
Extensions of Dolev-Yao theory and the secrecy problem

A Baskar (CMI) R Ramanujam (IMSc) S P Suresh (CMI)

Automata, Concurrency, and Timed Systems
CMI

February , 

Outline

.
. . Security protocols

.
. . Dolev-Yao model

.
. . Extensions of the basic model

.
. . An automaton construction

Outline

.
. . Security protocols

.
. . Dolev-Yao model

.
. . Extensions of the basic model

.
. . An automaton construction

Security protocols

Security protocols are three line programs that people still manage to get wrong.

Roger Needham

An example protocol

A→B :{n}B
B→A:{n}A

Attacks
Another look at the same

…and an attack!

Attacks
Another look at the same

A!B :{n}B
A?B :{n}A

…and an attack!

Attacks
Another look at the same

A!B :{n}B B?A:{n}B
A?B :{n}A B !A:{n}A

…and an attack!

Attacks
Another look at the same

A!B :{n}B B?A:{n}B
A?B :{n}A B !A:{n}A

…and an attack!

Attacks
Another look at the same

A!B :{n}B B?A:{n}B
A?B :{n}A B !A:{n}A

…and an attack!
A!B :{p}B

Attacks
Another look at the same

A!B :{n}B B?A:{n}B
A?B :{n}A B !A:{n}A

…and an attack!
A!B :{p}B

B?I :{p}B

Attacks
Another look at the same

A!B :{n}B B?A:{n}B
A?B :{n}A B !A:{n}A

…and an attack!
A!B :{p}B

B?I :{p}B
B !I :{p}I

Attacks
Another look at the same

A!B :{n}B B?A:{n}B
A?B :{n}A B !A:{n}A

…and an attack!
A!B :{p}B

B?I :{p}B
B !I :{p}I

A?B :{p}A

Outline

.
. . Security protocols

.
. . Dolev-Yao model

.
. . Extensions of the basic model

.
. . An automaton construction

The framework
Protocol specifications mention abstract names and roles
Runs are got by

instantiating the roles to many sessions
and interleaving them arbitrarily
in the presence of an all powerful intruder
respecting some admissibility conditions.

Intruder can

learn messages travelling over the network
construct new messages and play them back (under a possibly assumed identity).

Admissibility Are the messages sent by the intruder constructible given her current
knowledge?

Secrecy problem Is a secret leaked to the intruder by some run of the protocol?

The framework
Protocol specifications mention abstract names and roles
Runs are got by

instantiating the roles to many sessions
and interleaving them arbitrarily
in the presence of an all powerful intruder
respecting some admissibility conditions.

Intruder can

learn messages travelling over the network
construct new messages and play them back (under a possibly assumed identity).

Admissibility Are the messages sent by the intruder constructible given her current
knowledge?

Secrecy problem Is a secret leaked to the intruder by some run of the protocol?

The framework
Protocol specifications mention abstract names and roles
Runs are got by

instantiating the roles to many sessions
and interleaving them arbitrarily
in the presence of an all powerful intruder
respecting some admissibility conditions.

Intruder can

learn messages travelling over the network
construct new messages and play them back (under a possibly assumed identity).

Admissibility Are the messages sent by the intruder constructible given her current
knowledge?

Secrecy problem Is a secret leaked to the intruder by some run of the protocol?

The framework
Protocol specifications mention abstract names and roles
Runs are got by

instantiating the roles to many sessions
and interleaving them arbitrarily
in the presence of an all powerful intruder
respecting some admissibility conditions.

Intruder can
learn messages travelling over the network
construct new messages and play them back (under a possibly assumed identity).

Admissibility Are the messages sent by the intruder constructible given her current
knowledge?

Secrecy problem Is a secret leaked to the intruder by some run of the protocol?

The framework
Protocol specifications mention abstract names and roles
Runs are got by

instantiating the roles to many sessions
and interleaving them arbitrarily
in the presence of an all powerful intruder
respecting some admissibility conditions.

Intruder can
learn messages travelling over the network
construct new messages and play them back (under a possibly assumed identity).

Admissibility Are the messages sent by the intruder constructible given her current
knowledge?

Secrecy problem Is a secret leaked to the intruder by some run of the protocol?

