Extensions of Dolev-Yao theory and the secrecy problem

A Baskar (CMI) R Ramanujam (IMSc) S P Suresh (CMI)

Automata, Concurrency, and Timed Systems CMI February 2, 2010

Outline

Outline

Extensions of the basic model

Security protocols

Security protocols are three line programs that people still manage to get wrong.

Roger Needham

An example protocol

$$A \rightarrow B : \{n\}_B \\ B \rightarrow A : \{n\}_A$$

• Another look at the same

• Another look at the same $A!B: \{n\}_B$ $A?B: \{n\}_A$

• Another look at the same

- Another look at the same $A!B:\{n\}_B$ $B?A:\{n\}_B$ $A?B:\{n\}_A$ $B!A:\{n\}_A$
- ...and an attack!

- Another look at the same $A!B:\{n\}_B$ $B?A:\{n\}_B$ $A?B:\{n\}_A$ $B!A:\{n\}_A$ • ...and an attack!
 - $A!B:\{p\}_B$

Outline

- Protocol specifications mention abstract names and roles
- Runs are got by

- Protocol specifications mention abstract names and roles
- Runs are got by
 - instantiating the roles to many sessions
 - and interleaving them arbitrarily
 - in the presence of an all powerful intruder
 - respecting some admissibility conditions.

- Protocol specifications mention abstract names and roles
- Runs are got by
 - instantiating the roles to many sessions
 - and interleaving them arbitrarily
 - in the presence of an all powerful intruder
 - respecting some admissibility conditions.
- Intruder can

- Protocol specifications mention abstract names and roles
- Runs are got by
 - instantiating the roles to many sessions
 - and interleaving them arbitrarily
 - in the presence of an all powerful intruder
 - respecting some admissibility conditions.
- Intruder can
 - learn messages travelling over the network
 - construct new messages and play them back (under a possibly assumed identity).

- Protocol specifications mention abstract names and roles
- Runs are got by
 - instantiating the roles to many sessions
 - and interleaving them arbitrarily
 - in the presence of an all powerful intruder
 - respecting some admissibility conditions.
- Intruder can
 - learn messages travelling over the network
 - construct new messages and play them back (under a possibly assumed identity).
- Admissibility Are the messages sent by the intruder constructible given her current knowledge?

- Protocol specifications mention abstract names and roles
- Runs are got by
 - instantiating the roles to many sessions
 - and interleaving them arbitrarily
 - in the presence of an all powerful intruder
 - respecting some admissibility conditions.
- Intruder can
 - learn messages travelling over the network
 - construct new messages and play them back (under a possibly assumed identity).
- Admissibility Are the messages sent by the intruder constructible given her current knowledge?
- Secrecy problem Is a secret leaked to the intruder by some run of the protocol?

Message construction rules

Decidability

- The passive intruder deduction problem: given X and t, check if there is proof of $X \vdash t$
- This problem is decidable.
 - A notion of normal proofs.
 - If $X \vdash t$ is provable, there is a normal proof of $X \vdash t$.
 - Every term r occurring in a normal proof of $X \vdash t$ is a subterm of $X \cup \{t\}$.
 - Derive bounds on the size of normal proofs from this.

Non-normal proofs

• An example:

$$\frac{-Ax}{t} \qquad \frac{Ax}{t} \qquad \frac{Ax}{t}$$

$$\frac{-Ax}{t} \qquad pair$$

$$\frac{(t,t)}{t} \qquad split_{0}$$

Non-normal proofs

• An example:

• Another one:

Normalization rules

Lemma

If π is a normal proof of $X \vdash t$ and r occurs in π :

- $r \in st(X \cup \{t\})$
- if π ends in a destruction rule, then $r \in st(X)$.

Lemma

If π is a normal proof of $X \vdash t$ and r occurs in π :

- $r \in st(X \cup \{t\})$
- if π ends in a destruction rule, then $r \in st(X)$.

- if r occurs in π_1 , $r \in st(X \cup \{t\})$
- if r occurs in π_2 , r \in st(X \cup {k})
- therefore, if r occurs in π , $r \in st(X \cup \{\{t\}_k\})$

Lemma

If π is a normal proof of $X \vdash t$ and r occurs in π :

- $r \in st(X \cup \{t\})$
- if π ends in a destruction rule, then $r \in st(X)$.

