Automata vs. Logic 
Logic

Specifying properties

Declarative (what should happen)

Automata

Implementation model (how it should happen)

Tool for checking satisfiability

Looking for an expressive logic with reasonable 
implementation model (one-way, non-deterministic)

3



Logic



MSO logic for data words
xposition carries a ∈ Σ



ϕ1 ∨ ϕ2 ¬ϕ ∃Xϕ∃xϕ

x ≺+1 y y is direct successor of x



a(x)

5

x ∈ X



MSO logic for data words
xposition carries a ∈ Σ



ϕ1 ∨ ϕ2 ¬ϕ ∃Xϕ∃xϕ

x ≺+1 y y is direct successor of x



a(x)

5



k, l ∈ {1, . . . ,m}

k
l
-th data value at 

equals
x

-th data value at y
dk(x) = dl(y)

x ∈ X



MSO logic for data words
xposition carries a ∈ Σ



ϕ1 ∨ ϕ2 ¬ϕ ∃Xϕ∃xϕ

x ≺+1 y y is direct successor of x



   too expressive
=> restrict access to data values
=> relate positions that automaton can access

a(x)

5



k, l ∈ {1, . . . ,m}

k
l
-th data value at 

equals
x

-th data value at y
dk(x) = dl(y)

x ∈ X



MSO logic for data words

6

Signature: finite set of relation symbols � such that



MSO logic for data words

6

Signature: finite set of relation symbols � such that

�w ⊆ < 



MSO logic for data words

6

Signature: finite set of relation symbols � such that

 
for all i there is at most one j such that i�w j

out-degree at most 1

�w ⊆ < 



MSO logic for data words

6

Signature: finite set of relation symbols � such that

 
for all i there is at most one j such that i�w j

out-degree at most 1

 

for all i there is at most one j such that j �w i

in-degree at most 1

�w ⊆ < 



MSO logic for data words

6

Signature: finite set of relation symbols � such that

 
for all i there is at most one j such that i�w j

out-degree at most 1

 

for all i there is at most one j such that j �w i

in-degree at most 1

 monotonicity
i�w j ∧ i� �w j� ∧ wi = wi� ∧ wj = wj�

=⇒ i < i� iff j < j�

�w ⊆ < 



MSO logic for data words

7



MSO logic for data words

7

≺+1

a
1

a
4

a
2

b
1

b
4

b
2

≺+1 ≺+1 ≺+1 ≺+1 ≺+1direct successor relation



MSO logic for data words

7

≺+1

a
1

a
4

a
2

b
1

b
4

b
2

≺+1 ≺+1 ≺+1 ≺+1 ≺+1direct successor relation

≺∼

a
1

a
4

a
2

b
1

b
4

b
2

≺∼ ≺∼ ≺∼

successive positions with the same data value



MSO logic for data words

7

≺+1

a
1

a
4

a
2

b
1

b
4

b
2

≺+1 ≺+1 ≺+1 ≺+1 ≺+1direct successor relation

≺∼

a
1

a
4

a
2

b
1

b
4

b
2

≺∼ ≺∼ ≺∼

successive positions with the same data value

!
1
2

!
2
3

!
1
2

?
3
2

?
2
1

?
2
1

�msg

�msg

�msg

≺proc

≺proc
≺proc

message-passing system (m=2)



EMSO(S)

xposition carries a ∈ Σ



a(x)

x� y

ϕ1 ∨ ϕ2 ¬ϕ ∃xϕ x = y

where S is any signature

� ∈ S
dk(x) = dl(x) local reasoning about data values

8

x ∈ X



EMSO(S)

xposition carries a ∈ Σ



a(x)

x� y

ϕ1 ∨ ϕ2 ¬ϕ ∃xϕ x = y

where S is any signature

� ∈ S

Formula: 

first-order 

∃X1 . . . ∃Xnϕ

dk(x) = dl(x) local reasoning about data values

8

x ∈ X



Example formulas (m=1)
req
4

req
4

req
2

ack
1

ack
4

req
2

9



Example formulas (m=1)
there is a request that is acknowledged

∃x∃y (req(x) ∧ ack(y) ∧ x ≺∼ y) req
4

req
4

req
2

ack
1

ack
4

req
2

9



Example formulas (m=1)
there is a request that is acknowledged

∃x∃y (req(x) ∧ ack(y) ∧ x ≺∼ y) req
4

req
4

req
2

ack
1

ack
4

req
2

≺∼

≺∼ ✔⊨

x y

9



Example formulas (m=1)
there is a request that is acknowledged

every request is acknowledged (before next request)

∃x∃y (req(x) ∧ ack(y) ∧ x ≺∼ y)

∀x∃y (req(x) → ack(y) ∧ x ≺∼ y)

req
4

req
4

req
2

ack
1

ack
4

req
2

≺∼

≺∼ ✔⊨

x y

9



Example formulas (m=1)
there is a request that is acknowledged

every request is acknowledged (before next request)

∃x∃y (req(x) ∧ ack(y) ∧ x ≺∼ y)

∀x∃y (req(x) → ack(y) ∧ x ≺∼ y)

two successive requests are acknowledged                     
in the order they were received

∀x∀y ( req(x) ∧ req(y) ∧ x ≺+1 y

→ ∃x�∃x� (ack(x�) ∧ ack(y�) ∧ x ≺∼ x� ≺+1 y� ∧ y ≺∼ y�))

req
4

req
4

req
2

ack
1

ack
4

req
2

≺∼

≺∼ ✔⊨

x y

9



Example formulas (m=1)
there is a request that is acknowledged

every request is acknowledged (before next request)

∃x∃y (req(x) ∧ ack(y) ∧ x ≺∼ y)

∀x∃y (req(x) → ack(y) ∧ x ≺∼ y)

two successive requests are acknowledged                     
in the order they were received