The framework
Protocol specifications mention abstract names and roles
Runs are got by

instantiating the roles to many sessions
and interleaving them arbitrarily
in the presence of an all powerful intruder
respecting some admissibility conditions.

Intruder can
learn messages travelling over the network
construct new messages and play them back (under a possibly assumed identity).

Admissibility Are the messages sent by the intruder constructible given her current
knowledge?

Secrecy problem Is a secret leaked to the intruder by some run of the protocol?

Message construction rules

Ax (t ∈X)
t

(t0, t1)
spliti (i = 0,1)

ti

t0 t1
pair

(t0, t1)

{t}k inv(k)
decrypt

t

t k
encrypt{t}k

destruction rules construction rules

Figure: Derivation rules (from X)

Decidability
The passive intruder deduction problem: given X and t , check if there is proof of
X ⊢ t
This problem is decidable.

A notion of normal proofs.
If X ⊢ t is provable, there is a normal proof of X ⊢ t .
Every term r occurring in a normal proof of X ⊢ t is a subterm of X ∪{t}.
Derive bounds on the size of normal proofs from this.

Non-normal proofs
An example:

Ax
t

Ax
t

pair
(t , t)

split0
t

Another one:
Ax

t
Ax

k
encrypt

{t}k
Ax

k
decrypt

t

Non-normal proofs
An example:

Ax
t

Ax
t

pair
(t , t)

split0
t

Another one:
Ax

t
Ax

k
encrypt

{t}k
Ax

k
decrypt

t

Normalization rules
··· π1

t

··· π2

t ′
pair

(t , t ′)
split0

t

··· π1

t

··· π1

t

··· π2

k
pair

{t}k

··· π3

inv(k)
decrypt

t

··· π1

t

Subterm property
.
Lemma
..

.

Ifπ is a normal proof ofX ⊢ t and r occurs inπ:
r ∈ st(X ∪{t})
ifπ ends in a destruction rule, then r ∈ st(X).

Subterm property
.
Lemma
..

.

Ifπ is a normal proof ofX ⊢ t and r occurs inπ:
r ∈ st(X ∪{t})
ifπ ends in a destruction rule, then r ∈ st(X).

··· π1

t

··· π2

k
encrypt

{t}k

if r occurs inπ1,
r ∈ st(X ∪{t})
if r occurs inπ2,
r ∈ st(X ∪{k})
therefore, if r occurs inπ,
r ∈ st(X ∪{{t}k})

Subterm property
.
Lemma
..

.

Ifπ is a normal proof ofX ⊢ t and r occurs inπ:
r ∈ st(X ∪{t})
ifπ ends in a destruction rule, then r ∈ st(X).

··· π1

{t}k

··· π2

inv(k)
decrypt

t

if r occurs inπ1 orπ2,
r ∈ st(X ∪{{t}k})
sinceπ is normal,π1 does not end
with the encrypt rule

so it ends with a destruction rule,
and {t}k ∈ st(X)
so any r occurring inπ is in st(X).

A polynomial-time algorithm
The height of a normal proof of X ⊢ t is bounded by n = |st(X ∪{t})|.
Let X0 =X
Compute Xi = one-step-derivable(Xi−1)∩ st(X ∪{t}), for i ≤ n
Check if t ∈Xn !

Outline

.
. . Security protocols

.
. . Dolev-Yao model

.
. . Extensions of the basic model

.
. . An automaton construction

Extensions
What about other cryptographic primitives?

Diffie-Hellman encryption, exclusive or, homomorphic encryption, blind signatures,
…

A large body of results: Rusinowitch & Turuani , Millen & Shmatikov ,
Comon & Shmatikov , Chevalier, Küsters, Rusinowitch & Turuani , Delaune &
Jacquemard , Bursuc, Comon & Delaune , Lafourcade, Lugiez & Treinen 

Cancellations: the xor case
One new construction rule:

t1 · · · tn

(t1⊕ · · ·⊕ tn)↓

Normalization rules: no more than one occurrence of any term as a premise of an xor
rule
Simplify

··· π
′
1

t ′1 · · ·

··· π
′
m

t ′m
xor

t1

··· π2

t2 · · ·
··· πn

tn
xor

t

to ··· π
′
1

t ′1 · · ·

··· π
′
m

t ′m

··· π2

t2 · · ·
··· πn

tn
xor

t

Cancellations: the xor case
One new construction rule:

t1 · · · tn

(t1⊕ · · ·⊕ tn)↓

Normalization rules: no more than one occurrence of any term as a premise of an xor
rule
Simplify

··· π
′
1

t ′1 · · ·

··· π
′
m

t ′m
xor

t1

··· π2

t2 · · ·
··· πn

tn
xor

t

to ··· π
′
1

t ′1 · · ·

··· π
′
m

t ′m

··· π2

t2 · · ·
··· πn

tn
xor

t

Subterm property
The cases other than xor go through smoothly
xor brings cancellations to the party!

