Reachabilty in Succinct and Parametric One-Counter Automata

C. Haase S. Kreutzer J. Ouaknine J. Worrell

Oxford University Computing Laboratory

ACTS Feb, 2010

Parameters Everywhere

Boltzman's constant	k	
Planck's constant	ħ	
Speed of light	С	
Gravitational constant	G	

Parameters Everywhere

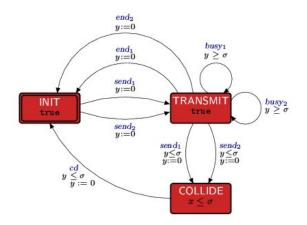
Boltzman's constant	k	
Planck's constant	\hbar	
Speed of light	С	
Gravitational constant	G	

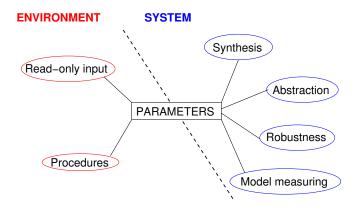
. .

Parameters Everywhere

Boltzman's constant	k	
Planck's constant	ħ	
Speed of light	с	
Gravitational constant	G	

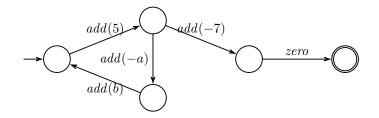
A More Tractable Example





Parametric State Machines

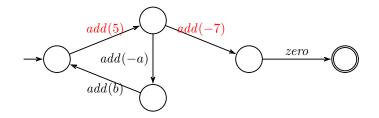
- Flat counter machines with parameters (Bozga, losif, Lakhnech 06)
- Reversal-bounded counter machines with read-only input (Dang, Ibarra 93;...)
- Timed automata with parametric guards (Alur, Henzinger, Vardi 93; André, Encrenaz, Fribourg 09)
- Counter machines with weights/costs (Xie, Dang, Ibarra 03)



One-counter automata: NFA with one counter over N

Succinct: Numbers encoded in binary

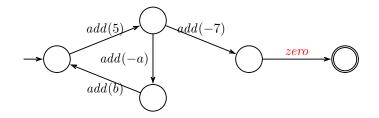
Parametric:



One-counter automata: NFA with one counter over N

Succinct: Numbers encoded in binary

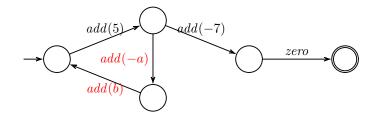
Parametric:



One-counter automata: NFA with one counter over N

Succinct: Numbers encoded in binary

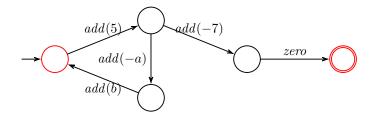
Parametric:



One-counter automata: NFA with one counter over N

Succinct: Numbers encoded in binary

Parametric:



Are there values for the parameters such that a final configuration is reachable from an initial configuration?

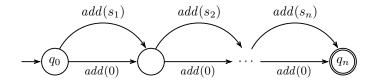
Main result

Theorem The reachability problem for parametric one-counter automata is NP-complete.

NP-Hardness

Reduction from SUBSETSUM:

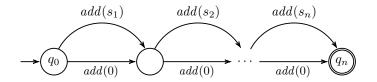
Instance: $S = \{s_1, s_2, ..., s_n\} \subseteq \mathbb{N}$ and target $t \in \mathbb{N}$ Question: Is there $S' \subseteq S$ such that $\sum_{s \in S'} s = t$?



NP-Hardness

Reduction from SUBSETSUM:

Instance: $S = \{s_1, s_2, ..., s_n\} \subseteq \mathbb{N}$ and target $t \in \mathbb{N}$ Question: Is there $S' \subseteq S$ such that $\sum_{s \in S'} s = t$?