∀x∀y ( req(x) ∧ req(y) ∧ x ≺+1 y

→ ∃x�∃x� (ack(x�) ∧ ack(y�) ∧ x ≺∼ x� ≺+1 y� ∧ y ≺∼ y�))

req
1

req
4

req
2

ack
1

ack
4

ack
2

≺∼ ≺∼

≺+1
≺+1

x y x� y�

⊨

req
4

req
4

req
2

ack
1

ack
4

req
2

≺∼

≺∼ ✔⊨

x y

9



Example formulas (m=1)
there is a request that is acknowledged

every request is acknowledged (before next request)

∃x∃y (req(x) ∧ ack(y) ∧ x ≺∼ y)

∀x∃y (req(x) → ack(y) ∧ x ≺∼ y)

two successive requests are acknowledged                     
in the order they were received

∀x∀y ( req(x) ∧ req(y) ∧ x ≺+1 y

→ ∃x�∃x� (ack(x�) ∧ ack(y�) ∧ x ≺∼ x� ≺+1 y� ∧ y ≺∼ y�))

req
1

req
4

req
2

ack
1

ack
4

ack
2

≺∼ ≺∼

≺+1
≺+1

x y x� y�

⊨

req
4

req
4

req
2

ack
1

ack
4

req
2

≺∼

≺∼ ✔⊨

x y

Goal:
non-deterministic

one way automaton for
this kind of property

9



From Logic to Automata
[related works, most of them for m=1]

10



From Logic to Automata
[related works, most of them for m=1]

MSO → register automata (restricted use of variables)     
[Bouyer 2000]

10



From Logic to Automata
[related works, most of them for m=1]

MSO → register automata (restricted use of variables)     
[Bouyer 2000]

MSO vs. two-way and pebble automata                  
[Neven, Schwentick, Vianu 2004]

10



From Logic to Automata
[related works, most of them for m=1]

MSO → register automata (restricted use of variables)     
[Bouyer 2000]

MSO vs. two-way and pebble automata                  
[Neven, Schwentick, Vianu 2004]

LTL with freeze quantifier → register automata                  
[Demri, Lazic 2006]

10



From Logic to Automata
[related works, most of them for m=1]

MSO → register automata (restricted use of variables)     
[Bouyer 2000]

MSO vs. two-way and pebble automata                  
[Neven, Schwentick, Vianu 2004]

LTL with freeze quantifier → register automata                  
[Demri, Lazic 2006]

2EMSO                       → data automata/class memory automata           
[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]                                  
[Björklund, Schwentick 2007]

(≺∼,≺+1, <,≺∗
∼)

10



From Logic to Automata
[related works, most of them for m=1]

MSO → register automata (restricted use of variables)     
[Bouyer 2000]

MSO vs. two-way and pebble automata                  
[Neven, Schwentick, Vianu 2004]

LTL with freeze quantifier → register automata                  
[Demri, Lazic 2006]

2EMSO                       → data automata/class memory automata           
[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]                                  
[Björklund, Schwentick 2007]

(≺∼,≺+1, <,≺∗
∼)

Regular XPath → class automata                    
[Bojanczyk, Lasota 2010]

10



From Logic to Automata
[related works, most of them for m=1]

MSO → register automata (restricted use of variables)     
[Bouyer 2000]

MSO vs. two-way and pebble automata                  
[Neven, Schwentick, Vianu 2004]

LTL with freeze quantifier → register automata                  
[Demri, Lazic 2006]

2EMSO                       → data automata/class memory automata           
[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]                                  
[Björklund, Schwentick 2007]

(≺∼,≺+1, <,≺∗
∼)

Regular XPath → class automata                    
[Bojanczyk, Lasota 2010]

EMSO(S) → ? (non-deterministic, one-way)                                                
(e.g., EMSO            )(≺∼,≺+1)

10



Automata



12



Register Automata
[Kaminski & Francez, 1994]

A = (Q,R,−→, q0, F )

 finite set of states
initial state, set of final states

Q

q0, F

12



Register Automata
[Kaminski & Francez, 1994]

A = (Q,R,−→, q0, F )

 finite set of states
initial state, set of final states

Q

q0, F

finite set of registersR

12



Register Automata
[Kaminski & Francez, 1994]

A = (Q,R,−→, q0, F )

 finite set of states
initial state, set of final states

Q

q0, F

finite set of registersR

(q, guard)
a−→ (q�, upd)

 transition relation:

12



Register Automata
[Kaminski & Francez, 1994]

A = (Q,R,−→, q0, F )

 finite set of states
initial state, set of final states

Q

q0, F

finite set of registersR

(q, guard)
a−→ (q�, upd)

 transition relation:

guard ∈ B(R)

r1 ∧ ¬r2
current value is in 1st but not in 2nd register:

12



Register Automata
[Kaminski & Francez, 1994]

A = (Q,R,−→, q0, F )

 finite set of states
initial state, set of final states

Q

q0, F

finite set of registersR

(q, guard)
a−→ (q�, upd)

 transition relation:

guard ∈ B(R) upd ⊆ R

r1 ∧ ¬r2 {r1, r2}
current value is in 1st but not in 2nd register: write current value in both registers:

12



Register Automata
[Kaminski & Francez, 1994]

source guard label target update
req , ack

req

ack

req , ack

q0

q1

q0
q0

q0
q0

q1
q1

r

{r}

A

L(A) = ‶some request is acknowledged″

D = ℕ
F = {q1}

Σ = {req , ack}

13



Register Automata
[Kaminski & Francez, 1994]

source guard label target update
req , ack

req

ack

req , ack

q0

q1

q0
q0

q0
q0

q1
q1

r

{r}

A

L(A) = ‶some request is acknowledged″

D = ℕ
F = {q1}

Σ = {req , ack}

✔
⇒

→
⬇

13



Register Automata
[Kaminski & Francez, 1994]

→

q0

r ⊥

source guard label target update
req , ack

req

ack

req , ack

q0

q1

q0
q0

q0
q0

q1
q1

r

{r}

A

L(A) = ‶some request is acknowledged″

D = ℕ
F = {q1}

Σ = {req , ack}

req
8

req
5

ack
3

req
4

ack
2

ack
4

ack
5

req
7

✔
⇒

→
⬇

13



Register Automata
[Kaminski & Francez, 1994]

