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Security protocols

Security protocols are three line programs that peaple still manage to get wrong.

Roger Needham



An example protocol
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Attacks

@ Another look at the same
AB:{n}p, B?A:{n}y
A?B:{n}, BlA:{n},

@ ...andan attack!

AB:{p}p
B2I:{plp
B\:{p};
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The framework

Protocol specifications mention abstract names and roles
Runs are got by

@ instantiating the roles to many sessions

@ and interleaving them arbitrarily

@ inthe presence of an all powerful intruder

@ respecting some admissibility conditions.
Intruder can

@ learn messages travelling over the network
@ construct new messages and play them back (under a possibly assumed identity).

Admissibility Are the messages sent by the intruder constructible given her current
knowledge?

Secrecy problem Is a secret leaked to the intruder by some run of the protocol?



Message construction rules
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Figure: Derivation rules (from X)



Decidability

@ The passive intruder deduction problem: given X and ¢, check if there is proof of
Xkt
@ This problem is decidable.
@ Anotion of normal proofs.
o If X | isprovable, there is a normal proof of X |- z.
@ Every term 7 occurring in a normal proof of X - 7 isa subterm of X" U {7 }.
@ Derive bounds on the size of normal proofs from this.



@ Anexample:

— M — A
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Non-normal proofs



Non-normal proofs

@ Anexample:
— M — A
t t
pair
(¢,1)
— splity
t
@ Another one:
— M — A
t k
encrypt  —— Ax
{£}s k

decrypt



Normalization rules
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Subterm property

Lemma
If 7¢ is a normal proof of Xt ¢ and » occurs in 7c:
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Subterm property

Lemma
If 7¢ is a normal proof of Xt ¢ and » occurs in 7c:
@ rest(Xuir}
@ if 7z ends in a destruction rule, then » & st(X).

@ if r occursin 7,

T rest(X Ut}
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encrypt @ if r occursin 7z,
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Subterm property

Lemma
If 7¢ is a normal proof of Xt ¢ and » occurs in 7c:
® rest(XU{r})
@ if 7z ends in a destruction rule, then » & st(X).

@ if r occursin 7z, or 7z,

e res(XU{{r},})
{the  inv(k) . .
decrypt @ since 7z is normal, 77, does not end
t with the encrypt rule

@ soit ends with a destruction rule,
and {1}, €st(X)
@ soany » occurring in 7 isin st(X).



A polynomial-time algorithm
@ The height of a normal proof of X - 7 is bounded by 72 = |st(X U {})|.
@ let X, =X
@ (ompute X, = one-step-derivable(X, ) Nst(X U{zr}) forz <n
o (heckifr € X!
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Extensions

@ What about other cryptographic primitives?
@ Diffie-Hellman encryption, exclusive or, homomorphic encryption, blind signatures,

@ Alarge body of results:



Cancellations: the xor case

@ One new construction rule: . ,
RS

n

(ll @"'@%)i

@ Normalization rules: no more than one occurrence of any term as a premise of an xor
rule
@ Simplify




Cancellations: the xor case

@ One new construction rule: . ,
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@ Normalization rules: no more than one occurrence of any term as a premise of an xor
rule

@ Simplify
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Subterm property

@ The cases other than xor go through smoothly
@ or brings cancellations to the party!

™ © 7T

L®L LOn

LB

@ 1, isnota subterm of the conclusion. Is it a subterm of the premises? One can argue
that it is!

@ Moral: We cannot work with syntactic subterms any more, but there is still some way
of bounding the set terms occurring in proofs.



Term syntax

T u=m| (b, 4) [ [t ] [{th

Normal terms: Terms that do not contain a subterm of the form { [ 7,7, ]},. Foraterm z,
getits normal form 7 | by pushing encryptions over blind pairs, all the way inside.



Term syntax

T u=m|(t, )| [0 5] [ {the

Normal terms: Terms that do not contain a subterm of the form { [ 7,7, ]},. Foraterm z,
getits normal form 7 | by pushing encryptions over blind pairs, all the way inside.

[£,t'] k (t}y]  inv(k) (t0:11) [to:ti]l 4]
encrypt — deaypt split; | ——————— blindsplit;

Hedel {2hel] t t to

Figure: analzand rules for normal terms (with assumptions from X C .77)
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Modelling blind signatures

A (avoter) wants to get / (a registration authority) to sign a message 7z for her, without
revealing 772 to him. - In other words, /A wants the message {777} ...
r

@ [m’ {V}publ/f(B)]

{ [m ’ { r }pub/i((B )] } private(B)

[{m }pr/'vate(B)’ 7’]

[{m}private(lf)’ 7’] Q
B

{ m }pn'vate(B )



Alternative theories
@ Asimpler system.
[z, {m},] inv(k)
H 4 }fan(/\*7‘ W]']

Passive intruder deduction is PTIME decidable.
@ Amuch harder system.

Bttt k
{tihe +-+{th
LAttt

tp+-tt,+ o+,

m

e o T R T
Decidable but non-elementary upper bound.
@ Our system: Decidable with a DEXPTIME upper bound.



Ax

Some difficult proofs

— A —Ax
b k

[4,{0}]

encrypt
® blindspii,

{0}
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Some difficult proofs ...

Ax — Ax
[4,b] k
e iord T
alp,
o U0k © blindspit,

{ate




Some difficult proofs ...