Problem becomes NLOGSPACE-complete when numbers are encoded in unary (Lafourcade *et al.*, 2004)

Presburger Arithmetic

- First-order theory of the natural numbers with addition is decidable (Presburger 29)
- Adding multiplication or divisibility leads to undecidability of satisfiability (Gödel 31, Robinson 49)
- Existential fragment of PA with divisibility is decidable (Lipshitz 78)
 - Terms: linear polynomials $A(\vec{x}) = a_0 + a_1 x_1 + \ldots + a_n x_n$
 - Atomic formulas: $A(\vec{x}) \leq B(\vec{x})$ and $A(\vec{x})|B(\vec{x})$
 - Formulas: $\exists x_1 \cdots \exists x_n : \varphi(\vec{x})$

Idea. Given $\varphi(\vec{x})$, construct counter machine C_{φ} with parameters \vec{x} such that $\varphi(\vec{x})$ iff $(q_s, 0) \rightsquigarrow (q_t, 0)$:

Idea. Given $\varphi(\vec{x})$, construct counter machine C_{φ} with parameters \vec{x} such that $\varphi(\vec{x})$ iff $(q_s, 0) \rightsquigarrow (q_t, 0)$:

• $\varphi_1 \wedge \varphi_2$: sequential composition of \mathcal{C}_{φ_1} and \mathcal{C}_{φ_2}

Idea. Given $\varphi(\vec{x})$, construct counter machine C_{φ} with parameters \vec{x} such that $\varphi(\vec{x})$ iff $(q_s, 0) \rightsquigarrow (q_t, 0)$:

• $\varphi_1 \wedge \varphi_2$: sequential composition of \mathcal{C}_{φ_1} and \mathcal{C}_{φ_2}

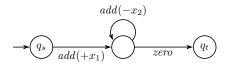
• $\varphi_1 \lor \varphi_2$: parallel composition of C_{φ_1} and C_{φ_2}

Idea. Given $\varphi(\vec{x})$, construct counter machine C_{φ} with parameters \vec{x} such that $\varphi(\vec{x})$ iff $(q_s, 0) \rightsquigarrow (q_t, 0)$:

• $\varphi_1 \wedge \varphi_2$: sequential composition of \mathcal{C}_{φ_1} and \mathcal{C}_{φ_2}

• $\varphi_1 \lor \varphi_2$: parallel composition of C_{φ_1} and C_{φ_2}

 $x_1 | x_2$

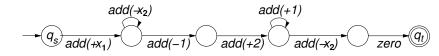


Idea. Given formula $\varphi(\vec{x})$, construct counter machine C_{φ} such that $\varphi(\vec{x})$ holds iff $(q_s, 0) \rightsquigarrow (q_t, 0)$ in C_{φ} .

• $\varphi_1 \wedge \varphi_2$: sequential composition of \mathcal{C}_{φ_1} and \mathcal{C}_{φ_2}

• $\varphi_1 \lor \varphi_2$: parallel composition of C_{φ_1} and C_{φ_2}

 $\triangleright x_2 \nmid x_1$



NP-Hardness Again

Theorem (Manders, Adelman 76). The following problem is NP-complete:

Given integers α, β, γ does there exist $x \leq \gamma$ such that

$$x^2 \equiv \alpha \pmod{\beta}$$

NP-Hardness Again

Theorem (Manders, Adelman 76). The following problem is NP-complete:

Given integers α, β, γ does there exist $x \leq \gamma$ such that

$$x^2 \equiv \alpha \pmod{\beta}$$

Easily encoded into Presburger arithmetic with divisibility

NP-Hardness Again

Theorem (Manders, Adelman 76). The following problem is NP-complete:

Given integers α, β, γ does there exist $x \leq \gamma$ such that

 $x^2 \equiv \alpha \pmod{\beta}$

- Easily encoded into Presburger arithmetic with divisibility
- Reachability is NP-hard on counter machines even if we fix the underlying graph of states and transitions.