→

q0

r ⊥ ⊥

q0

source guard label target update
req , ack

req

ack

req , ack

q0

q1

q0
q0

q0
q0

q1
q1

r

{r}

A

L(A) = ‶some request is acknowledged″

D = ℕ
F = {q1}

Σ = {req , ack}

req
8

req
5

ack
3

req
4

ack
2

ack
4

ack
5

req
7

✔
⇒

→
⬇

13



Register Automata
[Kaminski & Francez, 1994]

5

→ ⬇ →

q0

r ⊥ ⊥

q0q0

source guard label target update
req , ack

req

ack

req , ack

q0

q1

q0
q0

q0
q0

q1
q1

r

{r}

A

L(A) = ‶some request is acknowledged″

D = ℕ
F = {q1}

Σ = {req , ack}

req
8

req
5

ack
3

req
4

ack
2

ack
4

ack
5

req
7

✔
⇒

→
⬇

13



Register Automata
[Kaminski & Francez, 1994]

5 5

→ ⬇ →

q0

r ⊥ ⊥

q0q0q0

source guard label target update
req , ack

req

ack

req , ack

q0

q1

q0
q0

q0
q0

q1
q1

r

{r}

A

L(A) = ‶some request is acknowledged″

D = ℕ
F = {q1}

Σ = {req , ack}

req
8

req
5

ack
3

req
4

ack
2

ack
4

ack
5

req
7

✔
⇒

→
⬇

13



Register Automata
[Kaminski & Francez, 1994]

5 5 4

→ ⬇ → ⬇ →

q0

r ⊥ ⊥

q0q0q0 q0

source guard label target update
req , ack

req

ack

req , ack

q0

q1

q0
q0

q0
q0

q1
q1

r

{r}

A

L(A) = ‶some request is acknowledged″

D = ℕ
F = {q1}

Σ = {req , ack}

req
8

req
5

ack
3

req
4

ack
2

ack
4

ack
5

req
7

✔
⇒

→
⬇

13



Register Automata
[Kaminski & Francez, 1994]

5 5 4 4

→ ⬇ → ⬇ →

q0

r ⊥ ⊥

q0q0q0 q0q0

source guard label target update
req , ack

req

ack

req , ack

q0

q1

q0
q0

q0
q0

q1
q1

r

{r}

A

L(A) = ‶some request is acknowledged″

D = ℕ
F = {q1}

Σ = {req , ack}

req
8

req
5

ack
3

req
4

ack
2

ack
4

ack
5

req
7

✔
⇒

→
⬇

13



Register Automata
[Kaminski & Francez, 1994]

5 5 4 4 4

→ ⬇ → ⬇ → ✔

q0

r ⊥ ⊥

q0q0q0 q0q0

source guard label target update
req , ack

req

ack

req , ack

q0

q1

q0
q0

q0
q0

q1
q1

r

{r}

A

L(A) = ‶some request is acknowledged″

D = ℕ
F = {q1}

Σ = {req , ack}

req
8

req
5

ack
3

req
4

ack
2

ack
4

ack
5

req
7

✔
⇒

→
⬇

13

q1



Register Automata
[Kaminski & Francez, 1994]

5 5 4 4 4 4

→ ⬇ → ⬇ → ✔ ⇒

q0

r ⊥ ⊥

q0q0q0 q0q0 q1

source guard label target update
req , ack

req

ack

req , ack

q0

q1

q0
q0

q0
q0

q1
q1

r

{r}

A

L(A) = ‶some request is acknowledged″

D = ℕ
F = {q1}

Σ = {req , ack}

req
8

req
5

ack
3

req
4

ack
2

ack
4

ack
5

req
7

✔
⇒

→
⬇

13

q1



Register Automata
[Kaminski & Francez, 1994]

5 5 4 4 4 4 4

→ ⬇ → ⬇ → ✔ ⇒ ⇒

q0

r ⊥ ⊥

q0q0q0 q0q0 q1q1

source guard label target update
req , ack

req

ack

req , ack

q0

q1

q0
q0

q0
q0

q1
q1

r

{r}

A

L(A) = ‶some request is acknowledged″

D = ℕ
F = {q1}

Σ = {req , ack}

req
8

req
5

ack
3

req
4

ack
2

ack
4

ack
5

req
7

✔
⇒

→
⬇

13

q1



Register Automata
[Kaminski & Francez, 1994]

5 5 4 4 4 4 4

→ ⬇ → ⬇ → ✔ ⇒ ⇒

q0

r ⊥ ⊥

q0q0q0 q0q0 q1q1

source guard label target update
req , ack

req

ack

req , ack

q0

q1

q0
q0

q0
q0

q1
q1

r

{r}

A

L(A) = ‶some request is acknowledged″

D = ℕ
F = {q1}

Σ = {req , ack}

req
8

req
5

ack
3

req
4

ack
2

ack
4

ack
5

req
7

✔
⇒

→
⬇

every ?

13

q1



Register Automata
[Kaminski & Francez, 1994]

5 5 4 4 4 4 4

→ ⬇ → ⬇ → ✔ ⇒ ⇒

q0

r ⊥ ⊥

q0q0q0 q0q0 q1q1

source guard label target update
req , ack

req

ack

req , ack

q0

q1

q0
q0

q0
q0

q1
q1

r

{r}

A

L(A) = ‶some request is acknowledged″

D = ℕ
F = {q1}

Σ = {req , ack}

req
8

req
5

ack
3

req
4

ack
2

ack
4

ack
5

req
7

✔
⇒

→
⬇

every ? => class memory automata

13

q1



Class Memory Automata
[Björklund & Schwentick, 2007]

A = (Q,R,−→, q0, F )

 finite set of states
initial state

Q
 q0

14



Class Memory Automata
[Björklund & Schwentick, 2007]

A = (Q,R,−→, q0, F )

 finite set of states
initial state

Q


finite set of registersR

q0

14



Class Memory Automata
[Björklund & Schwentick, 2007]

