An automaton over data words
that captures EMSO logic

Benedikt Bollig
LSV, ENS Cachan & CNRS

Automata, Concurrency and Timed Systems (ACTS) Il

Chennai Mathematical Institute, January 27-29, 2011

Data words

finite words over Y x D™

finite infinite m > 0

label data values

Data words

finite words over Y x D™

finite infinite m > 0

label data values

@ XML tag contents m = 1

Data words

finite words over Y x D™

finite infinite m > 0
label data values
@ XML tag contents m = 1

@ time action R m =1

& XML
@ time

® messages

Data words

finite words over Y x D™
N

/

finite infinite m > 0
label data values
tag contents m =1
action R m =1
1,72, fork } I\ m = 2

fork fork

|
2

2
3

2
1

Automata vs. Logic

Automata vs. Logic

@ Logic
@ Specifying properties

@ Declarative (what should happen)

Automata vs. Logic

@ Logic
@ Specifying properties
@ Declarative (what should happen)
@ Automata
@ Implementation model (how it should happen)

@ Tool for checking satishability

Automata vs. Logic

@ Logic
@ Specifying properties
@ Declarative (what should happen)
@ Automata
@ Implementation model (how it should happen)

@ Tool for checking satishability

Looking for an expressive logic with reasonable
implementation model (one-way, non-deterministic)

Logic

MSO logic for data words

® q(x) position x carries a € X

® I <11y Y is direct successor of *

® Y1V Y2 P dx Xy zeX

MSO logic for data words

a(x) position x carries a € X
T <41 Y Y is direct successor of &
L1V P2 P dx Xy zeX

d"(z) = d'(y) k-th data value at &
bic (L. m) equals [-th data value at y

MSO logic for data words

® q(x) position x carries a € X
® I <11y Yy is direct successor of &
® Y1V Y2 P dx Xy zeX

¢ d'(@)=d(y) | L_th datavale at @
L ——Gguals |-th data value at y

too expressive
=> restrict access to data values
=> relate positions that automaton can access

MSO logic for data words

Signature: finite set of relation symbols <1 such that

MSO logic for data words

Signature: finite set of relation symbols <1 such that

o VYV C<

MSO logic for data words

Signature: finite set of relation symbols <1 such that

o VYV C<

@ ouf-degree at most 1
for all ¢ there is at most one j such that i <% j

MSO logic for data words

Signature: finite set of relation symbols <1 such that

o VYV C<

@ ouf-degree at most 1
for all ¢ there is at most one j such that i <% j

@ in-degree at most 1

for all ¢ there is at most one j such that 7 <* ¢

MSO logic for data words

Signature: finite set of relation symbols <1 such that

o VYV C<

@ ouf-degree at most 1
for all ¢ there is at most one j such that i <% j

@ in-degree at most 1

for all ¢ there is at most one j such that 7 <* ¢

@ monotonicity
<1V 5 A ilﬂwj/ N W; =Wy N W; = Wjr

— i< iff j<j

MSO logic for data words

MSO logic for data words

@ direct successor relation <1 < =1

MSO logic for data words

@ direct successor relation <1 B S

MSO logic for data words

@ direct successor relation <1 <41
SN VT VTN

@ message-passing system (m=2)

|:msg
|:msg
%
! ! ! ? ? ?
1 2 1 3 2 2

EMSO(S)

where S is any signature

a(x) position x carries a € X
T <Yy €S
d"(z) = d'(x) local reasoning about data values

rT=1Y ©1V P2 P dx reX

EMSO(S)

where S is any signature

a(x) position x carries a € X
T <Yy €S
d"(z) = d'(x) local reasoning about data values

rT=1Y ©1V P2 P dx reX

Formula: 4X;...3X,¢

first-order

Example formulas (m=1)

444444

Example formulas (m=1)

@ there is a request that is acknowledged

dxdy (req(x) A ack(y) ANz <o y) req req req ack ack reg

4 4 2 1 4 2

Example formulas (m=1)
@ there is a request that is acknowledged _ /\

dxdy (req(x) A ack(y) ANz <o y) réq req req ack ack reg

4 4 2 1 4 2
X Y

Example formulas (m=1)
@ there is a request that is acknowledged _ /\

dxdy (req(x) A ack(y) ANz <o y) réq req req ack ack reg

4 4 2 1 4 2
X Y

@ every request is acknowledged (before next request)

Vady (req(x) — ack(y) Nz << y)

Example formulas (m=1)
@ there is a request that is acknowledged o /\

dxdy (req(x) A ack(y) ANz <o y) éq req req ack agk e

@ every request is acknowledged (before next request)

VaxIy (req(z) — ack(y) Nx << y)
@ two successive requests are acknowledged
in the order they were received
VaVy (req(x) A req(y) AT <41 Yy
— da'3x" (ack(2) AN ack(y) ANe <o 2" <41y ANy < y'))

Example formulas (m=1)
@ there is a request that is acknowledged o /\

dxdy (req(x) A ack(y) ANz <o y) éq req req ack agk e

@ every request is acknowledged (before next request)

VaxIy (req(z) — ack(y) Nx << y)

