
Verification of Requirement Specifications Using Counter
Automata

K Vasanta Lakshmi K V Raghavan
Dept. of Computer Science and Automation

Indian Institute of Science, Bangalore
{kvasanta,raghavan}@csa.iisc.ernet.in

1. INTRODUCTION

Collecting the requirements specification is the first step
in the software development cycle. All the subsequent steps
are dependent on it. So it is important that these specifi-
cations are unambiguous, consistent, complete and correct.
Constructing a model from the specifications and verifying
the model can help catch some bugs early in development cy-
cle. Many modeling techniques used to model requirements
specifications, such as petri nets [9], hybrid automata [7] and
counter automata [8, 2], view the system as a state transi-
tion system. It is known that model-checking of finite state
transition systems is decidable. However, for many of the
infinite-state transition systems even answering reachability
of a state is not decidable.

Several partitioning-based algorithms [7, 6] have been
proposed to answer reachability and other temporal proper-
ties of infinite-state systems. The input to these algorithms
is any initial partitioning of the set of states described by the
system (e.g., into initial and non-initial states), and output
is a refinement of the initial partitioning that satisfies a cer-
tain property. These algorithms refine the initial partition-
ing by iteratively computing the predecessor set of states of
the partitions, until a fix point is reached. For the backward
analysis algorithm that we implement the final partitioning
satisfies the following property:
If there exists an edge from partition P1 to partition P2, then

for every state s1 ∈ P1 there exists a state s2 ∈ P2, such that

there exists a transition from s1 to s2 in the given infinite-

state transition system.

If the algorithm terminates then its output will be a finite
set of partitions of the state space, with transitions among
these partitions, which essentially simulate the original sys-
tem. Using this finite system one can answer reachability of
some state in a given target partition from any other state
in any other partition.

Similar to backward analysis an algorithm can perform a
forward analysis by computing the successor sets of the par-
titions in the refinement step. The output of the forward
algorithm that we propose satisfies the following property:
If there exists an edge from partition P1 to partition P2, then

for every state s2 ∈ P2 there exists a state s1 ∈ P1, such that

there exists a transition from s1 to s2 in the given infinite

state transition system.
1

If the algorithm terminates then its output will be a finite
set of partitions of the state space. In the finite transition
system formed by these partition, a path between two par-

1We are not aware of any partitioning-based algorithm that
performs forward analysis.

titions Pi and Pj means that every state in Pj is reachable
from atleast one state in Pi. Clearly this partitioning is more
powerful than that produced by the backward analysis, in
the sense that it can be used to answer reachability of any
state from any other state.

The classes of systems for which backward and forward
algorithms terminate, respectively, are not the same. They
overlap, but neither is contained in the other. In the Ap-
pendix we give an example for which our forward analysis
algorithm terminates, but backward analysis algorithms do
not terminate.

Some generalized results have been proposed by Finkel et.
al [5, 3, 4] that give sufficient conditions for termination of
reachability-testing algorithms that are based on saturation
of reachable sets (as opposed to partitioning). Their fun-
damental sufficient condition is that the given infinite-state
system be a well-structured transition system (WSTS). This
characterization applies to diverse sorts of infinite-state sys-
tems such as petri nets, hybrid automata, counter automata,
and lossy-channel systems.

2. OUR WORK

In our talk we will present some case studies of applying
a backward-analysis partitioning algorithm and our forward-
analysis partitioning algorithm to several real-world systems,
from domains such as streaming applications [1], banking [11]
and finance [10]. The motivation for our case studies was pri-
marily to understand the real-life applicability of the various
approaches and concepts discussed earlier, and to identify
directions for future work to improve their applicability. In
particular, we wished to

• To understand the idioms and patterns exhibited by
real systems that cause both kinds of algorithms, re-
spectively, to terminate or non-terminate, respectively.

• To identify systems (if any) that satisfy the WSTS
property, and yet do not result in a finite partitioning
when processed by either partitioning algorithm (for-
ward analysis or backward analysis).

• To understand whether or not systems on which at
least one of the partitioning algorithms terminate in-
variably satisfy the WSTS property.

• To identify systems on which at least one of the partitoning-
based algorithm terminates, but that does not satisfy
the WSTS property. The previous point as well as

this one are basically motivated by the desire to com-
pare and contrast the partitioning and set-saturation
approaches when applied to practical settings.

In our opinion the above objectives have not been ad-
dressed adequately by the existing literature. In addition,
the results of our case study are likely to point to interest-
ing future work directions in identifying better (i.e., broader)
sufficient conditions (relative to WSTS) for answering tem-
poral properties of infinite-state systems, as well as improved
versions of partitioning-based algorithms (i.e., that termi-
nate on a broader class of systems).

3. REFERENCES

[1] S. Agrawal, W. Thies, and S. Amarasinghe.
Optimizing stream programs using linear state space
analysis. In Proc. 2005 Intl. Conf. on Compilers,

Architectures and Synthesis for Embedded Systems,
CASES ’05, pages 126–136. ACM, 2005.

[2] H. Comon and Y. Jurski. Multiple counters automata,
safety analysis and presburger arithmetic. In CAV ’98:

Proceedings of the 10th International Conference on

Computer Aided Verification, pages 268–279, London,
UK, 1998. Springer-Verlag.

[3] A. Finkel and J. Goubault-Larrecq. Forward Analysis
for WSTS, Part I: Completions. In STACS, volume 3
of LIPIcs, pages 433–444. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany, 2009.