- if r occurs in π_1 or π_2 , r \in st(X \cup {{t}_k})
- since π is normal, π₁ does not end with the *encrypt* rule
- so it ends with a destruction rule, and {t}_k ∈ st(X)
- so any r occurring in π is in st(X).

A polynomial-time algorithm

- The height of a normal proof of $X \vdash t$ is bounded by $n = |st(X \cup \{t\})|$.
- Let $X_0 = X$
- Compute X_i = one-step-derivable $(X_{i-1}) \cap st(X \cup \{t\})$, for $i \le n$
- Check if $t \in X_n$!

Outline

Extensions

- What about other cryptographic primitives?
- Diffie-Hellman encryption, exclusive or, homomorphic encryption, blind signatures, ...
- A large body of results: Rusinowitch & Turuani 2003, Millen & Shmatikov 2001, Comon & Shmatikov 2003, Chevalier, Küsters, Rusinowitch & Turuani 2005, Delaune & Jacquemard 2006, Bursuc, Comon & Delaune 2007, Lafourcade, Lugiez & Treinen 2007

Cancellations: the xor case

• One new construction rule:

 $\frac{t_1 \cdots t_n}{(t_1 \oplus \cdots \oplus t_n) \downarrow}$

- Normalization rules: no more than one occurrence of any term as a premise of an *xor* rule
- Simplify

Cancellations: the xor case

• One new construction rule:

 $\frac{t_1 \quad \cdots \quad t_n}{(t_1 \oplus \cdots \oplus t_n) \downarrow}$

- Normalization rules: no more than one occurrence of any term as a premise of an *xor* rule
- Simplify

to

- The cases other than *xor* go through smoothly
- *xor* brings cancellations to the party!

$$\frac{\begin{array}{c} \vdots \pi_1 \\ t_1 \oplus t_2 \\ t_2 \oplus t_3 \end{array}}{\begin{array}{c} \vdots \\ t_2 \oplus t_3 \end{array}}$$

• t_2 is not a subterm of the conclusion. Is it a subterm of the premises?

- The cases other than *xor* go through smoothly
- *xor* brings cancellations to the party!

$$\frac{\begin{array}{c} \vdots \pi_1 \\ t_1 \oplus t_2 \\ t_2 \oplus t_3 \\ \hline \\ \hline \\ t_1 \oplus t_3 \end{array}}{\vdots \pi_2}$$

• *t*₂ is not a subterm of the conclusion. Is it a subterm of the premises? One can argue that it is!

- The cases other than *xor* go through smoothly
- xor brings cancellations to the party!

$$\frac{\begin{array}{c} \vdots \pi_1 \\ t_1 \oplus t_2 \\ t_2 \oplus t_3 \end{array}}{\begin{array}{c} \vdots \\ t_1 \oplus t_3 \end{array}}$$

- *t*₂ is not a subterm of the conclusion. Is it a subterm of the premises? One can argue that it is!
- Moral: We cannot work with syntactic subterms any more, but there is still some way
 of bounding the set terms occurring in proofs.
Term syntax

$\mathcal{T} ::= m \, | \, (t_1, t_2) | \, [t_1, t_2] \, | \, \{t\}_k$

Normal terms: Terms that do not contain a subterm of the form $\{[t_1, t_2]\}_k$. For a term t, get its normal form $t \downarrow$ by pushing encryptions over blind pairs, all the way inside.

Term syntax

$\mathscr{T} ::= m |(t_1, t_2)| [t_1, t_2] | \{t\}_k$

Normal terms: Terms that do not contain a subterm of the form $\{[t_1, t_2]\}_k$. For a term t, get its normal form $t \downarrow$ by pushing encryptions over blind pairs, all the way inside.

Figure: analz and synth rules for normal terms (with assumptions from $X \subseteq \mathscr{T}$)

A (a voter) wants to get B (a registration authority) to sign a message m for her, without revealing m to him.

$$\begin{array}{c} r \\ A \end{array} \qquad \begin{bmatrix} m, \{r\}_{public(B)} \end{bmatrix} \\ B \end{array}$$

Alternative theories

• A simpler system. Delaune, Kremer, Ryan 2009, Baskar, Ramanujam, Suresh 2007.

 $\frac{\begin{bmatrix}t, \{m\}_k\end{bmatrix} \quad inv(k)}{\begin{bmatrix}\{t\}_{inv(k)}, m\end{bmatrix}}$

Passive intruder deduction is PTIME decidable.

• A much harder system. Lafourcade, Lugiez, Treinen 2007.