A = (Q,R,−→, q0, F )

 finite set of states
initial state

Q


finite set of registersR

 transition relation:

q is current state
p is state after last position with same data value

p q
a−→ q�

q0

≺∼

14



Class Memory Automata
[Björklund & Schwentick, 2007]

A = (Q,R,−→, q0, F )

 finite set of states
initial state

Q


finite set of registersR

 transition relation:

q is current state
p is state after last position with same data value

q
a−→ q�

q is current state
data value occurs for the first time

p q
a−→ q�

q0

≺∼

14



Class Memory Automata
[Björklund & Schwentick, 2007]

A = (Q,R,−→, q0, F )

 finite set of states
initial state

Q


finite set of registersR

 transition relation:

q is current state
p is state after last position with same data value

q
a−→ q�

q is current state
data value occurs for the first time

p q
a−→ q�

q0

sets of final states F = (F∼, F+1)

≺∼

14



A

Class Memory Automata
[Björklund & Schwentick, 2007]

guard label target update
req
ack

ack

q0
q1

q0

q0
q0

q1q1

L(A) = ‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0F∼ = {q1}
F+1 = {q1}

≺∼ ≺+1

15



q0

A

req
8

req
5

req
3

req
4

ack
3

ack
4

ack
5

ack
8

Class Memory Automata
[Björklund & Schwentick, 2007]

guard label target update
req
ack

ack

q0
q1

q0

q0
q0

q1q1

L(A) = ‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0F∼ = {q1}
F+1 = {q1}

≺∼ ≺+1

15



q0 q0

A

req
8

req
5

req
3

req
4

ack
3

ack
4

ack
5

ack
8

Class Memory Automata
[Björklund & Schwentick, 2007]

guard label target update
req
ack

ack

q0
q1

q0

q0
q0

q1q1

L(A) = ‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0F∼ = {q1}
F+1 = {q1}

≺∼ ≺+1

15



q0 q0q0

A

req
8

req
5

req
3

req
4

ack
3

ack
4

ack
5

ack
8

Class Memory Automata
[Björklund & Schwentick, 2007]

guard label target update
req
ack

ack

q0
q1

q0

q0
q0

q1q1

L(A) = ‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0F∼ = {q1}
F+1 = {q1}

≺∼ ≺+1

≺+1

15



q0 q0q0q0

A

req
8

req
5

req
3

req
4

ack
3

ack
4

ack
5

ack
8

Class Memory Automata
[Björklund & Schwentick, 2007]

guard label target update
req
ack

ack

q0
q1

q0

q0
q0

q1q1

L(A) = ‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0F∼ = {q1}
F+1 = {q1}

≺∼ ≺+1

≺+1

15



q0 q0q0q0 q0

A

req
8

req
5

req
3

req
4

ack
3

ack
4

ack
5

ack
8

Class Memory Automata
[Björklund & Schwentick, 2007]

guard label target update
req
ack

ack

q0
q1

q0

q0
q0

q1q1

L(A) = ‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0F∼ = {q1}
F+1 = {q1}

≺∼ ≺+1

≺+1

15



q0 q0q0q0 q0

A

req
8

req
5

req
3

req
4

ack
3

ack
4

ack
5

ack
8

Class Memory Automata
[Björklund & Schwentick, 2007]

guard label target update
req
ack

ack

q0
q1

q0

q0
q0

q1q1

L(A) = ‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0F∼ = {q1}
F+1 = {q1}

q1

≺∼

≺∼ ≺+1

≺+1

15



q0 q0q0q0 q0

A

req
8

req
5

req
3

req
4

ack
3

ack
4

ack
5

ack
8

Class Memory Automata
[Björklund & Schwentick, 2007]

guard label target update
req
ack

ack

q0
q1

q0

q0
q0

q1q1

L(A) = ‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0F∼ = {q1}
F+1 = {q1}

q1 q1

≺∼

≺∼ ≺+1

≺+1

15



q0 q0q0q0 q0 q1

A

req
8

req
5

req
3

req
4

ack
3

ack
4

ack
5

ack
8

Class Memory Automata
[Björklund & Schwentick, 2007]

guard label target update
req
ack

ack

q0
q1

q0

q0
q0

q1q1

L(A) = ‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0F∼ = {q1}
F+1 = {q1}

q1 q1

≺∼

≺∼ ≺+1

≺+1

15



q0 q0q0q0 q0 q1q1

A

req
8

req
5

req
3

req
4

ack
3

ack
4

ack
5

ack
8

Class Memory Automata
[Björklund & Schwentick, 2007]

guard label target update
req
ack

ack

q0
q1

q0

q0
q0

q1q1

L(A) = ‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0F∼ = {q1}
F+1 = {q1}

q1 q1

≺∼

≺∼ ≺+1

≺+1

15



q0 q0q0q0 q0 q1q1

A

req
8

req
5

req
3

req
4

ack
3

ack
4

ack
5

ack
8

Class Memory Automata
[Björklund & Schwentick, 2007]

guard label target update
req
ack

ack

q0
q1

q0

q0
q0

q1q1

L(A) = ‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0F∼ = {q1}
F+1 = {q1}

q1 q1

≺∼ ≺+1

... and requests are acknowledged 
in the order they are received ?

15



q0 q0q0q0 q0 q1q1

A

req
8

req
5

req
3

req
4

ack
3

ack
4

ack
5

ack
8

Class Memory Automata
[Björklund & Schwentick, 2007]

guard label target update
req
ack

ack

q0
q1

q0

q0
q0

q1q1

L(A) = ‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0F∼ = {q1}
F+1 = {q1}

q1 q1

≺∼ ≺+1

... and requests are acknowledged 
in the order they are received ?