Words of Wisdom

Words of Wisdom

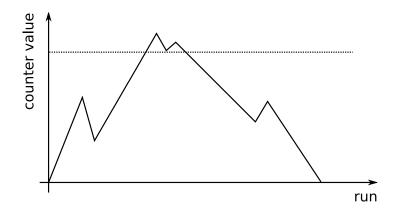
"If you can't solve a problem, there is an easier problem you can't solve." - **George Pólya**

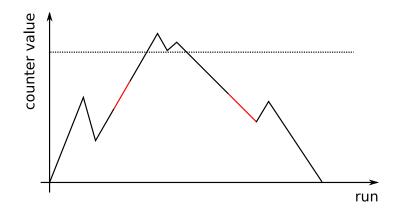
The non-parametric case

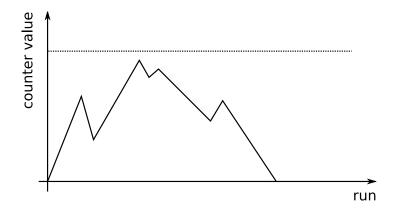
NP-Membership of Reachability

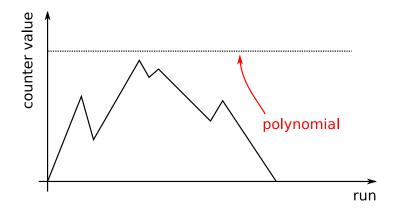
Three stages to show membership in NP:

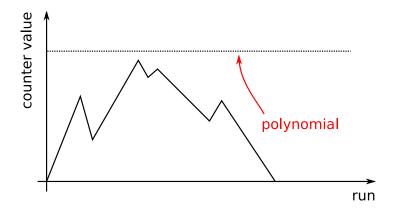
- 1. Establish a bound on the length of a run
- 2. Find certificate of a run of polynomial size
- 3. Ensure certificate can be verified in non-deterministic polynomial time











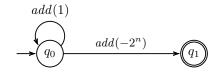
~ PSPACE upper bound for reachability

NP-Membership of Reachability

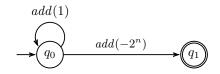
Three stages to show membership in NP:

- 1. Establish a bound on the length of a run
- 2. Find certificate of polynomial size of a run
- 3. Ensure certificate can be verified in non-deterministic polynomial time

Runs of Exponential Length

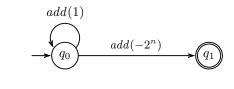


Runs of Exponential Length



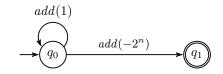
 $(q_0, 0)$

Runs of Exponential Length



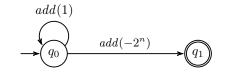
 $(\textit{q}_0,0) \rightarrow (\textit{q}_0,1)$

Runs of Exponential Length

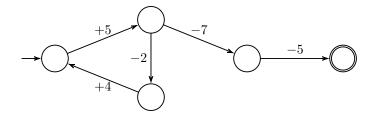


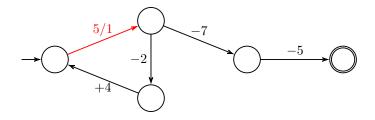
 $(\mathit{q}_0,0) \rightarrow (\mathit{q}_0,1) \rightarrow (\mathit{q}_0,2)$

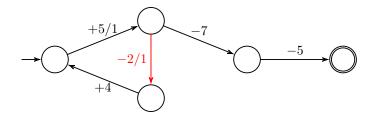
Runs of Exponential Length

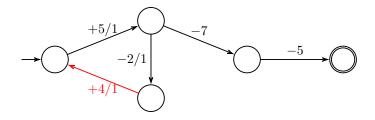


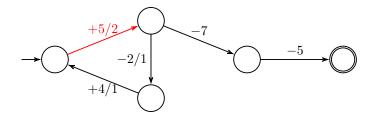
 $(q_0,0)
ightarrow (q_0,1)
ightarrow (q_0,2)
ightarrow \cdots
ightarrow (q_1,2^n)
ightarrow (q_1,0)$