··· π1

t1⊕ t2

··· π2

t2⊕ t3

t1⊕ t3

t2 is not a subterm of the conclusion. Is it a subterm of the premises?

One can argue
that it is!

Moral: We cannot work with syntactic subterms any more, but there is still some way
of bounding the set terms occurring in proofs.

Subterm property
The cases other than xor go through smoothly
xor brings cancellations to the party!

··· π1

t1⊕ t2

··· π2

t2⊕ t3

t1⊕ t3

t2 is not a subterm of the conclusion. Is it a subterm of the premises? One can argue
that it is!

Moral: We cannot work with syntactic subterms any more, but there is still some way
of bounding the set terms occurring in proofs.

Subterm property
The cases other than xor go through smoothly
xor brings cancellations to the party!

··· π1

t1⊕ t2

··· π2

t2⊕ t3

t1⊕ t3

t2 is not a subterm of the conclusion. Is it a subterm of the premises? One can argue
that it is!

Moral: We cannot work with syntactic subterms any more, but there is still some way
of bounding the set terms occurring in proofs.

Term syntax

T ::= m | (t1, t2) | [t1, t2] | {t}k
Normal terms: Terms that do not contain a subterm of the form {[t1, t2]}k . For a term t ,
get its normal form t↓ by pushing encryptions over blind pairs, all the way inside.

[t , t ′] k
encrypt

[{t}k↓,{t}k↓]
{t}k↓ inv(k)

decrypt
t

(t0, t1)
spliti

ti

[t0, t1]↓ ti↓
blindspliti

t1−i

Ax (t ∈X)
t

t k
encrypt (t not a blind pair)

{t}k↓
t1 t2

pair
(t1, t2)

t1 t2
bpair

[t1, t2]

Figure: analz and synth rules for normal terms (with assumptions from X ⊆T)

Term syntax

T ::= m | (t1, t2) | [t1, t2] | {t}k
Normal terms: Terms that do not contain a subterm of the form {[t1, t2]}k . For a term t ,
get its normal form t↓ by pushing encryptions over blind pairs, all the way inside.

[t , t ′] k
encrypt

[{t}k↓,{t}k↓]
{t}k↓ inv(k)

decrypt
t

(t0, t1)
spliti

ti

[t0, t1]↓ ti↓
blindspliti

t1−i

Ax (t ∈X)
t

t k
encrypt (t not a blind pair)

{t}k↓
t1 t2

pair
(t1, t2)

t1 t2
bpair

[t1, t2]

Figure: analz and synth rules for normal terms (with assumptions from X ⊆T)

Modelling blind signatures
A (a voter) wants to get B (a registration authority) to sign a message m for her, without
revealing m to him. .

Modelling blind signatures
A (a voter) wants to get B (a registration authority) to sign a message m for her, without
revealing m to him. In other words, Awants the message {m}private(B). .

Modelling blind signatures
A (a voter) wants to get B (a registration authority) to sign a message m for her, without
revealing m to him. In other words, Awants the message {m}private(B).

.

.r

.A .B
.[m,{r }public(B)]

Modelling blind signatures
A (a voter) wants to get B (a registration authority) to sign a message m for her, without
revealing m to him. In other words, Awants the message {m}private(B).

.

.r

.A .B
.[m,{r }public(B)]

.{[m,{r }public(B)]}private(B)

Modelling blind signatures
A (a voter) wants to get B (a registration authority) to sign a message m for her, without
revealing m to him. In other words, Awants the message {m}private(B).

.

