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Hybrid Automata

m Hybrid behaviors:

m Mode-specific continuous dynamics +
discrete mode changes

m Standard model: Hybrid Automata

. Plecewise constant rates
. Rectangular guards
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Piecewise Constant Rates

{X1, X5, X3}

pg (X1, X2, x3) = (2, -3.5, 1)
dx,/dt =2 x,(t) = 2t + x,(0)
dx,/dt =-3.5 dx;/dt=1
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Rectangular Guards

Pc

X<C | XxX2c| oA @

4



"

Initial Regions

Pc
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Highly Expressive

m Plecewise constant rates; rectangular guards
m The control state (mode) reachabillity

problem is undecidable.
Given g;, Whether there exists a trajectory
(o, Xp) (Ags Xq) -evv-n. (0., X.n) SUCh that g, = q;
do = Initial mode; X, in initial region.
QHKPV'95
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Two main ways to circumvent
undecidabllity

m |f Its rate changes as the result of a mode
change,

Reset the value of a variable to a pre-
determined region



Hybrid Automata with resets.
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Hybrid Automata with resets.

X>5

i X « [2, 4] -

X< 2.8
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Control Applications
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The reset assumption is untenable.
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Digital Controller

Sensors
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Digital Controller

[HK’97]. Discrete time assumption.

The plant state is observed only at

(periodic) discrete time points T, T, T,.....

T, -T=A
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Discrete time behaviors

m The discrete time behavior of a hybrid
automaton:
Q : The set of modes

do d; ---J,, IS & State sequence Iff there exists

a run (do, Vo, ) (dg, Vq) ... (Qm, Vi) OFf the
automaton.

The discrete time behavior of Aut iIs
s L(Aut) c Q*
m the set of state sequences of Aut
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m [HK'97]:
The discrete time behavior of (piecewise

constant + rectangular guards) an hybrid
automaton is regular.

A finite state automaton representing this
language can be effectively constructed.
m Discrete time behavior is an approximation.
With fast enough sampling, it is a good
approximation.



m [AT'04]. The discrete time behavior of an
hybrid automaton is regular even with
delays In sensing and actuating (laziness)
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K-1 g 9g+9,

The value of x; reported att =k is the
value at some t’in [(k-1)+ g, (k-1)+g
"'59]

g and 9, are fixed rationals
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If a mode change takes place att =k is then
X; starts evolving at p’'(x;) at some t’in [k+
h, k+h + §,]

h and 9§, are fixed rationals.



Global Hybrid Automata
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Distributed Hybrid Automata
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No explicit communication between the automata.. However,
coordination through the shared memory of the plant’s state space.
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The Communictaion graph of DHA

Obs(p) --- The set of variables observed by p
Ctl(p) --- The set of variables controlled by p
Ctl(p) n Ctl(q) =

Nbr(p) = Obs(p) v Ctl(p)




[p(s%), p(s%),/P(s%)]

[(S°1, VO), (S0, VOy), (8%, VO3)]
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[(S21, V21)s (S22 V2)), (S%3, VZ3)]

[(s'1, V1), (8%, V1y), (Sh3, Vig)

[p(s%), p(s%),/P(s%)]

[(S°1, VO), (S0, VOy), (8%, VO3)]
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[(S21, V21)s (S22 V2)), (S%3, VZ3)]

[(s'1, V1), (8%, V1y), (Sh3, Vig)

[p(s%), p(s%),/P(s%)]

[(S31, V31)s (S35 V3)), (S%5, V35)]

4

[(S°1, VO), (S0, VOy), (8%, VO3)]
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[(S%1, V21), (S22, V2)), (8%, VZ3)]

[(S%, v*1), (8%, V4)), (8%, V)]

[(S'1, V1), (Sty, VEy), (Shs, Vi3)

[p(s%), p(s%),/P(s%)]

[(S%1, V31), (S22, V3y), (8%, V35)]

4

[(S%1, VO1), (8%, VO)), (8%, VO5)]
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Discrete time behavior:
(Global) state sequences