=> class register automata

15



Class Register Automata

A = (Q,R,−→, q0, F )

 finite set of statesQ

finite set of registersR

 transition relation:

over S = {             }�1, . . . ,�n

16



Class Register Automata

A = (Q,R,−→, q0, F )

 finite set of statesQ

finite set of registersR

 transition relation:

over S = {             }�1, . . . ,�n

�1

�n

q1 . . . qn (a, q�)

16



Class Register Automata

A = (Q,R,−→, q0, F )

 finite set of statesQ

finite set of registersR

 transition relation:

over S = {             }�1, . . . ,�n

can be missing
�1

�n

q1 . . . qn (a, q�)

16



Class Register Automata

A = (Q,R,−→, q0, F )

 finite set of statesQ

finite set of registersR

 transition relation:

over S = {             }�1, . . . ,�n

can be missing
�1

�n

q1 . . . qn (a, q�)

16



Class Register Automata

A = (Q,R,−→, q0, F )

 finite set of statesQ

finite set of registersR

 transition relation:

over S = {             }�1, . . . ,�n

can be missing

 F = (F�1 , . . . , F�n)

�1

�n

q1 . . . qn (a, q�)

16



Class Register Automata

A = (Q,R,−→, q0, F )

 finite set of statesQ

finite set of registersR

 transition relation:

over S = {             }�1, . . . ,�n

can be missing

 F = (F�1 , . . . , F�n)

�1

�n

q1 . . . qn (a, q�)

G ∈ B(“q ≤ N”)

G

16



Class Register Automata

A = (Q,R,−→, q0, F )

 finite set of statesQ

finite set of registersR

 transition relation:

over S = {             }�1, . . . ,�n

can be missing

 F = (F�1 , . . . , F�n)

�1

�n

q1 . . . qn (a, q�)

G ∈ B(“q ≤ N”)

G

16



Class Register Automata

A = (Q,R,−→, q0, F )

 finite set of statesQ

finite set of registersR

 transition relation:

over S = {             }�1, . . . ,�n

can be missing

 F = (F�1 , . . . , F�n)

guard

contents of r1 at       =�1 �2contents of r2 at 

(�1, r1) = (�2, r2)

�1

�n

q1 . . . qn (a, q�)

G ∈ B(“q ≤ N”)

G

16

guard ∈ B(((S ×R) ∪ {1, . . . ,m})2)



Class Register Automata

A = (Q,R,−→, q0, F )

 finite set of statesQ

finite set of registersR

 transition relation:

over S = {             }�1, . . . ,�n

can be missing

 F = (F�1 , . . . , F�n)

guard

contents of r1 at       =�1 �2contents of r2 at 

(�1, r1) = (�2, r2)

�1

�n

q1 . . . qn (a, q�)

upd : R � ((S ×R) ∪ {1, . . . ,m})
new value of r1 := value of r2 at �2

upd

G ∈ B(“q ≤ N”)

G

16

guard ∈ B(((S ×R) ∪ {1, . . . ,m})2)

upd(r1) = (�2, r2)



A

req
8

req
5

req
3

req
4

ack
8

ack
5

ack
3

ack
4

Class Register Automata
guard input target update

(req , d)
(req , d)

(ack , d)

(ack , d)

q0

q0 q1

L(A) =
‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0
F∼ = {q1}
F+1 = {q1}

≺∼ ≺+1

... and requests are acknowledged 
in the order they are received !

q0

q0
q0 q1 q1

r1 := d

G = true

r1 := d r2 := (≺+1, r1)

r1 := d

r1 := d

(≺∼, r2) = ⊥
(≺∼, r2) = (≺+1, r1)

17



state

A

req
8

req
5

req
3

req
4

ack
8

ack
5

ack
3

ack
4

Class Register Automata
guard input target update

(req , d)
(req , d)

(ack , d)

(ack , d)

q0

q0 q1

L(A) =
‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0
F∼ = {q1}
F+1 = {q1}

≺∼ ≺+1

... and requests are acknowledged 
in the order they are received !

q0

q0
q0 q1 q1

r1 := d

G = true

r1 := d r2 := (≺+1, r1)

r1 := d

r1 := d

(≺∼, r2) = ⊥
(≺∼, r2) = (≺+1, r1)

r1

r2
17



state

8

⊥

q0

A

req
8

req
5

req
3

req
4

ack
8

ack
5

ack
3

ack
4

Class Register Automata
guard input target update

(req , d)
(req , d)

(ack , d)

(ack , d)

q0

q0 q1

L(A) =
‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0
F∼ = {q1}
F+1 = {q1}

≺∼ ≺+1

... and requests are acknowledged 
in the order they are received !

q0

q0
q0 q1 q1

r1 := d

G = true

r1 := d r2 := (≺+1, r1)

r1 := d

r1 := d

(≺∼, r2) = ⊥
(≺∼, r2) = (≺+1, r1)

r1

r2
17



state

8 5

⊥ 8

q0q0

A

req
8

req
5

req
3

req
4

ack
8

ack
5

ack
3

ack
4

Class Register Automata
guard input target update

(req , d)
(req , d)

(ack , d)

(ack , d)

q0

q0 q1

L(A) =
‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0
F∼ = {q1}
F+1 = {q1}

≺∼ ≺+1

... and requests are acknowledged 
in the order they are received !

q0

q0
q0 q1 q1

r1 := d

G = true

r1 := d r2 := (≺+1, r1)

r1 := d

r1 := d

(≺∼, r2) = ⊥
(≺∼, r2) = (≺+1, r1)

r1

r2

≺+1

17



state

8 5 3

⊥ 8 5

q0q0q0

A

req
8

req
5

req
3

req
4

ack
8

ack
5

ack
3

ack
4

Class Register Automata
guard input target update

(req , d)
(req , d)

(ack , d)

(ack , d)

q0

q0 q1

L(A) =
‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0
F∼ = {q1}
F+1 = {q1}

≺∼ ≺+1

... and requests are acknowledged 
in the order they are received !

q0

q0
q0 q1 q1

r1 := d

G = true

r1 := d r2 := (≺+1, r1)

r1 := d

r1 := d

(≺∼, r2) = ⊥
(≺∼, r2) = (≺+1, r1)

r1

r2

≺+1

17



state

8 5 3 4

⊥ 8 5 3

q0q0q0 q0

A

req
8

req
5

req
3

req
4

ack
8

ack
5

ack
3

ack
4

Class Register Automata
guard input target update

(req , d)
(req , d)