.r

.A .B
.[m,{r }public(B)]

.{[m,{r }public(B)]}private(B)
.[{m}private(B), r]

Modelling blind signatures
A (a voter) wants to get B (a registration authority) to sign a message m for her, without
revealing m to him. In other words, Awants the message {m}private(B).

.

.r

.A .B
.[m,{r }public(B)]

.{[m,{r }public(B)]}private(B)
.[{m}private(B), r]

.A .B
.[{m}private(B), r]

Modelling blind signatures
A (a voter) wants to get B (a registration authority) to sign a message m for her, without
revealing m to him. In other words, Awants the message {m}private(B).

.

.r

.A .B
.[m,{r }public(B)]

.{[m,{r }public(B)]}private(B)
.[{m}private(B), r]

.A .B
.[{m}private(B), r]

.{m}private(B)

Alternative theories
A simpler system. Delaune, Kremer, Ryan , Baskar, Ramanujam, Suresh .

[t ,{m}k] inv(k)

[{t}inv(k), m]

Passive intruder deduction is PTIME decidable.
A much harder system. Lafourcade, Lugiez, Treinen .

t1+ · · ·+ tℓ k

{t1}k + · · ·+ {tℓ}k
t1+ · · ·+ tℓ+ · · ·+ tm tℓ+ · · ·+ tm + · · ·+ tn

t1+ · · ·+ tℓ−1− tm+1− · · ·− tn

Decidable but non-elementary upper bound.

Our system: Decidable with a DEXPTIME upper bound.

Some difficult proofs

Ax
[a,{b}k]

Ax
b

Ax
k
encrypt{b}k

blindsplit1a

Some difficult proofs …

Ax
[a, b]

Ax
k
encrypt

[{a}k ,{b}k]
Ax{b}k
blindsplit1{a}k

Some difficult proofs …

Ax
[{a}k1k2

, b]

Ax
[b ,{a}k1k2k1

]

Ax
[{a}k1k2

, b]
Ax

k1
encrypt

[{a}k1k2k1
,{b}k1

]
Ax

{b}k1
blindsplit1{a}k1k2k1

blindsplit1
b
blindsplit1{a}k1k2

Some difficult proofs …

Ax
[a,{a}k1

]

Ax
[a,{a}k1

]
Ax

k1
encrypt

[{a}k1
,{a}k1k1

]
Ax

{a}k1k1
blindsplit1{a}k1

blindsplit1
a

Decidability: the proof idea
The examples suggest that it is not easy to come up with a bound on the terms
occurring in the proof.
Instead of trying to prove that it is finite, we prove that it is regular.

Show that every term in a normal proof of X ⊢ t is of the form {p}x where
p ∈ st(X ∪{t}) and x is a sequence of keys from st(X ∪{t}).
Show that for each p ∈ st(X ∪{t}),Lp = {x ∈K ∗|X ⊢ {p}x} is a
regular set.
To check whether X ⊢ t , check whether ϵ ∈Lt .

Properties of theLp :
k x ∈Lp iff x ∈L{p}k
if x ∈Lp and x ∈L[p, p ′], then x ∈Lp ′
if x ∈Lp and ϵ ∈Lk , then xk ∈Lp

if ϵ ∈ {t}k and ϵ ∈ inv(k) then ϵ ∈ t .

Decidability: the proof idea
The examples suggest that it is not easy to come up with a bound on the terms
occurring in the proof.
Instead of trying to prove that it is finite, we prove that it is regular.

Show that every term in a normal proof of X ⊢ t is of the form {p}x where
p ∈ st(X ∪{t}) and x is a sequence of keys from st(X ∪{t}).
Show that for each p ∈ st(X ∪{t}),Lp = {x ∈K ∗|X ⊢ {p}x} is a
regular set.
To check whether X ⊢ t , check whether ϵ ∈Lt .
Properties of theLp :

k x ∈Lp iff x ∈L{p}k
if x ∈Lp and x ∈L[p, p ′], then x ∈Lp ′
if x ∈Lp and ϵ ∈Lk , then xk ∈Lp

if ϵ ∈ {t}k and ϵ ∈ inv(k) then ϵ ∈ t .

Outline

.
. . Security protocols

.
. . Dolev-Yao model

.
. . Extensions of the basic model

.
. . An automaton construction

An example

{[t , t ′],{t ′}k , k} ⊢ {t}k

..t

.t ′

.[t , t ′]

.{t ′}k

.f

.k

the set of subterms

An example

{[t , t ′],{t ′}k , k} ⊢ {t}k

..t

.t ′

.[t , t ′]

.{t ′}k

.f

.k

.