@ two successive requests are acknowledged
in the order they were received

VaVy (req(x) A req(y) AN x <41y
— J2' 32’ (ack(Z) N ack(yY)ANe <o 2 <1y ANy <o y'))

req req req ack ack ack
| Z 2 | Z 2

T y a,;/ y/

Example formulas (m=1)
@ there is a request that is acknowledged o /\

dxdy (req(x) A ack(y) ANz <o y) éq req req ack agk e

@ every request is acknowledged (before next request)

VaxIy (req(z) — ack(y) Nx << y)

@ two successive requests are acknowledged
in the order they were received

VaVy (req(z) A req(y) A <41y
— J2' 32’ (ack(Z) N ack(yY)ANe <o 2 <1y ANy <o y'))

TN, Goal:
<0 = *é

non-deterministic
way automaton for
“this kind of property

req req req ack ack ack
| Z 2 | Z 2

T y a,;/ y/

From Logic to Automata

[related works, most of them for m=1]

From Logic to Automata

[related works, most of them for m=1]

® MSO — register automata (restricted use of variables)
[Bouyer 2000]

10

From Logic to Automata

[related works, most of them for m=1]

® MSO — register automata (restricted use of variables)
[Bouyer 2000]

@ MSO vs. two-way and pebble automata
[Neven, Schwentick, Vianu 2004]

10

From Logic to Automata

[related works, most of them for m=1]

® MSO — register automata (restricted use of variables)
[Bouyer 2000]

@ MSO vs. two-way and pebble automata
[Neven, Schwentick, Vianu 2004]

@ LTL with freeze quantifier = register automata
[Demri, Lazic 2006]

10

From Logic to Automata

[related works, most of them for m=1]

MSO — register automata (restricted use of variables)
[Bouyer 2000]

MSO vs. two-way and pebble automata
[Neven, Schwentick, Vianu 2004]

LTL with freeze quantifier = register automata
[Demri, Lazic 2006]

2
EMSO ™ (<~;<41,<,<2) — data automata/class memory automata
[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]
[Bjorklund, Schwentick 2007]

10

From Logic to Automata

[related works, most of them for m=1]

MSO — register automata (restricted use of variables)
[Bouyer 2000]

MSO vs. two-way and pebble automata
[Neven, Schwentick, Vianu 2004]

LTL with freeze quantifier = register automata
[Demri, Lazic 2006]

2
EMSO ™ (<~;<41,<,<2) — data automata/class memory automata
[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]
[Bjorklund, Schwentick 2007]

Regular XPath — class automata
[Bojanczyk, Lasota 2010]

10

From Logic to Automata

[related works, most of them for m=1]

® MSO — register automata (restricted use of variables)
[Bouyer 2000]

@ MSO vs. two-way and pebble automata
[Neven, Schwentick, Vianu 2004]

@ LTL with freeze quantifier = register automata
[Demri, Lazic 2006]

2
8 EMSO (=~,=<41,<,=<2) — data automata/class memory automata
[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]
[Bjorklund, Schwentick 2007]

@ Regular XPath — class automata
[Bojanczyk, Lasota 2010]

@ EMSO(S) — ? (non-deterministic, one-way)
(e.g., EN\SO(<N, <_|_1))

10

Automarta

12

o (
® QOaF

Register Automata

[Kaminski & Francez, 1994]
A: (Q7R7H7QO7F)

finite set of states
initial state, set of final states

12

o (
® QOaF
® R

Register Automata

[Kaminski & Francez, 1994]
A: (Q7R7H7QO7F)

finite set of states
initial state, set of final states

finite set of registers

12

Register Automata

[Kaminski & Francez, 1994]
A: (Q7R7H7QO7F)

o () finite set of states
® §o,F initial state, set of final states

® R finite set of registers
® transition relation:

(g, guard) — (¢, upd)

12

Register Automata

[Kaminski & Francez, 1994]
A: (Q7R7H7QO7F)

o () finite set of states
® §o,F initial state, set of final states

® R finite set of registers
® transition relation:
(g, guard) — (¢, upd)
guard € B(R)

current value is in 1st but not in 2nd register:

Tl/_l’l“g

12

Register Automata

[Kaminski & Francez, 1994]
A: (Q7R7H7QO7F)

o () finite set of states
® §o,F initial state, set of final states

® R finite set of registers
® transition relation:

(4, guard) — (q', upd)
gquard € B(R) upd C R

current value is in 1st but not in 2nd register: write current value in both registers:

Tl/_l’l“g {7’1,7"2}

12

Register Automata

[Kaminski & Francez, 1994]

qo req , ack qo
q0 req q0 {r}
do r ack q1
d1 req , ack d1

L(A) = “some request is acknowledged”