(ack , d)

(ack , d)

q0

q0 q1

L(A) =
‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0
F∼ = {q1}
F+1 = {q1}

≺∼ ≺+1

... and requests are acknowledged 
in the order they are received !

q0

q0
q0 q1 q1

r1 := d

G = true

r1 := d r2 := (≺+1, r1)

r1 := d

r1 := d

(≺∼, r2) = ⊥
(≺∼, r2) = (≺+1, r1)

r1

r2

≺+1

17



state

8 5 3 4 8

⊥ 8 5 3 ⊥

q0q0q0 q0

A

req
8

req
5

req
3

req
4

ack
8

ack
5

ack
3

ack
4

Class Register Automata
guard input target update

(req , d)
(req , d)

(ack , d)

(ack , d)

q0

q0 q1

L(A) =
‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0
F∼ = {q1}
F+1 = {q1}

q1

≺∼ ≺+1

... and requests are acknowledged 
in the order they are received !

q0

q0
q0 q1 q1

r1 := d

G = true

r1 := d r2 := (≺+1, r1)

r1 := d

r1 := d

(≺∼, r2) = ⊥
(≺∼, r2) = (≺+1, r1)

r1

r2

≺∼

≺+1

17



state

8 5 3 4 8 5

⊥ 8 5 3 ⊥ ⊥

q0q0q0 q0

A

req
8

req
5

req
3

req
4

ack
8

ack
5

ack
3

ack
4

Class Register Automata
guard input target update

(req , d)
(req , d)

(ack , d)

(ack , d)

q0

q0 q1

L(A) =
‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0
F∼ = {q1}
F+1 = {q1}

q1 q1

≺∼ ≺+1

... and requests are acknowledged 
in the order they are received !

q0

q0
q0 q1 q1

r1 := d

G = true

r1 := d r2 := (≺+1, r1)

r1 := d

r1 := d

(≺∼, r2) = ⊥
(≺∼, r2) = (≺+1, r1)

r1

r2

≺∼

≺+1

17



state

8 5 3 4 8 5 3

⊥ 8 5 3 ⊥ ⊥ ⊥

q0q0q0 q0 q1

A

req
8

req
5

req
3

req
4

ack
8

ack
5

ack
3

ack
4

Class Register Automata
guard input target update

(req , d)
(req , d)

(ack , d)

(ack , d)

q0

q0 q1

L(A) =
‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0
F∼ = {q1}
F+1 = {q1}

q1 q1

≺∼ ≺+1

... and requests are acknowledged 
in the order they are received !

q0

q0
q0 q1 q1

r1 := d

G = true

r1 := d r2 := (≺+1, r1)

r1 := d

r1 := d

(≺∼, r2) = ⊥
(≺∼, r2) = (≺+1, r1)

r1

r2

≺∼

≺+1

17



state

8 5 3 4 8 5 3 4

⊥ 8 5 3 ⊥ ⊥ ⊥ ⊥

q0q0q0 q0 q1q1

A

req
8

req
5

req
3

req
4

ack
8

ack
5

ack
3

ack
4

Class Register Automata
guard input target update

(req , d)
(req , d)

(ack , d)

(ack , d)

q0

q0 q1

L(A) =
‶ every process sends one request, which is acknowledged,
  every acknowledgment is preceded by a request, and  req*ack* ″

q0
F∼ = {q1}
F+1 = {q1}

q1 q1

≺∼ ≺+1

... and requests are acknowledged 
in the order they are received !

q0

q0
q0 q1 q1

r1 := d

G = true

r1 := d r2 := (≺+1, r1)

r1 := d

r1 := d

(≺∼, r2) = ⊥
(≺∼, r2) = (≺+1, r1)

r1

r2

≺∼

≺+1

17



From Logic to Automata



From Logic to Automata
2EMSO                       = class memory automata             

[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]                                  
[Björklund, Schwentick 2007]

(≺∼,≺+1, <,≺∗
∼)

19



From Logic to Automata
2EMSO                       = class memory automata             

[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]                                  
[Björklund, Schwentick 2007]

(≺∼,≺+1, <,≺∗
∼)

EMSO(S) → class register automata ?

19



From Logic to Automata
2EMSO                       = class memory automata             

[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]                                  
[Björklund, Schwentick 2007]

(≺∼,≺+1, <,≺∗
∼)

EMSO(S) → class register automata ?

19

FO                CRA(≺1
∼,≺2

∼) �⊆ (≺1
∼,≺2

∼)



From Logic to Automata
2EMSO                       = class memory automata             

[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]                                  
[Björklund, Schwentick 2007]

(≺∼,≺+1, <,≺∗
∼)

EMSO(S) → class register automata ?

19

FO                CRA

1 1
-1

2
-1

2
-2-2

(≺1
∼,≺2

∼) �⊆ (≺1
∼,≺2

∼)

≺1
∼

≺2
∼



From Logic to Automata
2EMSO                       = class memory automata             

[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]                                  
[Björklund, Schwentick 2007]

(≺∼,≺+1, <,≺∗
∼)

EMSO(S) → class register automata ?

19

FO                CRA

1 1
-1

2
-1

2
-2-2

... ...

(≺1
∼,≺2

∼) �⊆ (≺1
∼,≺2

∼)

≺1
∼

≺2
∼



From Logic to Automata
2EMSO                       = class memory automata             

[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]                                  
[Björklund, Schwentick 2007]

(≺∼,≺+1, <,≺∗
∼)

EMSO(S) → class register automata ?

19

FO                CRA

1 1
-1

2
-1

2
-2

3 3
-3

4
-3

4
-4-4 -2

... ...

(≺1
∼,≺2

∼) �⊆ (≺1
∼,≺2

∼)

≺1
∼

≺2
∼



From Logic to Automata
2EMSO                       = class memory automata             

[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]                                  
[Björklund, Schwentick 2007]

(≺∼,≺+1, <,≺∗
∼)

EMSO(S) → class register automata ?