.

.k

t ′,[t , t ′] ⊢ t and t ′ encrypted with k is {t ′}k

An example

{[t , t ′],{t ′}k , k} ⊢ {t}k

..t

.t ′

.[t , t ′]

.{t ′}k

.f

.k

.

.

.k

.

.

.

the initial set of terms X

An example

{[t , t ′],{t ′}k , k} ⊢ {t}k

..t

.t ′

.[t , t ′]

.{t ′}k

.f

.k

.

.

.k

.k

.

.

.k

.

k ∈X and t ′ k⇒ f

An example

{[t , t ′],{t ′}k , k} ⊢ {t}k

..t

.t ′

.[t , t ′]

.{t ′}k

.f

.k

.

. .k

.k

.k

.k

.

.k

.

[t , t ′] k⇒ f and t
k⇒ f

Another example

{[t ,{t ′}k], t ′, k} ⊢ t

..t

.{t ′}k

.[t ,{t ′}k] .f

.t ′

.k

the set of subterms

Another example

{[t ,{t ′}k], t ′, k} ⊢ t

..t

.{t ′}k

.[t ,{t ′}k] .f

.t ′

.k

.

.

{t ′}k ,[t ,{t ′}k] ⊢ t

Another example

{[t ,{t ′}k], t ′, k} ⊢ t

..t

.{t ′}k

.[t ,{t ′}k] .f

.t ′

.k

.

.

.

.

.

the initial set of terms X

Another example

{[t ,{t ′}k], t ′, k} ⊢ t

..t

.{t ′}k

.[t ,{t ′}k] .f

.t ′

.k

.

.

.

.

.k

.

k ∈X

Another example

{[t ,{t ′}k], t ′, k} ⊢ t

..t

.{t ′}k

.[t ,{t ′}k] .f

.t ′

.k

.

.

.

.

.

.k

.

t ′
k⇒ f

Another example

{[t ,{t ′}k], t ′, k} ⊢ t

..t

.{t ′}k

.[t ,{t ′}k] .f

.t ′

.k

.

. .

.

.

.

.k

.

t ⇒ f

Proof normalization

··· π
′

t ′

··· π
′′

t ′′
bpair

[t ′, t ′′]

··· δ
k

encrypt
[{t ′}k↓,{t ′′}k↓]

··· π
′

t ′

··· δ
k

encrypt
{t ′}k↓

··· π
′′

t ′′

··· δ
k

encrypt
{t ′′}k↓

bpair
[{t ′}k↓,{t ′′}k↓]

··· π
′

{t ′}k↓

··· π
′′

{t ′′}k↓
bpair

[{t ′}k↓,{t ′′}k↓]
··· δ

inv(k)
decrypt

[t ′, t ′′]

··· π
′

{t ′}k↓
··· δ

inv(k)
decrypt

t ′

··· π
′′

{t ′′}k↓
··· δ

inv(k)
decrypt

t ′′
bpair

[t ′, t ′′]

Figure: The normalization rules I

Proof normalization …

··· π
′

[t , t ′]

··· π
′′

t ′
blindsplit

t

··· δ
k

encrypt
{t}k↓

··· π
′

[t , t ′]

··· δ
k

encrypt
[{t ′}k↓,{t ′}k↓]

··· π
′′

t ′

··· δ
k

encrypt
{t ′}k↓

blindsplit
{t}k↓

··· π
′

[{t ′}k↓,{t ′}k↓]

··· π
′′

{t ′}k↓
blindsplit

{t}k↓
··· δ

inv(k)
decrypt

t

··· π
′

[{t ′}k↓,{t ′}k↓]
··· δ

inv(k)
decrypt

[t , t ′]

··· π
′′

{t ′}k↓
··· δ

inv(k)
decrypt

t ′
blindsplit

t

Figure: The normalization rules II

Proof normalization …
.
Lemma
..
.WheneverX ⊢ t , there is a normal proof of t fromX .

.
Lemma
..

.