13

A
> = {req, ack}
D =N
F={q}

Register Automata

[Kaminski & Francez, 1994]

qo req , ack qo
q0 req q0 {r}
do r ack q1
d1 req , ack d1

L(A) = “some request is acknowledged”

| Ne |

13

Register Automata

[Kaminski & Francez, 1994]

qo req , ack qo
q0 req q0 {r}
do r ack q1
d1 req , ack d1
L(A) = “some request is acknowledged”
req req ack req ack ack ack req
8 5 3 4 2 4 5 7
q0
L

| Ne |

13

Register Automata

[Kaminski & Francez, 1994]

qo req , ack qo
q0 req q0 {r}
do r ack q1
q1 req , ack d1
L(A) = “some request is acknowledged”
req req ack req ack ack ack req
8 5 3 4 2 4 5 7
qo 40
L L

| Ne |

13

Register Automata

[Kaminski & Francez, 1994]

qo req , ack qo
q0 reg q0 {r}
40 r ack d1
d1 req , ack d1
L(A) = “some request is acknowledged”
req req ack req ack ack ack req
8 5 3 4 2 4 5 7
qo 40 4o
L 1 5
— 4

| Ne |

13

Register Automata

[Kaminski & Francez, 1994]

qo req , ack qo
q0 req q0 {r}
do r ack q1
d1 req , ack d1
L(A) = “some request is acknowledged”
req req ack req ack ack ack req
8 5 3 4 2 4 5 7
90 q0 40 90
L L 5 5
— J —

| Ne |

13

Register Automata

[Kaminski & Francez, 1994]

qo req , ack qo
q0 reg q0 {r}
do r ack q1
q1 req , ack d1
L(A) = “some request is acknowledged”
req req ack req ack ack ack req
8 5 3 4 2 4 5 7
q0 qdo 90 90 q0
L L 5 5 4
— 4 — \ 4

| Ne |

13

Register Automata

[Kaminski & Francez, 1994]

qo req , ack qo
q0 reg q0 {r}
do r ack q1
q1 req , ack d1
L(A) = “some request is acknowledged”
req req ack req ack ack ack req
8 5 3 4 2 4 5 7
q0 40 40 90 q0 q0
L L 5 5 4 4
— J — 3 —

| Ne |

13

Register Automata

[Kaminski & Francez, 1994]

qo req , ack qo
q0 req q0 {r}
do r ack q1
d1 req , ack d1
L(A) = “some request is acknowledged”
req req ack req ack ack ack req
8 5 3 4 2 4 5 7
q0 qdo 90 90 q0 q0 d1
L L 5 5 4 4 =
— 3 — 3 — v

| Ne |

13

Register Automata

[Kaminski & Francez, 1994]

qo req , ack qo
qo req 40 {r}
4o r ack d1
d1 req , ack d1
L(A) = “some request is acknowledged”
req req ack req ack ack ack req
3 5 3 4 2 4 5 7
qo qo0 4o do do do q1 q1
L L 5 5 4 4 4 4
— 3 — 3 — v 4 =

| Ne |

13

Register Automata

[Kaminski & Francez, 1994]

qo req , ack qo
q0 req 40 {r}
4o r ack d1
d1 req , ack d1
L(A) = “some request is acknowledged”
req req ack req ack ack ack req
3 5 3 4 2 4 5 I
4o do 4o 40 40 40 q1 q1 d1
L L 5 5 4 4 4 4 4
— 3 — 3 — v = =

| Ne |

13

Register Automata

[Kaminski & Francez, 1994]

qo req , ack q0
qo req 40 {r}
4o r ack d1
d1 req , ack d1
L(A) = “sgﬁg request is acknowledged”
‘every ?
req req ack req ack ack ack req
3 5 3 4 2 4 5 7
qo qo0 4o do do do q1 q1 41
1 1 5 5 4 4 4 4 4
— 3 — 3 — v = =

| Ne |

13

Register Automata

[Kaminski & Francez, 1994]

qo req , ack qo
qo req 40 {r}
4o r ack d1
d1 req , ack d1
L(A) = “syﬁg request is acknowledged”
‘every ?
=> class memory automata
req req ack req ack ack ack req
3 5 3 4 2 4 5 7
qo qo0 4o do do do q1 q1 q1
1 1 5 5 4 4 4 4 4
— 3 — 3 — v = =

| Ne |

13

Class Memory Automata

[Bjorklund & Schwentick, 2007]
A:(QvRv ;7QO7F)

@, finite set of states
d0 initial state

14

Class Memory Automata

[Bjorklund & Schwentick, 2007]

A = (QvKH7QO7F)

o () finite set of states
® (o initial state

Class Memory Automata

[Bjorklund & Schwentick, 2007]

A = (QvKH7QO7F)

o () finite set of states
® (o initial state

® transition relation:
<~
Y
P q——(¢

q is current state
p is state after last position with same data value

14

Class Memory Automata

[Bjorklund & Schwentick, 2007]

A: (QvKH7QO7F)
o () finite set of states

® (o initial state
® transition relation:
p q—¢

q is current state
p is state after last position with same data value

Qa /
q —(
q is current state
data value occurs for the first time

14

Class Memory Automata

[Bjorklund & Schwentick, 2007]

A=

(Qam H7QO717)
o () finite set of states

® (o initial state
e transition relation:
<~
p q—(qg—q

q is current state

q is current state

p is state after last position with same data value data value occurs for the first time

= F:(FN7F+1)

sets of final states

14

PLJ::{Ql}
Fy1={q}
L(A) =

Class Memory Automata

[Bjorklund & Schwentick, 2007]