— M — A
Hater, b1 Ky
encrypt Ax
[{ate,kykp> 1038, {bh,
Ax blindsplit,
(65 {atp pyh, ] {adk ke
Ax L L blindsplit,
[{ate,k, 0] b
blindsplit;

{abi,k,



Some difficult proofs ...

M — A
[afake] K
—  enaypt Ax
[{ate,> {ate,r,] {aber,
Ax blindsplit,
[, {a}, ] {ali,
blindsplit,




Decidability: the proofidea

@ The examples suggest that it is not easy to come up with a bound on the terms
occurring in the proof.
@ Instead of trying to prove that it is finite, we prove that it is regular.
@ Show that every term in a normal proof of X - 7 is of the form { p } _ where
P est(X U{r})and x is asequence of keys from st(X U {z}).
o Show thatforeach p € st(X U {1}),., = {x € 7 [X F {p} |isa
reqular set.
o Tocheck whether X |- ¢, check whether = & Z,.



Decidability: the proofidea

@ The examples suggest that it is not easy to come up with a bound on the terms
occurring in the proof.
@ Instead of trying to prove that it is finite, we prove that it is regular.
@ Show that every term in a normal proof of X - 7 is of the form { p } _ where
P est(X U{r})and x is asequence of keys from st(X U {¢ ‘)
o Showthatforeach p € si(X U {r}), <, = {x €7 |X Fipt }isa
reqular set.
o Tocheck whether X |- ¢, check whether = & Z,.
o Properties of the Y’ :
kx €2, |ffx €Y,
° |fx€,[ andxez thenxe.,’[’p/
e ifxe Z and e € /,thenx/e EQZ//Y
o ifce {t}k ande €inv(k)thene € 1.
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An example

@

¢/, [, 1"t and ¢” encrypted with & is {2/},



An example

the initial set of terms X'



An example

k
FeXadt' = f



An example

k k
(t,t']= fand: = |
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Another example

RSN

®

(" [t ] ke



Another example

RSN L

()——0

the initial set of terms X'



Another example
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Another example

{[e. 4t} ).t kb e
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I



Another example

RSN L

A\

|



Proof normalization

X o ! P S I S
I/ 4 [/ /(f 1 k
bpair encrypt encrypt

[t',t"] k {5l "l

———————  enaypt bpair

(1 bl {3l [ el ("3l

' w m,/ 8 F// 8
{thel {7l el inv(k) {3l inv(k)

bpair . —  decrypt decrypt
ekl 7] inv(k) v
decrypt bpair
[l/’t//l [[/,[//]

Figure: The normalization rules |



Proof normalization ...

R T LS
[t,t'] ¢ s [t,t'] & t k
blindsplit — encrypt encrypt
t k [{ el 2}l e}l
encrypt blindsplit
{thel {thel
:7-{/ :73// 71'/ 8 " 8
el i1l {08l 'S e e 8] inv(R) £}l i)
blindsplit . decrypt decrypt
{t1pl inv(k) [t,t'] t
decrypt blindsplit
t t

Figure: The normalization rules Il



Proof normalization ...
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Proof normalization ...

Lemma
Whenever X |- t, there is a normal proof of  from X .

Lemma

Let 7 be a normal proof of ¢ from X', and let & be a sub-proof of 7= with root labelled .
Then the following hold:

@ If S ends with an analz rule, then for every 1 occurringin & thereis p € st(X) and
keyword x suchthat v = { p} |

@ IS endswith asynth rule, then for every v occurring in &, either 12 € st(X U {r})
orthereis p < st(X') and keyword x suchthat v = { p} _|.

© |Ifthelast rule of & is decrypt or split with major premise 7, then | & st(X).
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The automaton construction

Similar to the constructionin [ ]

o =(Q,5,5,F),Q=Y,U{f}, T =Ky,andF = {f}.

k
o @ ifreYykekK,suhthat{r},|€ Y, thent —, {{r},]}.
Q ifz,1’,t” € Y, suchthat ¢ is the conclusion of an instance of the bpair or

&€
blindsplit; rules with premises ¢’ and ¢”, then ¢ < {¢/,"}.

o @ ifg=>,C,theng<s,,, C.
k ¢
Q if{t},leYyandz =, C then {t},]—,  C.

. ¢ k

@ ifkeKyandk =; {f} then f —, , {f}.

Q ifIC Y, t € Yy, andif there s an instance r of one of the rules whose set of
premises is (exactly) I and conclusion is ¢ the following holds:

if :E>l- {f}foreveryu €T, thzent‘i>l-Jrl {1
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Correctness of the construction

Theorem
(Completeness) Forany t € Yy, and any keyword x, if Xy = {¢ } .|, then there exists
i > Osuch that ¢ :x>l» {1}

Lemma

Supposei,d >0,t € Yo, x,y €K, and C C Q (with D = C N'Y,). Suppose
the following also hold: 1) t :x>l-’d C,and2) C C Yyor Xyt y. Then
XO U {D}y I— {t}xy'

Theorem

(Soundness) forany i, any t € Y, and any keyword x, if t :x>i {f}, then
XO |_ {t}xl
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Summary

@ |Interesting extension of the Dolev-Yao theory

@ Related work Tree automata used extensively in security protocol literature. Typically
the accepted language is an over-approximation of the set of derivable terms. But
there is a lot of potential for automata to be used in the analysis of derivations.

@ Future work Lots of unresolved questions: Lower bounds or tighter upper bounds,
complexity of the active intruder theory, better upper bounds for a general abelian
group operator with encryption (the [ ] result) etc.
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