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Overview: Biological pathways in a cell

To model their dynamics as a Dynamic Bayesian Network.

To perform computations (efficiently) using this model.
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Bio chemical equations and ODEs

Bio chemical equations: S + E
k1−⇀↽−
k2

ES
k3−−→ E + P

Modeled as ODEs:

d [S ]

dt
=k2[ES ]− k1[S ][E ]

d [E ]

dt
=(k2 + k3)[ES ]− k1[S ][E ]

d [P]

dt
=k3[ES ]

d [ES ]

dt
=k1[E ][S ]− (k2 + k3)[ES ]

But, ODEs are generally too big to admit closed form solutions

Resort to numerical simulations giving rise to trajectories.

Parameters are imprecise so need LOTS of trajectories which
are recomputed often.
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Introducing probabilities

Markov chain

States: Concentration of each species in [0,1] or [1,2] or [2,3]
or [3,4] or [4,5] (discretization).

Transitions: If Concentrations are in state s1
E ∈ [0, 1], S ∈ [3, 4], ES ∈ [2, 3], P ∈ [2, 3]

at time t, then probability to be in state s2
E ∈ [1, 2],S ∈ [3, 4],ES ∈ [2, 3],P ∈ [2, 3]

at time t + 1 is 0.3...

That is,

the fraction of trajectories that start from state s1 at time t and
reach s2 in one time unit is 0.3.
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Quantitative Model Checking

We are interested in simple questions. For instance,

What is the concentration of protein species Xi at time point
t? That is, P(X t

i = v) =?

We can phrase it as a Probabilistic CTL model checking
question over the Markov chain.

Use a probabilistic model checker (say, PRISM) to solve it.

However, there are two problems:

1 Large size of the Markov chain model

2 Large number of computations
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Compact Representation of the Markov chain

Problem 1: Size of Markov chain is huge

- matrix of 5no. of species rows and columns!

PRISM considers representation as product of Markov chains.

But, we do not know how to decompose our large Markov
chain into a product of Markov chains.

Solution: a “probabilistic graphical model”

an underlying graph to describe relation between variables
over a time step

Markovian properties/assumptions of the biological system.
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The Dynamic Bayesian Network

  

Et

ESt

Pt

St

Et+1

ESt+1

Pt+1

St+1

Conditional Probability table : 

eg., Pr (P t+1 = I | P t  = I’, ES t  = I’’) =0.7

a Random Variable per species per time point,
with its value being the concentration (interval)

The graph structure is invariant over time
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Semantics of a DBN

Joint probability in a DBN is defined recursively as:

P(X t = ~v) =
∑
~u

P(X t−1 = ~u)
∏
i

P(X t
i = ~vi | X t−1

parents{i} = ~uparents{i})

Marginal probability is defined by “summing out”:

P(X t
i = ~vi ) =

∑
~w |~wi=~vi

P(X t = ~w)

Problem 2: too many computations

- summation over all u means 5n−1 computations
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Large number of computations

Problem 2: too many computations

- summation over all u means 5n−1 computations

Existing model checkers cannot handle this.

For eg., PRISM can handle ∼ 107/108 states.
[www.prismmodelchecker.org/manual/FrequentlyAskedQuestions]

Whereas, our model has 532 ∼ 1022 states.

Indeed this is routine in Biological systems...
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Inferencing: Dependence over time

Can we use the structure of the DBN?

the conditional dependencies (of the DBN) do not help, since
in a few time steps, all variables typically become correlated.
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Approximate Inferencing

Idea: Approximation...

Assume that the random variables at the previous step are
independent, i.e., Replace the joint distributions:

P(X t−1
1 = u1,X

t−1
2 = u2, . . . ,X

t−1
n = un)

by the product of the marginals:
n∏

j=1

P(X t−1
j = ~uj)

Then we can show that P(X t
i = v) =∑

~uparents{i}

( ∏
j∈parents{i}

P(X t−1
j = uj)

)
P(X t

i = v | X t−1
parents{i} = ~uparents{i})

The Factored Frontier (FF) algorithm [Murphy & Weiss’01]
computes this, denoted PFF (X t

i = v).
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The computations and the questions

Typical question: What is the concentration of protein species
Xi at time point t? That is, P(X t

i = v) =?

From previous slide:
If PFF (X t

i = v) = k and the error due to FF approximation is
bounded by ε, then

k − ε ≤ P(X t
i = v) ≤ k + ε

For example: Suppose we want P(X 100
i = v) < 0.5 and we

obtain PFF (X 100
i = v) = 0.1 and ε = 0.2, then :-)

Goal:

To give a theoretical bound for ε.

But, how bad is the error in practice?
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The computations and the questions

In practice, FF performs surprisingly well on most species in
many models. But in some cases, ε can be as big as 0.4.
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Figure: (marginal) prob of conc of E being in [0, 1] over time

Can we do better (perhaps, at the cost of spending more time
doing computations)?

Rest of this talk: Partial answer to the above questions...
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Rest of the talk

A quick error analysis for the FF approximation scheme.

Introducing a parametrized version of the FF algorithm called
Hybrid FF.

An intuitive example.

Experimental results.

Conclusion.
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Quick error analysis

At each step of FF, the joint distribution is approximated by
the product of the marginals.

Let Pt denote the exact joint distribution at time t. Observe
that, Pt = T (Pt−1) where T is the transition matrix of the
underlying markov chain.

Let Bt denote the product of marginals given at time t by FF.

