
Unfoldings for Contetxtual Petri Nets

Paolo Baldan (Padova), Andrea Corradini (Pisa),

Barbara König (Duisburg-Essen), Stefan Schwoon (Cachan),

Why Petri nets?

Model for distributed, concurrent system:

Expresses independence, conflict, causality, . . .

2

Why contextual Petri nets?

Explicit modelling of “read/test” actions (arcs w/o arrows):

Intuition: The read arc does not consume or touch the token, it merely verifies its
presence. For any transition t , we distinguish its preset •t , its context t , and its
postset t•.

3

Why contextual Petri nets?

Explicit modelling of “read/test” actions (arcs w/o arrows):

Different concurrent semantics (no difference for interleaving semantics).
Same set of reachable markings. Here, we are interested in their unfoldings.

4

Reachability analysis for Petri nets

For bounded nets, the reachability graph is finite.

...

However, it explodes in the presence of concurrency.

5

Unfoldings

Data structure for representing the reachable markings, exploits concurrency
inherent in the Petri net model.

Size between that of Petri net and that of reachability graph; once unfolding is
computed, reachability queries become easier.

Unfoldings for “normal” Petri nets established by McMillan (1992), a lot of other
work since then, see, e.g., the book by Esparza, Heljanko for a survey.

Unfoldings for contextual nets:

for read-persistent subclass: Vogler, Semenov, Yakovlev (1998) and Baldan,
Corradini, Montanari (1998)

for general nets, but non-constructive: Winkowski (2002)

Will explain ideas first for “normal” Petri nets (without read arcs).

6

Unfoldings for finite automata

The unfolding of a finite automaton is its computation tree:

...

ZY

X

ZY

X

ZY

X

Principles:

The unfolding of a finite automaton is an acyclic, infinite automaton.

The unfolding has the same behaviours and the same reachable states.

Construction: Start with initial state; for every state in the unfolding and each
outgoing transition, add a fresh copy of the target.

7

Unfoldings for (normal) Petri nets

Principles:

The unfolding of a Petri net is an acyclic, infinite Petri net.

The unfolding has the same behaviours and the same reachable states.

Construction: Start with initially marked places; for every coverable marking
that enables a transition, add that transition with fresh copies of the output
places.

8

Example: Petri net. . .

p5p1

t6

t5t3

t2

p3 p7

p4

9

. . . and its unfolding

...
...

...
...

t5

p7
p7

t5t2

p3
p3

t2

p1 p4 p5

t2 t5

p3 p7

p4 p4p1 p5

t6t3

10

Unfoldings exploit concurrency

The net shown below and its unfolding are identical.

...

11

Unfoldings of contextual nets

Consider the contextual net shown below (six readers):

p

u5

u4

u3

u2

u1

t2

t1

u6

12

Unfoldings of contextual nets: Naı̈ve approach

Why not replace read arcs by double arrows and unfold normally?

t1

u1

u2

u3

u4

u5

u6

p

t2

13

Unfoldings of contextual nets: Naı̈ve approach

Here’s why: Initial addition of t1, . . .

p

p

t1

...

...

14

Unfoldings of contextual nets: Naı̈ve approach

. . . followed by copies of u1, . . . , u6, generating “second-generation” copies of p.

u1t1

p

u6

pp

...

...

15

Unfoldings of contextual nets: Naı̈ve approach

Second layer of ui transitions using the new copies of p, generating more of them
etc.

u6t1

p

u1

p

p

u1u6

p

p

...

...

...

16

Unfoldings of contextual nets: Naı̈ve approach

Altogether, one event for every permutation of 1 . . .6, i.e. 6!

u6t1

p

u1

p

p

u1u6

p

p

...

...

...

...

... ...

...

17

Unfoldings of contextual nets: PR-approach

Less naı̈ve: Replace p by six copies, one for each reader.

u6

u4

u3

u2

u1

t2

t1

u5

18

Unfoldings of contextual nets: PR-approach

Unfolding starts with one copy of t1, . . .

p1

t1

p6

...