4o req do
qo qo ack d1
qo q1 ack d1

" every process sends one request, which is acknowledged,
every acknowledgment is preceded by a request, and req*ack* ”

15

Fo={q}
iy =1{q1}
L(A) =

Class Memory Automata

[Bjorklund & Schwentick, 2007]

do req 4o
qo qo ack d1
qo q1 ack d1

A\

qo

req
8

req
5

req
3

req
A

ack
3

ack
A

ack
5

every process sends one request, which is acknowledged,
every acknowledgment is preceded by a request, and req*ack* ”

ack
8

15

Fo={q}
iy =1{q1}
L(A) =

Class Memory Automata

[Bjorklund & Schwentick, 2007]

do req 4o
qo qo ack d1
qo q1 ack d1

A\

req
8

qo

qo

req
5

req
3

req
A

ack
3

ack
A

ack
5

every process sends one request, which is acknowledged,
every acknowledgment is preceded by a request, and req*ack* ”

ack
8

15

Class Memory Automata

[Bjorklund & Schwentick, 2007]

Fo={q}
iy =1{q1}
L(A) =

do req 4o
qo qo ack d1
qo q1 ack d1

A\

every process sends one request, which is acknowledged,
every acknowledgment is preceded by a request, and req*ack* ”

|

i
req req req req ack ack ack ack

8 5 3 4 3 4 5 8

do qo qdo

15

Fo={q}
iy =1{q1}
L(A) =

Class Memory Automata

[Bjorklund & Schwentick, 2007]

do req 4o
qo qo ack d1
qo q1 ack d1

A\

<41

i

req req req
8 5 3
4o do qo qo

req
A

ack
3

ack
/i

ack
5

every process sends one request, which is acknowledged,
every acknowledgment is preceded by a request, and req*ack* ”

ack
8

15

Fo={q}
iy =1{q1}
L(A) =

Class Memory Automata

[Bjorklund & Schwentick, 2007]

do req 4o
qo qo ack d1
qo q1 ack d1

A\

<41

N

req req req req
8 5 3 4
4o do qo qo qo

ack
3

ack
/i

ack
5

every process sends one request, which is acknowledged,
every acknowledgment is preceded by a request, and req*ack* ”

ack
8

15

Fo={q}
iy =1{q1}
L(A) =

Class Memory Automata

[Bjorklund & Schwentick, 2007]

do req 4o
qo qo ack d1
qo q1 ack d1

A\

~~
reQq req req req ack
8 5 3 4 3
40 qdo qo 40 q0 d1

ack
/i

ack
5

every process sends one request, which is acknowledged,
every acknowledgment is preceded by a request, and req*ack* ”

ack
8

15

Fo={q}
iy =1{q1}
L(A) =

Class Memory Automata

[Bjorklund & Schwentick, 2007]

do req 4o
qo qo ack d1
qo q1 ack d1

A\

<
req req req req ack ack
8 5 3 4 3 4
40 qdo qo 40 q0 d1 d1

ack
5

every process sends one request, which is acknowledged,
every acknowledgment is preceded by a request, and req*ack* ”

ack
8

15

Class Memory Automata

[Bjorklund & Schwentick, 2007]

qdo req qo

~={a} qo qdo ack q1

Fiy ={q1} 40 q1 ack q1
L(A) = " every process sends one request, which is acknowledged,

every acknowledgment is preceded by a request, and req*ack* ”

o A

req req req req ack ack ack ack

4o qo qo qo 4o d1 di d1

Fo={q}
iy =1{q1}
L(A) =

Class Memory Automata

[Bjorklund & Schwentick, 2007]

do req 4o
qo qo ack d1
qo q1 ack d1

A\

every process sends one request, which is acknowledged,
every acknowledgment is preceded by a request, and req*ack* ”

<~
N
req req req req ack ack ack ack
8 5 3 4 3 4 5 8
40 qdo qo 40 q0 d1 q1 q1 d1

15

Class Memory Automata

[Bjorklund & Schwentick, 2007]

A . USRI TRENSS
QO req qO
Fo={aq} 90 qo ack d1
F‘|‘1 — {Q1} 4o qdi ack q1
L(A) _ every process sends one request, which is acknowledged,

every acknowledgment is preceded by a request, and req*ack* ”

... and requests are acknowledged
in the order they are received ?

req req req req ack ack ack ack
8 5 3 4 3 4 5 8

do qo qo qo 4o d1 q1 d1 d1

15

Class Memory Automata

[Bjorklund & Schwentick, 2007]

A . USRI TRENSS
qo req qO
Fo={aq} 90 qo ack d1
F‘|‘1 — {Q1} 4o qdi ack q1
L(A) _ every process sends one request, which is acknowledged,

every acknowledgment is preceded by a request, and req*ack* ”

... and requests are acknowledged
in the order they are received ?