Overall error at time t:

∆t = |Pt − Bt | = |T (Pt−1)− Bt |

Then,

∆t = |T (Pt−1)−Bt | ≤ |T (Pt−1)−T (Bt−1)|+|T (Bt−1)− Bt |︸ ︷︷ ︸
single step error δt
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Quick error analysis

Thus, overall error at time t is bounded by

1 ∆t ≤ |T (Pt−1)− T (Bt−1)|+ δt
2 From [Boyen & Koller’98] we obtain
|T (Pt−1)−T (Bt−1)| ≤ λ|Pt−1 − Bt−1| where 0 ≤ λ ≤ 1 is a
contraction factor depending on T .

3 Thus,
∆t ≤ λ∆t−1 + δt

Lemma

Let us denote the max single step error as δ. Then,

ε = max
t

∆t ≤
δ

1− λ
, if λ < 1
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The single step error

Thus, the overall error made by FF can be bounded in terms
of the single step error and the contraction factor.

The contraction factor will be the same for any approximation
scheme that uses Bayesian inferencing. There exist (purely)
theoretical bounds for it [Boyen & Koller’98] (more in
Conclusion).

But even the single step error can be high theoretically (close
to 1) and in practice (as high as 0.2).
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An intuitive example

Suppose we start with a joint distribution:

P =


Mx\My .02 .44 .54

.44 .02 .4 .02

.04 .02 .02

.52 .02 .5


Then, FF does the following:

BFF =

.44
.04
.52

× (.02 .44 .54
)=

.0088 .1936 .2376
.0008 .0176 .0216
.0104 .2288 .2808


Thus, max |P − BFF | = .22.
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The hybrid factored frontier algorithm (idea)

Our approach:

Reduce the error made at a single step by FF, and so reduce
overall error!

1 Observe that the single step error is high only if the joint
probability distribution itself has a high value.

2 However, there can only be few high values (for instance, only
one greater than 0.5).

Main Idea:

Maintain the higher values of joint distribution separately and
update them directly (as joints). For the rest use the FF algorithm.

For details, refer to the report at
www.comp.nus.edu.sg/~suchee/hybridlong.pdf.

www.comp.nus.edu.sg/~suchee/hybridlong.pdf
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An intuitive example contd.

In HFF, start by fixing a threshold=.4.

1 Run FF to obtain marginals.

for P =

.02 .4 .02
.02 .02
.02 .5

 , BFF =

.44
.04
.52

× (.02 .44 .54
)

2 Then we find 4 candidate spikes, i.e., positions in joint
corresponding to high values of all marginals. We maintain
these values almost exactly (by an inductive step).0 .38 .02

0 0 0
0 .02 .48


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An intuitive example contd.

For the rest, we maintain them as a product of marginals (as in
FF). However, the new marginals need to be normalized. With this,

BHFF =

0 .38 .02
0 0 0
0 .02 .48

+ (.1)×

.4.4
.2

× (.2 .4 .4
)

where
.1 = 1− (.38 + .48 + .02 + .02), .4 = (.44−.40)

1−.90 = marginal−spikerowsum
1−spikesum .

BHFF =

.008 .396 .036
.008 .016 .016
.04 .028 .488

 . Recalling P =

.02 .4 .02
.02 .02
.02 .5


max|P − BHFF | = .04 (≤ .1 = 1− spikesum), max|P−BFF | = .22.
Interesting question: How many joints do we need to get high
(value of spikesum)? This parameter defines the threshold.
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Comparing FF and HFF with exact inference
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Figure: (marginal) prob of conc of E being in [0, 1] over time
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Comparing FF and HFF with exact inference(2)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1 9 17 25 33 41 49 57 65 73 81 89 97

FF HFF (3072 Spikes) HFF (32768 Spikes) HFF (100000 Spikes)

Time points

M
t (

 A
ct

ER
K

, [
2,

3)
 )

Figure: Time profile of M t(ActErk ∈ [2, 3]) for FF and HFF

Tradeoff

Runtime grows from 0.2 seconds to 150 sec (for 3072 spikes) in
the big model with 32 variables.
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Issues

Our current concerns

We want a result like: the marginal prob can be wrong by
atmost 0.1. For this, we need to bound on the contraction
factor.

Improve the running time of HFF. Right now, we only have a
naive sequential implementation.

Again,

Can we use HFF to perform (approximate) model checking?
Probabilistic verification techniques based on logics such as
PCTL, PLTL?

How to use further properties from the system - sparsity,
regularity etc?

We ignore observations, but what happens when they are
added?
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Some biologically relevant questions

1 Complicated: If Gene encoding Protein A is knocked out is
there at least 85% probability that concentration of protein B
drops to zero with in the next 10 time points?

2 Behaviour over time: Is there a concomitant change in
concentration of protein Y with changes in protein X?

3 Are our estimated parameter values good? How sensitive are
the variables? Are some more important than others?...

Idea:

Write the above properties in (possibly extended version of) PCTL,
and use the approximate methods developed to model check them!
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Some references...

– [Bing & Thiagarajan & Hsu], Probabilistic Approximations of
Signaling Pathway Dynamics, CMSB-2009.

– [Murphy & Weiss], The Factored Frontier Algorithm for
Approximate Inference in DBN’s, UAI-2001.

– [Boyen & Koller], Tractable Inference for Complex Stochastic
Processes, UAI-1998.

– For more details,
www.comp.nus.edu.sg/~suchee/hybridlong.pdf.

www.comp.nus.edu.sg/~suchee/hybridlong.pdf
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Optional slide

More experimental questions

1 Model validation: Do the results we compute match with the
experimental data thus validating the model?

2 Prediction: Are our model’s predictions consistent with the
experimental data? If not, could it indicate some missing
phenomenon?
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