19

Unfoldings of contextual nets: PR-approach

. . . then just one copy each of u1, . . . , u6!

u1

p1

p1

u6

p6

p6

t1

...

...

20

Unfoldings of contextual nets: PR-approach

However, we will still have 26 copies of t2. . .

u1

p1

p1

u6

p6

p6

t1

...

...

21

Unfoldings of contextual nets: Our approach

Neither encoding (naı̈ve, PR) of contextual nets into normal Petri nets yields
satisfying results.

We propose a new, direct unfolding procedure for contextual Petri nets that
avoids blowup in the presence of concurrent readers.

Principles:

The unfolding of a contextual net is an acyclic, infinite contextual net.

The unfolding has the same behaviours and the same reachable states.

Construction: Start with initially marked places; for every coverable marking
that enables a transition, add that transition with fresh copies of the output
places but only read arcs to its context.

22

Example (six readers)

The contextual net shown below is identical to its unfolding.

p

u5

u4

u3

u2

u1

t2

t1

u6

23

Algorithmic problems

Decide (efficiently) whether a set of places is coverable.

→ decision required whenever the unfolding is extended

How to compute a complete finite prefix of the unfolding?

→ complete =̂ contains all reachable markings

24

Petri nets: Reviewing conflict, concurrency, . . .

In a non-contextual unfolding, any pair of places are either . . .

...
...

...
...

t5

p7
p7

t5t2

p3
p3

t2

p1 p4 p5

t2 t5

p3 p7

p4 p4p1 p5

t6t3

25

Petri nets: Reviewing conflict, concurrency, etc

. . . in causal relationship (one must be consumed to produce the other), . . .

...
...

...
...

t3 t6

p5p1 p4p4

p7p3

t5t2

p5p4p1

t2

p3
p3

t2 t5

p7
p7

t5

26

Petri nets: Reviewing conflict, concurrency, etc

. . . or in conflict (must decide to generate one or the other), . . .

...
...

...
...

t3 t6

p5p1 p4p4

p7p3

t5t2

p5p4p1

t2

p3
p3

t2 t5

p7
p7

t5

27

Petri nets: Reviewing conflict, concurrency, etc

. . . or concurrent (can be marked at the same time).

...
...

...
...

t3 t6

p5p1 p4p4

p7p3

t5t2

p5p4p1

t2

p3
p3

t2 t5

p7
p7

t5

28

Petri nets: Causality and conflict

Let x , y be two nodes (places or transitions) in a Petri net unfolding.

Let < be the transitive closure of the relation { (x , y) | x ∈ •y }.
x is a cause of y if x < y .

We write bxc := { t | t is a transition s.t. t ≤ x }.

We say x # y (x , y are in conflict) if there exist two distinct transitions t , u such
that t ≤ x , u ≤ y , and •t ∩ •u 6= ∅.

We say x ‖ y (x , y are concurrent) if neither x < y , y < x , nor x # y .

29

Petri nets: Configurations and reachability

Let C be a set of transitions in a Petri net unfolding.
We call C be a configuration if

(i) t ∈ C and t ′ < t imply t ′ ∈ C (i.e., C is causally closed);

(ii) t , t ′ ∈ C implies ¬(t # t ′) (i.e., C is conflict-free)

A marking M of the unfolding is reachable iff there exists a configuration C s.t.
M = (M0 ∪ C•) \ •C =: MC, where M0 is the initial marking.

Fact 1: A set S of places in the unfolding is coverable iff

(i) p 6< q for all pairs p, q ∈ S;

(ii) D :=
⋃

p∈S bpc is a configuration (i.e., conflict-free).

Fact 2: Also, a set S of places in the unfolding is coverable iff p ‖q for all p, q ∈ S.

30

Petri nets: Deciding coverability

Using Fact 1:

Linear marking algorithm on D; follow flow arcs backwards from S, check if
places are consumed twice.