 $\frac{t_1 + \dots + t_{\ell} \quad k}{\{t_1\}_k + \dots + \{t_\ell\}_k}$ $\frac{t_1 + \dots + t_{\ell} + \dots + t_m \quad t_{\ell} + \dots + t_m + \dots + t_n}{t_1 + \dots + t_{\ell-1} - t_{m+1} - \dots - t_n}$

Decidable but non-elementary upper bound.

• Our system: Decidable with a DEXPTIME upper bound.

Some difficult proofs

$$\frac{\frac{a}{[a,\{b\}_k]}Ax}{a} = \frac{\frac{b}{b}Ax}{\{b\}_k} = \frac{Ax}{b}$$

Some difficult proofs ...

$$\frac{\overline{[a,b]}^{Ax} - Ax}{[\{a\}_k, \{b\}_k]} encrypt - \frac{Ax}{\{b\}_k} Ax}{\{a\}_k} blindsplit_1$$

Some difficult proofs ...

Some difficult proofs ...

Decidability: the proof idea

- The examples suggest that it is not easy to come up with a bound on the terms occurring in the proof.
- Instead of trying to prove that it is finite, we prove that it is regular.
 - Show that every term in a normal proof of $X \vdash t$ is of the form $\{p\}_x$ where $p \in st(X \cup \{t\})$ and x is a sequence of keys from $st(X \cup \{t\})$.
 - Show that for each $p \in st(X \cup \{t\})$, $\mathscr{L}_p = \{x \in \mathscr{K}^* | X \vdash \{p\}_x\}$ is a regular set.
 - To check whether $X \vdash t$, check whether $\varepsilon \in \mathscr{L}_t$.

Decidability: the proof idea

- The examples suggest that it is not easy to come up with a bound on the terms occurring in the proof.
- Instead of trying to prove that it is finite, we prove that it is regular.
 - Show that every term in a normal proof of $X \vdash t$ is of the form $\{p\}_{x}$ where $p \in st(X \cup \{t\})$ and x is a sequence of keys from $st(X \cup \{t\})$.
 - Show that for each $p \in st(X \cup \{t\})$, $\mathcal{L}_p = \{x \in \mathcal{K}^* | X \vdash \{p\}_x\}$ is a regular set.
 - To check whether $X \vdash t$, check whether $\varepsilon \in \mathscr{L}_{t}$.
 - Properties of the \mathscr{L}_p :

 - kx ∈ L_p iff x ∈ L_{{p}k}
 if x ∈ L_p and x ∈ L_[p,p'], then x ∈ L_{p'}
 - if $x \in \mathcal{L}_{p}$ and $\varepsilon \in \mathcal{L}_{k}$, then $xk \in \mathcal{L}_{p}$
 - if $\varepsilon \in \{t\}_k$ and $\varepsilon \in inv(k)$ then $\varepsilon \in t$.

Outline

the set of subterms

 $t', [t, t'] \vdash t$ and t' encrypted with k is $\{t'\}_k$

the initial set of terms X

$$k \in X$$
 and $t' \stackrel{k}{\Rightarrow} f$

$$[t, t'] \stackrel{k}{\Rightarrow} f \text{ and } t \stackrel{k}{\Rightarrow} f$$

the set of subterms

 $\{t'\}_k, [t, \{t'\}_k] \vdash t$

the initial set of terms X

 $k \in X$

Proof normalization

Figure: The normalization rules I

Proof normalization ...

Figure: The normalization rules II

Proof normalization ...

Lemma

Whenever $X \vdash t$, there is a normal proof of t from X.

Proof normalization ...

Lemma

Whenever $X \vdash t$, there is a normal proof of t from X.

Lemma

Let π be a normal proof of t from X, and let δ be a sub-proof of π with root labelled r. Then the following hold:

- If δ ends with an analz rule, then for every u occurring in δ there is $p \in st(X)$ and keyword x such that $u = \{p\}_x \downarrow$.
- ② If δ ends with a synth rule, then for every *u* occurring in δ , either *u* ∈ st(*X* ∪ {*r*}) or there is *p* ∈ st(*X*) and keyword *x* such that *u* = {*p*}_{*x*}↓.
- **1** If the last rule of δ is decrypt or split with major premise r_1 , then $r_1 \in st(X)$.