19

FO                CRA

1 1
-1

2
-1

2
-2

3 3
-3

4
-3

4
-4

same transition

-4 -2
... ...

(≺1
∼,≺2

∼) �⊆ (≺1
∼,≺2

∼)

≺1
∼

≺2
∼



From Logic to Automata
2EMSO                       = class memory automata             

[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]                                  
[Björklund, Schwentick 2007]

(≺∼,≺+1, <,≺∗
∼)

EMSO(S) → class register automata ?

19

FO                CRA

1 1
-1

2
-1

2
-2

3 3
-3

4
-3

4
-4

same transition

-4-2
... ...

(≺1
∼,≺2

∼) �⊆ (≺1
∼,≺2

∼)

≺1
∼

≺2
∼



From Logic to Automata
2EMSO                       = class memory automata             

[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]                                  
[Björklund, Schwentick 2007]

(≺∼,≺+1, <,≺∗
∼)

EMSO(S) → class register automata ?

19

FO                CRA

1 1
-1

2
-1

2
-2

3 3
-3

4
-3

4
-4

same transition

-4-2
... ...

(≺1
∼,≺2

∼) �⊆ (≺1
∼,≺2

∼)

≺1
∼

≺2
∼



From Logic to Automata
2EMSO                       = class memory automata             

[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]                                  
[Björklund, Schwentick 2007]

(≺∼,≺+1, <,≺∗
∼)

EMSO(S) → class register automata ?

19

FO                CRA

1 1
-1

2
-1

2
-2

3 3
-3

4
-3

4
-4

same transition

-4-2
... ...

(≺1
∼,≺2

∼) �⊆ (≺1
∼,≺2

∼)

=> CRA cannot 
detect cycles

≺1
∼

≺2
∼



From Logic to Automata
2EMSO                       = class memory automata             

[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]                                  
[Björklund, Schwentick 2007]

(≺∼,≺+1, <,≺∗
∼)

EMSO(S) → class register automata ?

19

FO                CRA

1 1
-1

2
-1

2
-2

3 3
-3

4
-3

4
-4

same transition

-4-2
... ...

(≺1
∼,≺2

∼) �⊆ (≺1
∼,≺2

∼)

=> CRA cannot 
detect cycles

=> guess
data values!

≺1
∼

≺2
∼



Class Register Automata (with guess)

 finite set of statesQ

finite set of registersR

 transition relation:

over S = {             }�1, . . . ,�n

 F = (F�1 , . . . , F�n)

guard

�1

�n

q1 . . . qn (a, q�)

upd : R � ((S ×R) ∪ {1, . . . ,m})

upd

G ∈ B(“q ≤ N”)

20

A = (Q,R,−→, F,G)



Class Register Automata (with guess)

 finite set of statesQ

finite set of registersR

 transition relation:

over S = {             }�1, . . . ,�n

 F = (F�1 , . . . , F�n)

guard

�1

�n

q1 . . . qn (a, q�)

upd : R � ((S ×R) ∪ {1, . . . ,m})

upd

G ∈ B(“q ≤ N”)

20

⋃ {guess}

A = (Q,R,−→, F,G)

guessing register automata: 
[Kaminski, Zeitlin 2010]



Class Register Automata (with guess)

21

Theorem: For every signature S, EMSO(S) ⊆ gCRA(S).



Class Register Automata (with guess)

21

Theorem: For every signature S, EMSO(S) ⊆ gCRA(S).

Proof:
Use Hanf‘s Theorem (1965):                                  
normal form of first-order formulas



Class Register Automata (with guess)

21

Theorem: For every signature S, EMSO(S) ⊆ gCRA(S).

Proof:
Use Hanf‘s Theorem (1965):                                  
normal form of first-order formulas

Sufficient to detect local patterns and count them up to 
some threshold



Class Register Automata (with guess)

21

Theorem: For every signature S, EMSO(S) ⊆ gCRA(S).

Proof:
Use Hanf‘s Theorem (1965):                                  
normal form of first-order formulas

Sufficient to detect local patterns and count them up to 
some threshold

Local pattern:
≺1

∼ ≺1
∼

≺2
∼

≺2
∼

≠≠ ≠≠



Class Register Automata (with guess)

21

Theorem: For every signature S, EMSO(S) ⊆ gCRA(S).

Proof:
Use Hanf‘s Theorem (1965):                                  
normal form of first-order formulas

Sufficient to detect local patterns and count them up to 
some threshold

Local pattern:
≺1

∼ ≺1
∼

≺2
∼

≺2
∼

≠≠ ≠≠

=> Build class register automaton that detects spheres



Sphere Automaton

22

1
-2

2
-1

1
-1

2
-2



Sphere Automaton

22

1
-2

2
-1

1
-1

2
-2



Sphere Automaton

22

1
-2

2
-1

1
-1

2
-2

Registers:



Sphere Automaton

22

1
-2

2
-1

1
-1

2
-2

Registers:

1
-2

current
values



Sphere Automaton

22

1
-2

2
-1

1
-1

2
-2

Registers:

2
-1

1
-1

2
-2

guessed
values

1
-2

current
values



Sphere Automaton

22

1
-2

2
-1

1
-1

2
-2

Registers:

2
-1

1
-1

2
-2

guessed
values

1
-2

current
values



Sphere Automaton

22

1
-2

2
-1

1
-1

2
-2

Registers:

2
-1

2
-1

1
-1

2
-2

guessed
values

1
-2

current
values



Sphere Automaton

22

1
-2

2
-1

1
-1

2
-2

Registers:

2
-1

1
-2

1
-1

2
-2

2
-1

1
-1

2
-2

guessed
values

1
-2

current
values



Sphere Automaton

22

1
-2

2
-1

1
-1

2
-2

Registers:

2
-1

1
-2

1
-1

2
-2

2
-1

1
-1

2
-2

guessed
values

1
-2

current
values



Sphere Automaton

22

1
-2

2
-1

1
-1

2
-2

Registers:

2
-1

1
-2

1
-1

2
-2

2
-1

1
-1

2
-2

guessed
values

1
-2

current
values

?=

?=

?=
?=

?=



Sphere Automaton

22

1
-2

2
-1

1
-1

2
-2

Registers:

1
-2

2
-1

1
-1

2
-2

2
-1

1
-2

1
-1

2
-2

2
-1

1
-1

2
-2

guessed
values

1
-2

current
values

update

update

update

update

previous
values



Sphere Automaton

22

1
-2

2
-1

1
-1

2
-2

Registers:

1
-2

2
-1

1
-1

2
-2

2
-1

1
-2

1
-1

2
-2

2
-1

1
-1

2
-2

guessed
values

1
-2

current
values

previous
values



Sphere Automaton

22

1
-2

2
-1

1
-1

2
-2

Registers:

1
-2

2
-1

1
-1

2
-2

2
-1

1
-2

1
-1

2
-2

2
-1

1
-1

2
-2

guessed
values

1
-2

current
values

?=

?=

?=

?=
?=

previous
values



Sphere Automaton

22

1
-2

2
-1

1
-1

2
-2

Registers:

1
-2

2
-1

1
-1

2
-2

1
-2

2
-1

1
-1

2
-2

2
-1

1
-2

1
-1

2
-2

2
-1

1
-1

2
-2

guessed
values

1
-2

current
values

update

update

update

update

previous
values



Sphere Automaton

22

1
-2

2
-1

1
-1

2
-2

Registers:

1
-2

2
-1

1
-1

2
-2

1
-2

2
-1

1
-1

2
-2

2
-1

1
-2

1
-1

2
-2

2
-1

1
-1

2
-2

guessed
values

1
-2

current
values

previous
values



Sphere Automaton

23

How can we be sure that a cycle is closed?

(a2, d2)(a1, d1)



Sphere Automaton

23

How can we be sure that a cycle is closed?
Suppose it is not closed.

(a1, d1) (a2, d2)(a1, d1)



Sphere Automaton

23

How can we be sure that a cycle is closed?
Suppose it is not closed.

(a1, d1) (a2, d2)(a1, d1)

2) relations are monotone
1) we carry along labels and data values



Sphere Automaton

23

How can we be sure that a cycle is closed?
Suppose it is not closed.

(a1, d1) (a2, d2)(a2, d2)(a1, d1)

2) relations are monotone
1) we carry along labels and data values



Sphere Automaton

23

How can we be sure that a cycle is closed?
Suppose it is not closed.

(a1, d1) (a2, d2)(a2, d2)(a1, d1)

2) relations are monotone
1) we carry along labels and data values

(a1, d1)



Sphere Automaton

23

How can we be sure that a cycle is closed?
Suppose it is not closed.

(a1, d1) (a2, d2)(a2, d2)(a1, d1)

2) relations are monotone
1) we carry along labels and data values

=> infinite descending chain

(a1, d1)

...

↯



From Automata to Logic
(m=1)

24



From Automata to Logic
(m=1)

24

 MSO(≺+1) � RA



From Automata to Logic
(m=1)

24

CRA(≺+1,≺∼) ⊆ MSO(≺+1,≺∼) 

 MSO(≺+1) � RA



From Automata to Logic
(m=1)

24

CRA(≺+1,≺∼) ⊆ MSO(≺+1,≺∼) 

gCRA(≺+1,≺∼) ⊆ MSO(≺+1,≺∼)                                                  ?

 MSO(≺+1) � RA



From Automata to Logic
(m=1)

24

CRA(≺+1,≺∼) ⊆ MSO(≺+1,≺∼) 

MSO(≺+1,≺∼) �⊆ gCRA(≺+1,≺∼) 

gCRA(≺+1,≺∼) ⊆ MSO(≺+1,≺∼)                                                  ?

 MSO(≺+1) � RA



Applications

25



Applications

25

Synthesis of dynamic communicating systems



Applications

25

Synthesis of dynamic communicating systems

Class register automata subsume                          
dynamic communicating automata [B., Hélouët, 2010]



Applications

25

Synthesis of dynamic communicating systems

Class register automata subsume                          
dynamic communicating automata [B., Hélouët, 2010]

                               receive process idupd(r) = (�msg, r
�)



Applications

25

Synthesis of dynamic communicating systems

Class register automata subsume                          
dynamic communicating automata [B., Hélouët, 2010]

                               receive process id

                               receive from r

upd(r) = (�msg, r
�)

(≺proc, r) = (�msg, r0)



Applications

25

Synthesis of dynamic communicating systems

Class register automata subsume                          
dynamic communicating automata [B., Hélouët, 2010]

                               receive process id

                               receive from r

Finitely branching transition system                             
=> partial satisfiability checking

upd(r) = (�msg, r
�)

(≺proc, r) = (�msg, r0)



Applications

25

Synthesis of dynamic communicating systems

Class register automata subsume                          
dynamic communicating automata [B., Hélouët, 2010]

                               receive process id

                               receive from r

Finitely branching transition system                             
=> partial satisfiability checking

Tool to show that a property is not EMSO-definable

upd(r) = (�msg, r
�)

(≺proc, r) = (�msg, r0)



Applications

25

Synthesis of dynamic communicating systems

Class register automata subsume                          
dynamic communicating automata [B., Hélouët, 2010]

                               receive process id

                               receive from r

Finitely branching transition system                             
=> partial satisfiability checking

Tool to show that a property is not EMSO-definable

Study of combined expressive power of existing concepts

upd(r) = (�msg, r
�)

(≺proc, r) = (�msg, r0)



Conclusion

26



Conclusion

General framework for specification and 
implementation of data-word languages

26



Conclusion

General framework for specification and 
implementation of data-word languages

Synthesis of dynamic communicating systems

26



Conclusion

General framework for specification and 
implementation of data-word languages

Synthesis of dynamic communicating systems

Next: synthesize more practical automata       
=> restricted specification languages            
=> temporal logics

26