Letπ be a normal proof of t fromX , and letδ be a sub-proof ofπwith root labelled r .
Then the following hold:

... Ifδ ends with an analz rule, then for every u occurring inδ there is p ∈ st(X) and
keyword x such that u = {p}x↓.

... Ifδ ends with a synth rule, then for every u occurring inδ , either u ∈ st(X ∪{r })
or there is p ∈ st(X) and keyword x such that u = {p}x↓.

... If the last rule ofδ is decrypt or split with major premise r1, then r1 ∈ st(X).

Proof normalization …
.
Lemma
..
.WheneverX ⊢ t , there is a normal proof of t fromX .

.
Lemma
..

.

Letπ be a normal proof of t fromX , and letδ be a sub-proof ofπwith root labelled r .
Then the following hold:

... Ifδ ends with an analz rule, then for every u occurring inδ there is p ∈ st(X) and
keyword x such that u = {p}x↓.

... Ifδ ends with a synth rule, then for every u occurring inδ , either u ∈ st(X ∪{r })
or there is p ∈ st(X) and keyword x such that u = {p}x↓.

... If the last rule ofδ is decrypt or split with major premise r1, then r1 ∈ st(X).

The automaton construction
Similar to the construction in [Bouajjani, Esparza, Maler ]

Ai = (Q,Σ, ,→i , F), Q = Y0 ∪{ f } ,Σ=K0, and F = { f }.

... if t ∈ Y0, k ∈K0 such that {t}k↓∈ Y0, then t
k
,→0 {{t}k↓}.

... if t , t ′, t ′′ ∈ Y0 such that t is the conclusion of an instance of the bpair or

blindspliti rules with premises t ′ and t ′′, then t
ϵ
,→0 {t ′, t ′′}.

... if q
a⇒i C , then q

a
,→i+1 C .

... if {t}k↓∈ Y0 and t
k⇒i C , then {t}k↓ ϵ,→i+1 C .

... if k ∈K0 and k
ϵ⇒i { f }, then f

k
,→i+1 { f }.

... ifΓ⊆ Y0, t ∈ Y0, and if there is an instance r of one of the rules whose set of
premises is (exactly)Γ and conclusion is t the following holds:

if u
ϵ⇒i { f } for every u ∈ Γ, then t

ϵ
,→i+1 { f }.

The automaton construction
Similar to the construction in [Bouajjani, Esparza, Maler ]

Ai = (Q,Σ, ,→i , F), Q = Y0 ∪{ f } ,Σ=K0, and F = { f }.
... if t ∈ Y0, k ∈K0 such that {t}k↓∈ Y0, then t

k
,→0 {{t}k↓}.

... if t , t ′, t ′′ ∈ Y0 such that t is the conclusion of an instance of the bpair or

blindspliti rules with premises t ′ and t ′′, then t
ϵ
,→0 {t ′, t ′′}.

... if q
a⇒i C , then q

a
,→i+1 C .

... if {t}k↓∈ Y0 and t
k⇒i C , then {t}k↓ ϵ,→i+1 C .

... if k ∈K0 and k
ϵ⇒i { f }, then f

k
,→i+1 { f }.

... ifΓ⊆ Y0, t ∈ Y0, and if there is an instance r of one of the rules whose set of
premises is (exactly)Γ and conclusion is t the following holds:

if u
ϵ⇒i { f } for every u ∈ Γ, then t

ϵ
,→i+1 { f }.

The automaton construction
Similar to the construction in [Bouajjani, Esparza, Maler ]

Ai = (Q,Σ, ,→i , F), Q = Y0 ∪{ f } ,Σ=K0, and F = { f }.
... if t ∈ Y0, k ∈K0 such that {t}k↓∈ Y0, then t

k
,→0 {{t}k↓}.

... if t , t ′, t ′′ ∈ Y0 such that t is the conclusion of an instance of the bpair or

blindspliti rules with premises t ′ and t ′′, then t
ϵ
,→0 {t ′, t ′′}.

... if q
a⇒i C , then q

a
,→i+1 C .

... if {t}k↓∈ Y0 and t
k⇒i C , then {t}k↓ ϵ,→i+1 C .

... if k ∈K0 and k
ϵ⇒i { f }, then f

k
,→i+1 { f }.