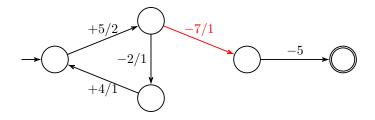


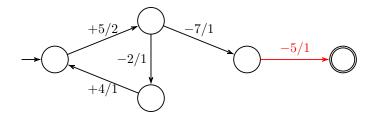


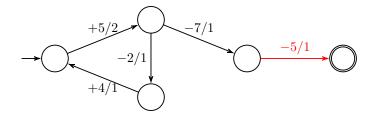




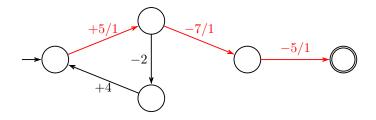








→ assign to each edge the number of times it is taken:



but flow network does not necessarily correspond to a run

NP-Membership of Reachability

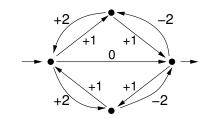
Three stages to show membership in NP:

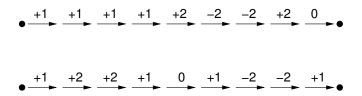
- 1. Establish a bound on the length of a run
- 2. Find certificate of polynomial size of a run
- 3. Ensure certificate can be verified in non-deterministic polynomial time

Three Simple Cases

- 1. Flow network begins with a positive cycle and ends with a negative cycle
- 2. Flow network has no positive cycles
- 3. Flow network has no negative cycles

Positive Cycles and Positive Cycles

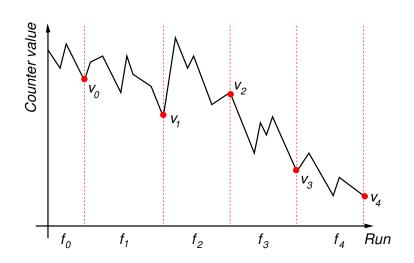




Positive Cycle and Negative Cycle

Three Simple Cases

- 1. Flow network begins with a positive cycle and ends with a negative cycle
- 2. Flow network has no positive cycles
- 3. Flow network has no negative cycles



Guess elimination order on vertices

► $V_0, V_1, ..., V_4$

Guess elimination order on vertices

► $V_0, V_1, ..., V_4$

Corresponding flow decomposition

$$\bullet \quad f = f_0 + f_1 + \dots + f_4$$

Guess elimination order on vertices

► $V_0, V_1, ..., V_4$

Corresponding flow decomposition

$$\bullet \quad f = f_0 + f_1 + \dots + f_4$$

- Counter never goes negative:
 - value(f₀) ≥ 0

. . .

value(f₀ + f₁) ≥ 0

Three Simple Cases

- 1. Flow network begins with a positive cycle and ends with a negative cycle
- 2. Flow network has no positive cycles
- 3. Flow network has no negative cycles

Decomposition Lemma

Lemma

If there is a path from the initial state to the final state, then there is a path that can be written as the sum of three flow networks $f^- + f^* + f^+$, where

- ▶ f⁻ contains no positive cycle
- ► f⁺ contains no negative cycle
- f* has a positive cycle at the "beginning" and a negative cycle at the "end"

Kirchhoff Certificates

Kirchhoff certificate guessed and verified in NP:

- Flows f^- , f^+ and f^* guessed in polynomial time
- Bellman-Ford algorithm checks in polynomial time non-existence of positive cycles in f⁻ and negative cycles in f⁺
- Elimination orderings for f⁺ and f⁻ guessed in polynomial time

 \rightsquigarrow NP-algorithm

NP-Membership of Reachability

Three stages to show membership in NP:

- 1. Establish a bound on the length of a run
- 2. Find certificate of polynomial size of a run
- 3. Ensure certificate can be verified in non-deterministic polynomial time

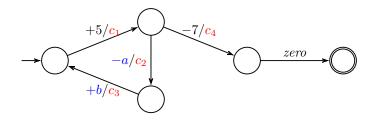
→ reachability for succinct one-counter automata is NP-complete

In Reality

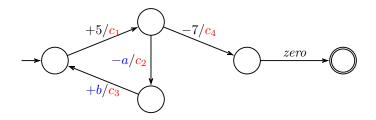
In Reality

"It's only 10 pages in the LNCS style – we need another result!" - **Christoph Haase**

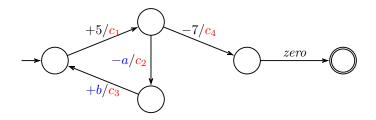
The parametric case



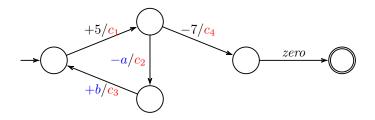
Symbolic representation of Kirchhoff certificates