The automaton construction

Similar to the construction in [Bouajjani, Esparza, Maler 1997]

 $\mathscr{A}_i = (Q, \Sigma, \hookrightarrow_i, F), Q = Y_0 \cup \{f\}, \Sigma = K_0, \text{ and } F = \{f\}.$

The automaton construction

Similar to the construction in [Bouajjani, Esparza, Maler 1997]

 $\mathscr{A}_i = (Q, \Sigma, \hookrightarrow_i, F), Q = Y_0 \cup \{f\}, \Sigma = K_0, \text{ and } F = \{f\}.$

If t ∈ Y₀, k ∈ K₀ such that {t}_k↓∈ Y₀, then t →₀ {{t}_k↓}.
 If t, t', t" ∈ Y₀ such that t is the conclusion of an instance of the *bpair* or *blindsplit_i* rules with premises t' and t", then t →₀ {t', t"}.

The automaton construction

Similar to the construction in [Bouajjani, Esparza, Maler 1997]

 $\mathscr{A}_i = (Q, \Sigma, \hookrightarrow_i, F), Q = Y_0 \cup \{f\}, \Sigma = K_0, \text{ and } F = \{f\}.$

If t ∈ Y₀, k ∈ K₀ such that {t}_k↓∈ Y₀, then t ↔ {{t}_k↓}.
If t, t', t" ∈ Y₀ such that t is the conclusion of an instance of the *bpair* or *blindsplit_i* rules with premises t' and t", then t ↔ {t', t"}.

$$\text{ if } u \stackrel{\varepsilon}{\Rightarrow}_i \{f\} \text{ for every } u \in \Gamma, \text{ then } t \stackrel{\varepsilon}{\hookrightarrow}_{i+1} \{f\}.$$

Correctness of the construction

Theorem

(**Completeness**) For any $t \in Y_0$ and any keyword x, if $X_0 \vdash \{t\}_x \downarrow$, then there exists $i \ge 0$ such that $t \stackrel{x}{\Rightarrow}_i \{f\}$.
Correctness of the construction

Theorem

(**Completeness**) For any $t \in Y_0$ and any keyword x, if $X_0 \vdash \{t\}_x \downarrow$, then there exists $i \ge 0$ such that $t \stackrel{x}{\Rightarrow}_i \{f\}$.

Lemma

Suppose $i, d \ge 0, t \in Y_0, x, y \in K_0^*$, and $C \subseteq Q$ (with $D = C \cap Y_0$). Suppose the following also hold: 1) $t \Rightarrow_{i,d}^x C$, and 2) $C \subseteq Y_0$ or $X_0 \vdash y$. Then $X_0 \cup \{D\}_y \vdash \{t\}_{xy}$.

Correctness of the construction

Theorem

(**Completeness**) For any $t \in Y_0$ and any keyword x, if $X_0 \vdash \{t\}_x \downarrow$, then there exists $i \ge 0$ such that $t \stackrel{x}{\Rightarrow}_i \{f\}$.

Lemma

Suppose
$$i, d \ge 0, t \in Y_0, x, y \in K_0^*$$
, and $C \subseteq Q$ (with $D = C \cap Y_0$). Suppose the following also hold: 1) $t \Rightarrow_{i,d}^x C$, and 2) $C \subseteq Y_0$ or $X_0 \vdash y$. Then $X_0 \cup \{D\}_y \vdash \{t\}_{xy}$.

Theorem

(Soundness) For any i, any $t \in Y_0$, and any keyword x, if $t \Rightarrow_i^x \{f\}$, then $X_0 \vdash \{t\}_x \downarrow$.

• Interesting extension of the Dolev-Yao theory

- Interesting extension of the Dolev-Yao theory
- Related work Tree automata used extensively in security protocol literature. Typically the accepted language is an over-approximation of the set of derivable terms.

- Interesting extension of the Dolev-Yao theory
- Related work Tree automata used extensively in security protocol literature. Typically
 the accepted language is an over-approximation of the set of derivable terms. But
 there is a lot of potential for automata to be used in the analysis of derivations.

- Interesting extension of the Dolev-Yao theory
- Related work Tree automata used extensively in security protocol literature. Typically the accepted language is an over-approximation of the set of derivable terms. But there is a lot of potential for automata to be used in the analysis of derivations.
- Future work Lots of unresolved questions: Lower bounds or tighter upper bounds, complexity of the active intruder theory, better upper bounds for a general abelian group operator with encryption (the [LLT2007] result) etc.

Thank you!