Using Fact 2:

Compute the pairwise ‖ relation while constructing the unfolding (conflicts are
“inherited” from causes).

Time/space trade-off!

31

Contextual nets: How to adapt these notions?

p3

t4

p6p5

t3

p1

t2

p4

p2

t1

Consider the contextual net shown above. How do we adequately treat the read
arcs in the causality and conflict relations?

32

Contextual nets: Adapting the notion of causality

p3

t4

p6p5

t3

p1

t2

p4

p2

t1

Let us re-formulate x < y as “x must necessarily occur before y .”
Then we have (as usual) p1 < t1 and t1 < p2, but also t1 < t3.

33

Contextual nets: Adapting the notion of conflict

p3

t4

p6p5

t3

p1

t2

p4

p2

t1

t2 and t3 are in a special relation; no conflict in the usual sense, since both can
happen, but t3 must happen first.

34

Contextual nets: Adapting the notion of conflict

p3

t4

p6p5

t3

p1

t2

p4

p2

t1

We introduce the notion of asymmetric conflict from x to y :
“If both x and y happen, then x happens first.”

35

Contextual nets: Adapting the notion of conflict

p3

t4

p6p5

t3

p1

t2

p4

p2

t1

This notion generalizes causality and (symmetric) conflict, i.e. we have t1 ↗ t2,
t1↗ t3 (causes), t3↗ t2 (asymm. conflict), t3↗ t4, and t4↗ t3 (normal conflict).

36

Contextual nets: Causality and conflict

Let < be the least transitive relation satisfying

s < t if s is a place, t a transition, and s ∈ •t ;

t < s if s is a place, t a transition, and s ∈ t•;

t < t ′ if t and t ′ are transitions, and t• ∩ t ′ 6= ∅.

bxc := { t | t is a transition s.t. t ≤ x } as before.

Let t , t ′ be distinct transitions. They are in asymmetric conflict, written t ↗ t ′ iff
t < t ′, or •t ∩ •t ′ 6= ∅, or t ∩ •t ′ 6= ∅.

37

Asymmetric conflicts

An asymmetric conflict t ↗ t ′ can be seen as a scheduling constraint; a cycle in
the ↗ relation indicates that the transitions involved cannot all occur together.

If no read arcs are present, then all simple cycles are of length 2.
However, read arcs can lead to longer cycles, as the example below shows:
The net is identical to its unfolding, and we have t1 ↗ t2 ↗ t3 ↗ t1.

p3’

t3

p1

p2’

t2

p2

p1’

t1

p3

38

Contextual nets: Configurations and reachability

Let C be a set of transitions in a contextual unfolding.
We call C a configuration iff:

(i) t ∈ C and t ′ < t imply t ′ ∈ C (i.e., C is causally closed);

(ii) ↗∩ (C × C) =: ↗C does not contain any cycles;

(iii) { t ′ ∈ C | t ′↗ t } is finite for all t ∈ C.

As before, a marking M of the unfolding is reachable iff there exists a
configuration C s.t. M = (M0 ∪ C•) \ •C, where M0 is the initial marking.

Fact 1′: A set of places S in the unfolding is coverable iff

(i) p 6< q for all p, q ∈ S;

(ii) D :=
⋃

p∈S bpc is a configuration (i.e., absence of conflict cycles).

39

Why condition (iii) for configurations is necessary

Consider the net below (left) and its unfolding (right):

t1

p2’

t2

p2

p1

t1

p1

p2

t2

p2’

p1

t1

t1

p1

...

The set C′ of all transitions in the unfolding fulfils conditions (i) and (ii) but not
(iii). Indeed, there is no firing sequence containing all transitions in C′ – when
would one fire t2?

40

Petri nets: Deciding coverability

Using Fact 1′:

Linear algorithm on D; perform DFS on the graph given by ↗D, search for a
cycle. (Good news!)

Using Fact 2′:

Wait. . . this doesn’t exist. (Bad news!)

Indeed, a binary relation is not sufficient to detect cycles.