... ifΓ⊆ Y0, t ∈ Y0, and if there is an instance r of one of the rules whose set of
premises is (exactly)Γ and conclusion is t the following holds:

if u
ϵ⇒i { f } for every u ∈ Γ, then t

ϵ
,→i+1 { f }.

Correctness of the construction
.
Theorem
..

.

(Completeness) For any t ∈ Y0 and any keyword x , ifX0 ⊢ {t}x↓, then there exists
i ≥ 0 such that t

x⇒i { f }.

.
Lemma
..

.

Suppose i , d ≥ 0, t ∈ Y0, x, y ∈K∗0 , andC ⊆Q (withD =C ∩Y0). Suppose

the following also hold: ) t
x⇒i ,d C , and )C ⊆ Y0 orX0 ⊢ y . Then

X0 ∪{D}y ⊢ {t}xy .

.
Theorem
..

.

(Soundness) For any i , any t ∈ Y0, and any keyword x , if t
x⇒i { f }, then

X0 ⊢ {t}x↓.

Correctness of the construction
.
Theorem
..

.

(Completeness) For any t ∈ Y0 and any keyword x , ifX0 ⊢ {t}x↓, then there exists
i ≥ 0 such that t

x⇒i { f }.
.
Lemma
..

.

Suppose i , d ≥ 0, t ∈ Y0, x, y ∈K∗0 , andC ⊆Q (withD =C ∩Y0). Suppose

the following also hold: ) t
x⇒i ,d C , and )C ⊆ Y0 orX0 ⊢ y . Then

X0 ∪{D}y ⊢ {t}xy .

.
Theorem
..

.

(Soundness) For any i , any t ∈ Y0, and any keyword x , if t
x⇒i { f }, then

X0 ⊢ {t}x↓.

Correctness of the construction
.
Theorem
..

.

(Completeness) For any t ∈ Y0 and any keyword x , ifX0 ⊢ {t}x↓, then there exists
i ≥ 0 such that t

x⇒i { f }.
.
Lemma
..

.

Suppose i , d ≥ 0, t ∈ Y0, x, y ∈K∗0 , andC ⊆Q (withD =C ∩Y0). Suppose

the following also hold: ) t
x⇒i ,d C , and )C ⊆ Y0 orX0 ⊢ y . Then

X0 ∪{D}y ⊢ {t}xy .

.
Theorem
..

.

(Soundness) For any i , any t ∈ Y0, and any keyword x , if t
x⇒i { f }, then

X0 ⊢ {t}x↓.

Summary
Interesting extension of the Dolev-Yao theory

Related work Tree automata used extensively in security protocol literature. Typically
the accepted language is an over-approximation of the set of derivable terms. But
there is a lot of potential for automata to be used in the analysis of derivations.

Future work Lots of unresolved questions: Lower bounds or tighter upper bounds,
complexity of the active intruder theory, better upper bounds for a general abelian
group operator with encryption (the [LLT] result) etc.

Summary
Interesting extension of the Dolev-Yao theory

Related work Tree automata used extensively in security protocol literature. Typically
the accepted language is an over-approximation of the set of derivable terms.

But
there is a lot of potential for automata to be used in the analysis of derivations.

Future work Lots of unresolved questions: Lower bounds or tighter upper bounds,
complexity of the active intruder theory, better upper bounds for a general abelian
group operator with encryption (the [LLT] result) etc.

Summary
Interesting extension of the Dolev-Yao theory

Related work Tree automata used extensively in security protocol literature. Typically
the accepted language is an over-approximation of the set of derivable terms. But
there is a lot of potential for automata to be used in the analysis of derivations.

Future work Lots of unresolved questions: Lower bounds or tighter upper bounds,
complexity of the active intruder theory, better upper bounds for a general abelian
group operator with encryption (the [LLT] result) etc.

Summary
Interesting extension of the Dolev-Yao theory

Related work Tree automata used extensively in security protocol literature. Typically
the accepted language is an over-approximation of the set of derivable terms. But
there is a lot of potential for automata to be used in the analysis of derivations.

Future work Lots of unresolved questions: Lower bounds or tighter upper bounds,
complexity of the active intruder theory, better upper bounds for a general abelian
group operator with encryption (the [LLT] result) etc.

ank you!

	Security protocols
	Dolev-Yao model
	Extensions of the basic model
	An automaton construction