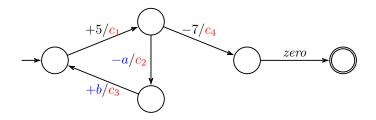
- Symbolic representation of Kirchhoff certificates
- ► Variables *c*₁, *c*₂, *c*₃, *c*₄ to represent flow



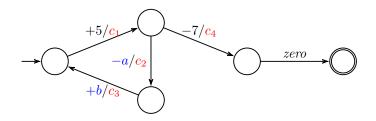
- Symbolic representation of Kirchhoff certificates
- Variables c₁, c₂, c₃, c₄ to represent flow
- Variables a, b to represent parameters



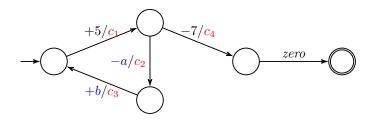
Flow constraints: e.g. $c_1 = c_2 + c_4$



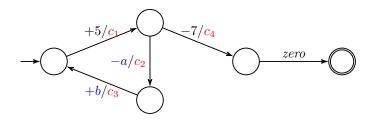
- Flow constraints: e.g. $c_1 = c_2 + c_4$
- Cycle constraints: e.g. b a + 5 > 0



- Flow constraints: e.g. $c_1 = c_2 + c_4$
- Cycle constraints: e.g. b a + 5 > 0
- Value constraints: value(f) > 0

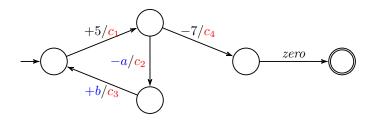


Value constraints:



Value constraints:

• $value(f) = 5 \cdot c_1 - a \cdot c_2 + b \cdot c_3 - 7 \cdot c_4$



Value constraints:

- $\blacktriangleright value(f) = 5 \cdot c_1 a \cdot c_2 + b \cdot c_3 7 \cdot c_4$
- Quadratic Diophantine equation

Flow Networks and Diophantine Equations

Some systems of quadratic Diophantine equations are decidable:

 $R_1 = y_1 A_1(\vec{x}) + B_1(\vec{x})$ \vdots $R_k = y_k A_k(\vec{x}) + B_k(\vec{x})$

Given $P \subseteq \mathbb{Z}^k$ Presburger definable, ask

 $\exists \vec{\mathbf{x}} \exists \vec{\mathbf{y}} P(R_1,\ldots,R_k)?$

Flow Networks and Diophantine Equations

Some systems of quadratic Diophantine equations are decidable:

 $R_1 = y_1 A_1(\vec{x}) + B_1(\vec{x})$ \vdots $R_k = y_k A_k(\vec{x}) + B_k(\vec{x})$

Given $P \subseteq \mathbb{Z}^k$ Presburger definable, ask

 $\exists \vec{x} \exists \vec{y} P(R_1, \ldots, R_k)?$

... translate to sentence in Presburger arithmetic with divisibility:

 Satisfiability in the existential fragment of Presburger arithmetic with divisibility is NP-complete (Lipshitz, 1976)

- Satisfiability in the existential fragment of Presburger arithmetic with divisibility is NP-complete (Lipshitz, 1976)
- All conditions of a reachability certificate can be encoded in a sentence of polynomial size in this logic

- Satisfiability in the existential fragment of Presburger arithmetic with divisibility is NP-complete (Lipshitz, 1976)
- All conditions of a reachability certificate can be encoded in a sentence of polynomial size in this logic
- Satisfiability in this fragment is inter-reducible with reachability in parametric one-counter automata

- Satisfiability in the existential fragment of Presburger arithmetic with divisibility is NP-complete (Lipshitz, 1976)
- All conditions of a reachability certificate can be encoded in a sentence of polynomial size in this logic
- Satisfiability in this fragment is inter-reducible with reachability in parametric one-counter automata

Theorem

The reachability problem for parametric one-counter automata is NP-complete.