=> class register automata

req req req req ack ack ack ack
8 5 3 4 3 4 5 8

do qo qo qo 4o d1 q1 d1 d1

15

O

Class Register Automata

over S = {<{1,...,<p}
— (Qv&ﬁpC_ZOvF)
@, finite set of states
' Lotde ol L mntndmn~
11 hille oo 1 UV i reyioiero

transition relation:

16

Class Register Automata

over S = {<1,...,<n}

A: (Qv&ﬁpC_ZOvF)
@, finite set of states

- | aog - RS

..... “‘c -ﬂmgu:RG!-_A\c_nn

11 hiile oo 1 UV i i69l3i6l3

transition relation:

d1 .« .. dn (CL, q/)

16

Class Register Automata

over S = {<{1,...,<p}
A: (vaﬁvc_ZOvF)
@, finite set of states

LB ‘C'A:-!-:—-: - ~d4 _A,_-c -_AA,A::P'!'A-!‘!:
11 RIRARAEEC A YA iCHlDiOIO

transition relation:
__ ¢an be missing

16

Class Register Automata

over S = {<{1,...,<p}
A = (vaﬁvﬁvF)

@, finite set of states

LB ‘C'A:-!-:—-: - ~d4 _A,_-c -_AA,A::P'!'A-!‘!:
11 RIRARAEEC A YA iCHlDiOIO

transition relation:
__ ¢an be missing

16

Class Register Automata

over S = {<1,...,<n}

A = (Q,KH,%,F)

Q) finite set of states o = (F,,,.

LB ‘C'A:-!-:—-: - ~d4 _A,_-c -_AA,A::P'!'A-!‘!:
11 RIRARAEEC A YA iCHlDiOIO

transition relation:
__ ¢an be missing

L Fq)

16

Class Register Automata
over S = {41,...,47,,}
A= (vaﬁvﬁvF) G
Q) finite set of states o F=(F4,,....F4)
i) finite-set-of-registers- ® G € B(“¢ < N”)

transition relation:
__ ¢an be missing

16

Class Register Automata

over S = {<{1,...,<p}
A = (QvRvﬁvﬁvF) G

@, finite set of states ® ['=(Fq,,...,Fq,)

R finite set of registers ® G € B(“q < N7)

transition relation:
_ can be missing

16

Class Register Automata

over S = {<1,...,<n}

A = (QaRvﬁava) G

® () finite set of states o F=(F4,,....F4)
® R finite set of registers ® G € B(“¢ < N7)
o transition relation:

_ can be missing

guard 41 y dn (ayq")

guard € B(((S x R)U{1,..., m})?)
contents of r; at <1 = contents of r; at <o

(<1,71) = (g, 12) "

Class Register Automata

over S = {<1,...,<n}

A = (QaRvﬁava) G

® () finite set of states o F=(F4,,....F4)
® R finite set of registers ® G € B(“¢ < N7)
o transition relation:

_ can be missing

/
guard 41 y dn (a,q) upd
guard € B(((S x R)U{1,...,m})?) upd : B — ((S x R)U{L,..., m})
contents of r at <1 = contents of r> at <o new value of r; := value of rz at <2

(<1,71) = (Q2,72) upd(r1) = (<2,72) »

Class Regls’rer Aufoma’ra

Input rarget
Fo={q} (req.d) | qo |71 :=
Foi={q} qo (req,d) oy ri:=d ro:=(<41,71)
G = true qdo qdo (<N, 7“2) = | (ack , d) d1 r1 =
Qo | @1 |(R~y72) = (R41,71)| (ack,d) | @1 | 7m1=

\\

L(A) = every process sends one request, which is acknowledged,
~ every acknowledgment is preceded by a request, and req*ack* ”

... and requests are acknowledged
in the order they are received !

req req req req ack ack ack ack
8 5 3 4 8 5 3 4

17

Class Regls’rer Aufoma’ra

Input !iy'-};i‘
F.={q} (req,d) qo r1:=d
Foi={q} qo (req,d) oy ri:=d ro:=(<41,71)
G = true do qdo (<N, 7“2) = | (ack , d) d1 r1:=d

o | g1 [(=%~s72) = (=%41,71)| (ack,d) | @1 | r1:=d

\\

L(A) = every process sends one request, which is acknowledged,
~ every acknowledgment is preceded by a request, and req*ack* ”

... and requests are acknowledged
in the order they are received !

req req req req ack ack ack ack
8 5 3 4 8 5 3 4

17

Class Regls’rer Aufoma’ra

Input rarget
Fo={q} (req.d) | qo |71 :=
Foi={q} qo (req,d) oy ri:=d ro:=(<41,71)
G = true qdo qdo (<N, 7“2) = | (ack , d) d1 r1 =
Qo | @1 |(R~y72) = (R41,71)| (ack,d) | @1 | 7m1=

\\

L(A) = every process sends one request, which is acknowledged,
~ every acknowledgment is preceded by a request, and req*ack* ”

... and requests are acknowledged
in the order they are received !

req req req req ack ack ack ack
8 5 3 4 8 5 3 4

state qdo

71 8

17

Class Regls’rer Aufoma’ra

Input rarget
Fo={q} (req.d) | qo |71 :=
Foi={q} qo (req,d) oy ri:=d ro:=(<41,71)
G = true qdo qdo (<N, 7“2) = | (ack , d) d1 r1 =
Qo | @1 |(R~y72) = (R41,71)| (ack,d) | @1 | 7m1=

\\

L(A) = every process sends one request, which is acknowledged,
~ every acknowledgment is preceded by a request, and req*ack* ”

... and requests are acknowledged
in the order they are received !