[S91, 8%, 8%] [s%1,5%,8%] [8%1, %, 5%] [8°1, 5%, %] -
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" A0
Discrete time behaviors

m The discrete time behavior of DHA Is
s L(DHA) € (S;; x Sppx ... X Spn)*
m the set of global state sequences of DHA

m L(DHA) is regular?
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" A
Discrete time behaviors

m The discrete time behavior of DHA Is
s L(DHA) € (S;; x Sppx ... X Spn)*
m the set of global state sequences of DHA

m L(DHA) is regular?
m Yes. Construct the (syntactic product) AUT
of DHA.

m AUT will have piecewise constant rates
and rectangular guards. Hence.....
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Network of HAS Global HA

Syntactic
roduct

—)

lDiscretization

m ---- the number of component automata in DHA

The size of DHA will be linear in m

The size of AUT will be exponential in m.

Global FSA

Can we do better?
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Network of HAS Global HA

Syntactic
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Local
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Network of HAS

Local
discretization
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Location node Variable node

For each node, construct an FSA
Each FSA will “read” from all its neighbor FSAs to make its moves.

Nbr(p) = Ctl(p) v Obs(p) Nbr(x) ={p | x € Ctl(p) v Obs(p) }



Aut

X

m Aut, will keep track of the current value of
X

m CTL(X) = pif x € Ctl(p)
m A move of Aut,:

read the current rate of x from Aut. ., and
update the current value of x

m Can only keep bounded information
m Quotient the value space of x



Quotienting the value space of X

min




Quotienting the value space of X
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Quotienting the value space of X

O
O
O
O
O
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c,c, ... theconstants that appear in some guard



Quotienting the value space of X

P, P ... rates of x associated with modes in AUTcy
Pl Pl
o0 o——=0O @O @ O

Find the largest positive rational that evenly divides all these rationals

Use it to divide [v  Into uniform intervals

min, Vmax



Quotienting the value space of X




Quotionting the value space of X

)oaae&ﬂaawc(

A move of Aut,:

If Aut, is in state | and CTL(x) = p and Aut,’s state is p then
Aut, moves from I to I’ = p(l)



Aut(x,)
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(v1, v3) satisfies g for
some (vl,v3)in Il x 13
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Aut(ps) @ h Aut(p,)
Te— R T
m =| Aut(p,) .‘.:@

Each automaton will have a parity bit. This bit flips every time the
automaton makes a move. Initially all the parities are 0.

A variable node automaton makes a move only when its parity is
the same as all its neighbors’

A location node automaton makes a move only when its parity is
different from all its neighbors.



Aut(ps)




Aut(ps)

Aut(p,)

Aut(p,)




Aut(ps)

Aut(p,)

Aut(p,)




Aut(ps)
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Aut(p,)

Aut(p,)




Aut(ps)
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Aut(ps)




Aut(ps)




Aut(ps)




Aut(ps)

Aut(p,)




Aut(p,)

The automata can ‘drift” in time steps.
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i Aut(pz) ::@

Aut  ---—--- The asynchronous product of
{ Aut(xy), Aut(p,), Aut(xy), Aut(p,), Aut(xs), Aut(ps) }

Each global state of Aut will induce a global state of DHA.

f
[(11, (s1, p1), 12, (S2, p2), I3, (53, p3)] === [s1, s2, s3]

In fact, each complete state sequence of Aut will induce a global state
sequence of DHA.



A state sequence t of Aut is complete iff all the FSA
make an equal number of moves along .
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The main results

m Suppose t Is a complete state sequence of

Aut. Then f(t) Is a global state sequence
of DHA.

m If o Is global state sequence of DHA then
there exists a complete sequence t of Aut
such that f(t) = o.

m In the absence of deadlocks, every state
seqguence of Aut can be extended to a
complete state sequence.



Extensions

m | aziness

m Delays in communictions between the
plant and controllers.

m Different granularities of time for the
controllers



The marked graph connection
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Can be used to derive partial order reduction verification
algorithms.
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Communicating hybrid automata:
Synchronize on common actions; message
passing; shared memory ...
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Plant

Py P2 Ps

Time-triggered protocol;
Each controller is implemented on an ECU

Study interplay between plant dynamics and the performance of the
computational platform



Summary

m The discrete time behavior of distributed
hybrid automata can be succinctly
represented.

as a network of FSA (communicating as in
asynchronous cellular automata).

many extensions possible.

Finite precision assumption can yield
stronger results.