[4] A. Finkel and J. Goubault-Larrecq. Forward Analysis
for WSTS, Part II: Complete WSTS. In Proceedings of

the 36th Internatilonal Colloquium on Automata,

Languages and Programming, ICALP ’09, pages
188–199, Berlin, Heidelberg, 2009. Springer-Verlag.

[5] A. Finkel and P. Schnoebelen. Well-structured
transition systems everywhere! Theoretical Computer

Science, 256(1–2):63–92, 2001.
[6] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V.

Nori, and S. K. Rajamani. Synergy: a new algorithm
for property checking. In SIGSOFT ’06/FSE-14:

Proceedings of the 14th ACM SIGSOFT International

Symposium on Foundations of Software Engineering,
pages 117–127, New York, NY, USA, 2006. ACM.

[7] T. Henzinger. The theory of hybrid automata. Logic in

Computer Science, Symposium on, pages 278–292,
1996.

[8] O. H. Ibarra, J. Su, Z. Dang, T. Bultan, and R. A.
Kemmerer. Counter machines: Decidable properties
and applications to verification problems. In MFCS

’00: Proceedings of the 25th International Symposium

on Mathematical Foundations of Computer Science,
pages 426–435, London, UK, 2000. Springer-Verlag.

[9] T. Murata. Petri nets: Properties, analysis and
applications. Proceedings of the IEEE, 77(4):541–580,
April 1989.

[10] M. Simmons. Securities Operations: A Guide to Trade

and Position Management. John Wiley, 2002.
[11] Terms and conditions of popular credit cards.

APPENDIX

Consider a banking system that processes deposit and with-
drawal transactions, one transaction at a time. The items

If (

If (amount <=20k &

balance − amount >= 0)

balance = balance − amount

continous normal withdrawals++

If continuos normal withdrawals == 12)

total normal withdrawals = 0

amount <=20k &

balance − amount < 0 &
continous overdrafts < 3 &

total overdrafts < 6 &
balance > −40k)

balance = balance − amount

total overdrafts++

continuos overdrafts++

balance = balance + amount

Output: Accept

Output: Accept

Output: Accept

balance,
total overdrafts,

continuos overdrafts,
continuos normal withdrawals

Input:(Deposit ,amount)

Input:(Withdrawal ,amount)

Input:(Withdrawal ,amount)

Figure 1: Counter Automata

given below represent the requirements specification of the
system. This system can be modeled using the counter au-
tomaton given in Figure 1.

• Individual withdrawals have an upper limit of Rs. 20,000.
• Overdrafts (i.e., withdrawing more than the current

balance) are allowed.
• Overdrafts are not allowed when

– When the balance is below negative Rs. 40,000
– When the previous three withdrawals were over-

drafts.
• After six overdrafts, no more overdrafts are allowed un-

til 12 normal withdrawals are completed.

This system has infinite state space because the balance
can take unbounded positive values. Also, this system has
temporal characteristics, as the occurrence of some events is
dependent on past events. Figure 2 shows a part of the finite
final partitioning that is given by our forward-analysis par-
titioning algorithm. Each oval represents a partition, with
the predicate inside the oval describing the set of states (in
the original system) that belong to this partition. Partition
P1 contains the initial state, where all counters are set to 0.
Partition P1 contains the set of states that can be reached
after one overdraft from the initial state. P2 and P3 are
other partitions that contain states reachable from the ini-
tial partition. P4 contains a subset of unreachable states
in the system; note this partition is not reachable from the
initial partition (or, in fact, from any other partition).

Some example verification properties that are of interest
in this system are:

• Reachability of a state. Example: Is the state wherein
balance = -20,000, total overdrafts = 2, continuous
overdrafts = 3, continuos normal withdrawals = 0, reach-
able? The answer is no, as total overdrafts ≥ contin-
uous overdrafts must hold as per requirements specifi-
cation. The reachability of this state can be answered
by checking if there is a path from the initial partition
to the partition to which this given state belongs, i.e.,
partition P4 in Figure 2.

partition

Initial

Withdrawal,

Withdrawal, 0< amount <= 20k

continuos overdrafts = 1

Deposit, amount > 0

continuos overdrafts = 1

0< amount <= 20k

continuos overdrafts = 2

P0

continuos overdrafts = 3

P3

P1

P2

P4

balance = 0,

total overdrafts = 0,

continuos normal withdrawals = 0,

continuos overdrafts = 0

−40k <= balance < −20k,

total overdrafts = 2,

continuos normal withdrawals = 0,

−20k <= balance < 0,

total overdrafts = 1,

continuos normal withdrawals = 0,

balance > 0,

total overdrafts = 1,

continuos normal withdrawals = 0,

−20k <= balance < 0,

total overdrafts = 2,

continuos normal withdrawals = 0,

Figure 2: Transition System

• Reachability of a state. Example: Is the state wherein
balance = -30,000, total overdrafts = 2, continuous
overdrafts = 2, continuos normal withdrawals = 0, reach-
able? The answer is yes. This state belongs to partition
P2 in Figure 2.

• Temporal property. Example: Can an overdraft be re-
jected without any overdraft being accepted in the past.
The answer is no. This property can be checked by
analyzing all the paths from the initial partition to all
partitions containing a state where overdraft is rejected
that pass through an overdraft edge where system out-
put is accept.