<41

req/?eq req req ack ack ack ack

8 5 3 4 8 5 3 4

state do qdo

71 8 5

17

Class Regls’rer Aufoma’ra

F. = {ql} (l”eq,d) QO r = d
Fioio={q} qo (req,d) 40 rii=d r9:i= (<+1,"“1)
G = true qo0 | qo (Ryr2) = L (ack, d) d1 r:=d
40 g1 |(=~,7m2) = (K41,71) (ack, d) d1 1=
L(A) = " every process sends one request, which is acknowledged,

every acknowledgment is preceded by a request, and req*ack* ”

... and requests are acknowledged
in the order they are received !

req req req req
8 5 3 4
state 4o qdo 4o
71 8 5 3
T2 1 8 5

17

ack
8

ack ack ack

3 4

Class Regls’rer Aufoma’ra

F. = {ql} (l”eq,d) QO r = d
Fioio={q} qo (req,d) 40 rii=d r9:i= (<+1,"“1)
G = true qo0 | qo (Ryr2) = L (ack, d) d1 r:=d
40 g1 |(=~,7m2) = (K41,71) (ack, d) d1 1=
L(A) = " every process sends one request, which is acknowledged,

every acknowledgment is preceded by a request, and req*ack* ”

... and requests are acknowledged
in the order they are received !

<41

N\
req req req req
8 5 4
state qdo qo qo 4o
71 3 5 4
72 1 8 3

17

ack
8

ack ack ack

3 4

Class Regls’rer Aufoma’ra

FN = {ql} (l”eq,d) QO ry =
Fioio={q} qo (req,d) 40 rii=d r9:i= (<+1,"“1)
G = true qo0 | qo (Ryr2) = L (ack, d) d1 r:=d
g | q1 |(=~,72) = (<41,71)| (ack,d) d1 ryi=
L(A) = " every process sends one request, which is acknowledged,
~ every acknowledgment is preceded by a request, and req*ack* ”
... and requests are acknowledged S~
in the order they are received ! /
<41
ah
req req req req ack ack ack ack
3 5 4 3 3 4
state [40 q0 40 q0 q1
T 8 5 4 8
. 1 8 3 1

17

Class Regls’rer Aufoma’ra

F.={q} (req,d) q0 ri:=d
Foi={q} qo (req,d) oy ri:=d ro:=(<41,71)
G = true qdo qdo (<N, 7“2) = (ack , d) d1 r1:=d

Qo | 91 |(R~,72) = (=<41,71)| (ack,d) d1 r1=d

\\

L() " every process sends one request, which is acknowledged,
~ every acknowledgment is preceded by a request, and req*ack* ”

... and requests are acknowledged e

in the order they are received !
<41
a

req req req req ack ack ack ack
8 5 3 4 8 5 3 4

state qo qo 4o qo d1 q1

71 8 5 3 4 8 5

17

Class Register Automata

Fo={q} (req.d) | qo |71 :=
Foi={q} qo (req,d) oy ri:=d ro:=(<41,71)
G=true | Qo | qo | (R~ym2)=1 (ack,d) | @1 |7 :=d

Qo | 91 |(R~,72) = (=<41,71)| (ack,d) d1 ry =

A\

L(A) = every process sends one request, which is acknowledged,
~ every acknowledgment is preceded by a request, and req*ack* ”

... and requests are acknowledged R

in the order they are received !
<41
i

req req req req ack ack ack ack
8 5 3 4 8 5 3 4

state qo qo qdo qo d1 q1 q1

r1 8 5 3 4 8 5 3

17

Class Register Automata

Fo={q} (req.d) | qo |71 :=
Foi={q} qo (req,d) oy ri:=d ro:=(<41,71)
G=true | Qo | qo | (R~ym2)=1 (ack,d) | @1 |7 :=d

Qo | 91 |(R~,72) = (=<41,71)| (ack,d) d1 ry =

A\

L(A) = every process sends one request, which is acknowledged,
~ every acknowledgment is preceded by a request, and req*ack* ”

... and requests are acknowledged S
in the order they are received !

<41

7~ N
req req req req ack ack ack ack

8 5 3 4 8 5 3 4
state qo qo qo qo d1 d1 d1 q1

r1 8 5 3 4 8 5 3 4

17

From Logic to Automata

From Logic to Automata

2
® EMSO ™ (=~,=<41,<,=<%) = class memory automata
[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]
[Bjorklund, Schwentick 2007]

19

From Logic to Automata

2
EMSO (=~,<41,<,=<2) = class memory automata
[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]
[Bjorklund, Schwentick 2007]

EMSO(S) — class register automata ?

