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A More Tractable Example
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Parametric State Machines

I Flat counter machines with parameters
(Bozga, Iosif, Lakhnech 06)

I Reversal-bounded counter machines with read-only input
(Dang, Ibarra 93 ; . . . )

I Timed automata with parametric guards
(Alur, Henzinger, Vardi 93 ; André, Encrenaz, Fribourg 09)

I Counter machines with weights/costs
(Xie, Dang, Ibarra 03)
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Parametric One-Counter Automata
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Are there values for the parameters such that a final
configuration is reachable from an initial configuration?



Main result

Theorem
The reachability problem for parametric one-counter automata
is NP-complete.



NP-Hardness

Reduction from SUBSETSUM:

Instance: S = {s1, s2 . . . , sn} ⊆ N and target t ∈ N
Question: Is there S′ ⊆ S such that

∑
s∈S′ s = t?

q0 · · · qn

add(s1)

add(0)

add(s2)

add(0)

add(sn)

add(0)

Problem becomes NLOGSPACE-complete when numbers are
encoded in unary (Lafourcade et al., 2004)
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Presburger Arithmetic

I First-order theory of the natural numbers with addition is
decidable (Presburger 29)

I Adding multiplication or divisibility leads to undecidability of
satisfiability (Gödel 31, Robinson 49)

I Existential fragment of PA with divisibility is decidable
(Lipshitz 78)

I Terms: linear polynomials A(~x) = a0 + a1x1 + . . . + anxn

I Atomic formulas: A(~x) ≤ B(~x) and A(~x)|B(~x)

I Formulas: ∃x1 · · · ∃xn : ϕ(~x)



Presburger+Divisibility –> Reachability

Idea. Given ϕ(~x), construct counter machine Cϕ with
parameters ~x such that ϕ(~x) iff (qs, 0) (qt , 0):

I ϕ1 ∧ ϕ2: sequential composition of Cϕ1 and Cϕ2

I ϕ1 ∨ ϕ2: parallel composition of Cϕ1 and Cϕ2

I x1 | x2

qs qt
add(+x1) zero

add(−x2)
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Presburger + Divisibility –> Reachability

Idea. Given formula ϕ(~x), construct counter machine Cϕ such
that ϕ(~x) holds iff (qs, 0) (qt , 0) in Cϕ.

I ϕ1 ∧ ϕ2: sequential composition of Cϕ1 and Cϕ2

I ϕ1 ∨ ϕ2: parallel composition of Cϕ1 and Cϕ2

I x2 - x1

add(−1) zeroadd(+2)

x2

x2

add(+1))add(−

)add(−)x1add(+
q
s

qt



NP-Hardness Again

I Theorem (Manders, Adelman 76). The following problem
is NP-complete:

Given integers α, β, γ does there exist x ≤ γ such that

x2 ≡ α (mod β)

I Easily encoded into Presburger arithmetic with divisibility

I Reachability is NP-hard on counter machines even if we fix
the underlying graph of states and transitions.
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“If you can’t solve a problem, there is an easier
problem you can’t solve.” - George Pólya
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The non-parametric case



NP-Membership of Reachability

Three stages to show membership in NP:

1. Establish a bound on the length of a run

2. Find certificate of a run of polynomial size

3. Ensure certificate can be verified in non-deterministic
polynomial time



Truncating Runs (Lafourcade et al., 2004)
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Flow Networks
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but flow network does not necessarily correspond to a run



NP-Membership of Reachability

Three stages to show membership in NP:

1. Establish a bound on the length of a run

2. Find certificate of polynomial size of a run

3. Ensure certificate can be verified in non-deterministic
polynomial time



Three Simple Cases

1. Flow network begins with a positive cycle and ends with a
negative cycle

2. Flow network has no positive cycles

3. Flow network has no negative cycles



Positive Cycles and Positive Cycles
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No Positive Cycles

I Guess elimination order on vertices

I v0, v1, . . . , v4

I Corresponding flow decomposition

I f = f0 + f1 + · · ·+ f4

I Counter never goes negative:

I value(f0) ≥ 0
I value(f0 + f1) ≥ 0

· · ·
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Three Simple Cases
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Decomposition Lemma

Lemma
If there is a path from the initial state to the final state, then
there is a path that can be written as the sum of three flow
networks f− + f ∗ + f +, where

I f− contains no positive cycle

I f + contains no negative cycle

I f ∗ has a positive cycle at the “beginning” and a negative
cycle at the “end”



Kirchhoff Certificates

Kirchhoff certificate guessed and verified in NP:

I Flows f−, f + and f ∗ guessed in polynomial time

I Bellman-Ford algorithm checks in polynomial time
non-existence of positive cycles in f− and negative cycles
in f +

I Elimination orderings for f + and f− guessed in polynomial
time

 NP-algorithm



NP-Membership of Reachability

Three stages to show membership in NP:

1. Establish a bound on the length of a run

2. Find certificate of polynomial size of a run

3. Ensure certificate can be verified in non-deterministic
polynomial time

 reachability for succinct one-counter automata is
NP-complete



In Reality

“It’s only 10 pages in the LNCS style – we need
another result!” - Christoph Haase
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The parametric case



Symbolic Representation
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I Variables c1, c2, c3, c4 to represent flow

I Variables a, b to represent parameters



Symbolic Representation

+5/c1

+b/c3

−a/c2

−7/c4

zero

I Symbolic representation of Kirchhoff certificates

I Variables c1, c2, c3, c4 to represent flow

I Variables a, b to represent parameters



Symbolic Representation

+5/c1

+b/c3

−a/c2

−7/c4

zero

I Symbolic representation of Kirchhoff certificates

I Variables c1, c2, c3, c4 to represent flow

I Variables a, b to represent parameters



Symbolic Representation

+5/c1

+b/c3

−a/c2

−7/c4

zero

I Flow constraints: e.g. c1 = c2 + c4

I Cycle constraints: e.g. b − a + 5 > 0

I Value constraints: value(f ) > 0



Symbolic Representation

+5/c1

+b/c3

−a/c2

−7/c4

zero

I Flow constraints: e.g. c1 = c2 + c4

I Cycle constraints: e.g. b − a + 5 > 0

I Value constraints: value(f ) > 0



Symbolic Representation

+5/c1

+b/c3

−a/c2

−7/c4

zero

I Flow constraints: e.g. c1 = c2 + c4

I Cycle constraints: e.g. b − a + 5 > 0

I Value constraints: value(f ) > 0



Symbolic Representation

+5/c1

+b/c3

−a/c2

−7/c4

zero

Value constraints:

I value(f ) = 5 · c1 − a · c2 + b · c3 − 7 · c4
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Flow Networks and Diophantine Equations

Some systems of quadratic Diophantine equations are
decidable:

R1 = y1A1(~x) + B1(~x)

...
Rk = ykAk (~x) + Bk (~x)

Given P ⊆ Zk Presburger definable, ask

∃~x∃~yP(R1, . . . , Rk )?

. . . translate to sentence in Presburger arithmetic with
divisibility:
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Summary

I Satisfiability in the existential fragment of Presburger
arithmetic with divisibility is NP-complete (Lipshitz, 1976)

I All conditions of a reachability certificate can be encoded
in a sentence of polynomial size in this logic

I Satisfiability in this fragment is inter-reducible with
reachability in parametric one-counter automata

Theorem
The reachability problem for parametric one-counter automata
is NP-complete.
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