19

From Logic to Automata

2
® EMSO (=~,=<41,<,=<%) = class memory automata
[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]
[Bjorklund, Schwentick 2007]

@ EMSO(S) — class register automata ?

o FO(=<1,=<%) € CrRA(=<L,=<?%)

19

From Logic to Automata

2
® EMSO (=~,=<41,<,=<%) = class memory automata
[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]
[Bjorklund, Schwentick 2007]

@ EMSO(S) — class register automata ?

o FO(=<1,=<?) ¢ CrRA(=<L,<?%)

1 2 1 2
-2 1 -l 2

19

From Logic to Automata

2
® EMSO (=~,=<41,<,=<%) = class memory automata
[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]
[Bjorklund, Schwentick 2007]

@ EMSO(S) — class register automata ?

o FO(=<1,=<?) ¢ CrRA(=<L,<?%)

1 2 1 2
-2 1 -l 2

19

From Logic to Automata

2
® EMSO (=~,=<41,<,=<%) = class memory automata
[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]
[Bjorklund, Schwentick 2007]

@ EMSO(S) — class register automata ?

o FO(=<1,=<%) € CrRA(=<L,=<?%)

19

From Logic to Automata

2
® EMSO ™ (=~,=<41,<,=<%) = class memory automata
[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]
[Bjorklund, Schwentick 2007]

@ EMSO(S) — class register automata ?

o FO(<1,<%) € CRA(<L,=<?) same transition

19

From Logic to Automata

2
® EMSO ™ (=~,=<41,<,=<%) = class memory automata
[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]
[Bjorklund, Schwentick 2007]

@ EMSO(S) — class register automata ?

o FO(<1,<%) € CRA(<L,=<?) same transition

19

From Logic to Automata

2
® EMSO ™ (=~,=<41,<,=<%) = class memory automata
[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]
[Bjorklund, Schwentick 2007]

@ EMSO(S) — class register automata ?

o FO(<1,<%) € CRA(<L,=<?) same transition

19

From Logic to Automata

2
® EMSO ™ (=~,=<41,<,=<%) = class memory automata
[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]
[Bjorklund, Schwentick 2007]

@ EMSO(S) — class register automata ?

o FO(<1,<%) € CRA(<L,=<?) same transition

=> CRA cannot
detect cycles

19

From Logic to Automata

2
® EMSO ™ (=~,=<41,<,=<%) = class memory automata
[Bojanczyk, David, Muscholl, Schwentick, Segoufin 2006]
[Bjorklund, Schwentick 2007]

@ EMSO(S) — class register automata ?

o FO(<1,<%) € CRA(<L,=<?) same transition

=> CRA cannot
detect cycles

=> guess
data values!

19

Class Register Automata win ges

over S = {<1,...,<n}

A=(Q,R,—, F,G)

@, finite set of states ® ['=(Fq,,...,Fq,)
R finite set of registers ® G € B(“¢ < N7)
transition relation:
<1
<y
7N\
guard Q1 c. dn (a,q) upd

20

Class Register Automata win ges

over S = {<1,...,<n}

A=(Q,R,—, F,G)

@, finite set of states ® ['=(Fq,,...,Fq,)
R finite set of registers ® G € B(“q < N7)

transition relation:
<1
<n
/\ /
guard 41 y dn (a,q) upd

upd : R — (S x R)U{1,..., m})

guessing register automata: U {gUGSS}

[Kaminski, Zeitlin 2010]
20

Class Register Automata win ges

Theorem: For every signature S, EMSO(S) € ¢CRA(S).

21

Class Register Automata win ges

Theorem: For every signature S, EMSO(S) € ¢CRA(S).

Proof:

@ Use Hanf's Theorem (1965):
normal form of first-order formulas

21

Class Register Automata win ges

Theorem: For every signature S, EMSO(S) € ¢CRA(S).

Proof:

@ Use Hanf's Theorem (1965):
normal form of first-order formulas

@ Sufficient fo detect local patterns and count them up to
some threshold

21

Class Register Automata win ges

Theorem: For every signature S, EMSO(S) € 4CRA(S).

Proof:

@ Use Hanf's Theorem (1965):
normal form of first-order formulas

@ Sufficient fo detect local patterns and count them up to

some threshold) 1

@ Local pattern:

21

Class Register Automata win ges

Theorem: For every signature S, EMSO(S) € 4CRA(S).

Proof:

@ Use Hanf's Theorem (1965):
normal form of first-order formulas

@ Sufficient fo detect local patterns and count them up to

some threshold) 1

@ Local pattern:

@ => Build class register automaton that detects spheres

21

Sphere Automaton

@

Sphere Automaton

@

CICICIC}

Sphere Automaton

@

Registers:

CICICIC

Sphere Automaton

Sphere Automaton

current) _
values
guessed
values O O

Registers:

CICICIC

22

current
values

guessed
values

Registers:

CICICIC

| |

Sphere Au’roma’ron

€©>

22

current
values

guessed
values

Registers:

CICICIC

| |

Sphere Au’roma’ron

€©>

22

Sphere Au’roma’ron

current

values
guessed
values

Registers:

CICICIC

Sphere Au’roma’ron

current

values
guessed
values

Registers:

CICICIC

Sphere Automaton

-2 -1 -1)
current
values
guessed
values

Registers:

S O N
N~ U~ I~ I

Sphere Au’roma’ron

current
values
guessed
values
previous
values
Registers:
@ 1 1| update)_1
-2 = -2
2 2 update (2]
el -1 &
1 1| update N B
il -1 -1
2 _2 update . B
== -2 -2

Sphere Au’roma’ron

current

values
guessed

values
previous

values

Registers:

| |
N — —_

current
values

guessed
values

previous
values

Registers:

CICICIC

Sphere Automaton

22

SPhere Automaton

current

values
guessed

values
previous

values

Registers:

updm‘e

—u%

update

e
K

u\“w\‘

‘&)NH"“H‘ U VY ‘ll\),_‘

CICICIC

-2

Sphere Au’roma’ron

current
values
guessed
values
previous
values
Registers:
1 1 1 1
-2 - -2 -2
2 2 2 7)
-1 | -1 -1
1 1 1 1
-1 | -1 -1
2 2 2 7)
-2) -2 -2

Sphere Automaton

(a1,dy) (az,ds2)

~

How can we be sure that a cycle is closed?

23

Sphere Automaton

(a1,dy) (a1,dy) (az,d2)

VA

How can we be sure that a cycle is closed?

Suppose it is not closed.

23

Sphere Automaton

(a1,dy) (a1,dy) (az,d2)

~

How can we be sure that a cycle is closed?

Suppose it is not closed.

1) we carry along labels and data values
2) relations are monotone

23

Sphere Automaton

CLl,dl aladl a’27d2 a’27d2

€ %3

How can we be sure that a cycle is closed?

Suppose it is not closed.

1) we carry along labels and data values
2) relations are monotone

23

Sphere Automaton

(al,dl) (Gq,dl) (al,dl) (CL2,CZ2) (CL2,CZ2)

~

Q. Q» (P

How can we be sure that a cycle is closed?

Suppose it is not closed.

1) we carry along labels and data values
2) relations are monotone

23

Sphere Automaton

(al,dl) (Gq,dl) (al,dl) (CL2,CZ2) (CL2,CZ2)

~

Q. Q» (P

How can we be sure that a cycle is closed?

Suppose it is not closed.

1) we carry along labels and data values
2) relations are monotone

=> infinite descending chain 4

23

From Automata to Logic

(m=1)

From Automata to Logic

(m=1)

D MSO(<_|_1) ; RA

24

From Automata to Logic

(m=1)

D MSO(<_|_1) ; RA

@ CRA(<_|_1,<N) C MSO(<_|_1,'<N)

24

From Automata to Logic

(m=1)

D MSO(<_|_1) ; RA

@ CRA(<_|_1,<N) C MSO(<_|_1,'<N)

@ gCRA('<_|_1,'<N) C MSO('<_|_1,'<N) ?

24

From Automata to Logic

(m=1)

MSO(< 1) ; RA

CRA(<41,<~) € MSO(=<41, <)
gCRA(<41,<~) € MSO(=<41,<~) ?

MSO (<41, <) € gCRA(<41, <)

24

Applications

Applications

@ Synthesis of dynamic communicating systems

25

Applications

@ Synthesis of dynamic communicating systems

@ Class register automata subsume
dynamic communicating automata [B., Hélouet, 2010]

25

Applications

@ Synthesis of dynamic communicating systems

@ Class register automata subsume
dynamic communicating automata [B., Hélouet, 2010]

o upd(r) = (Csg, T) receive process id

25

Applications

@ Synthesis of dynamic communicating systems

@ Class register automata subsume
dynamic communicating automata [B., Hélouet, 2010]

o upd(r) = (Csg, T) receive process id

8 (<procs”) = (Cmsg,T0) receive from r

25

Applications

@ Synthesis of dynamic communicating systems

@ Class register automata subsume
dynamic communicating automata [B., Hélouet, 2010]

o upd(r) = (Csg, T) receive process id

8 (<procs”) = (Cmsg,T0) receive from r

@ Finitely branching transition system
=> partial satisfiability checking

25

Applications

Synthesis of dynamic communicating systems

Class register automata subsume
dynamic communicating automata [B., Hélouet, 2010]

o upd(r) = (Csg, T) receive process id

8 (<procs”) = (Cmsg,T0) receive from r

Finitely branching transition system
=> partial satisfiability checking

Tool to show that a property is not EMSO-definable

25

Applications

Synthesis of dynamic communicating systems

Class register automata subsume
dynamic communicating automata [B., Hélouet, 2010]

o upd(r) = (Csg, T) receive process id

8 (<procs”) = (Cmsg,T0) receive from r

Finitely branching transition system
=> partial satisfiability checking

Tool to show that a property is not EMSO-definable

Study of combined expressive power of existing concepts

25

Conclusion

26

Conclusion

@ General framework for specification and
implementation of data-word languages

26

Conclusion

@ General framework for specification and
implementation of data-word languages

@ Synthesis of dynamic communicating systems

26

Conclusion

@ General framework for specification and
implementation of data-word languages

@ Synthesis of dynamic communicating systems

@ Next: synthesize more practical automata
=> restricted specification languages
=> temporal logics

26