Mitigating factors:

Symmetric conflicts can still be handled in the same way.

Absence of non-symmetric cycles in the net implies their absence in the
unfolding.

Other tricks. . .?

41

Petri nets: Deciding coverability

Using Fact 1′:

Linear algorithm on D; perform DFS on the graph given by ↗D, search for a
cycle. (Good news!)

Using Fact 2′:

Wait. . . this doesn’t exist. (Bad news!)

Indeed, a binary relation is not sufficient to detect cycles.

Mitigating factors:

Symmetric conflicts can still be handled in the same way.

Absence of non-symmetric cycles in the net implies their absence in the
unfolding.

Other tricks. . .?

42

Petri nets: Deciding coverability

Using Fact 1′:

Linear algorithm on D; perform DFS on the graph given by ↗D, search for a
cycle. (Good news!)

Using Fact 2′:

Wait. . . this doesn’t exist. (Bad news!)

Indeed, a binary relation is not sufficient to detect cycles.

Mitigating factors:

Symmetric conflicts can still be handled in the same way.

Absence of non-symmetric cycles in the net implies their absence in the
unfolding.

Other tricks. . .?

43

Complete finite prefixes

In general, unfoldings are infinite objects. We are interested in computing just a
finite part of them that contains all “relevant” information (in this case, all
reachable markings).

For (normal) Petri nets, this is achieved by introducing cut-offs.

One introduces a partial order on unfolding transitions ≺ that refines <.

The unfolding prefix is generated by adding one transition at a time, respecting
≺; with every transition t , we associate the marking Mbtc.

If Mbtc equals the initial marking, or if there is a transition t ′ ≺ t with
Mbtc = Mbt ′c, then t is declared a cut-off.

Output places of cut-offs are not considered for further additions.

44

Example: Petri net (again). . .

p5p1

t6

t5t3

t2

p3 p7

p4

45

. . . and a prefix of its unfolding

Below, each transition is annotated with its marking.

{p3,p5} {p1,p7}

{p1,p4,p5}{p1,p4,p5}

p1 p4

t3 t6

p5p4

p7p3

t5t2

p5p4p1

Cut-offs are marked in red; the prefix is complete.

46

Adequate orders

The unfolding procedure with cut-offs does not yield a complete prefix for every
order ≺ (see, e.g., [EKS08]).

However, it a complete prefix is produced provided that ≺ satisfies certain
conditions:

McMillan’s condition: |btc| < |bt ′c| implies t ≺ t ′

Esparza/Römer/Vogler conditions: ≺ must be well-founded, btc ⊂ bt ′c implies
t ≺ t ′, ≺ is “preserved by finite extensions”.

Note: The ERV conditions give rise to smaller prefixes than McMillan’s.

Another note: Cut-offs have no effect on the exponential blowups described
earlier!

47

Cut-offs for contextual prefixes

For contextual nets, the cut-off procedure cannot be directly applied:

t3t3

t2

t4

p5

t1

p1

p2

p3

p4

p1

{p2,p4}

{p1,p3}

{p2,p3}

p4

p3

p2

p1

t1

t2

The occurrence of t3 in the unfolding is declared a cut-off;
therefore, t4 is never added (even though t1t2t3t4 can be fired in the net).

48

Cut-offs for contextual unfoldings

For contextual nets, the cut-off procedure cannot be directly applied:

t3t3

t2

t4

p5

t1

p1

p2

p3

p4

p1

{p2,p4}

{p1,p3}

{p2,p3}

p4

p3

p2

p1

t1

t2

Intuitively, t3 occurs in two different situations: with and without the occurrence of
t2. The conventional cut-off method ignores the contribution of the latter.

49

Histories

We formalize this intuition in the notion of histories:

Let C be a configuration and t ∈ C a transition. The history of t in C is the
configuration C[[t]] := { t ′ ∈ C | t ′↗C t }.

We call Hist(t) the set of all histories that t has in the unfolding. (Generally,
these histories differ in the set of “reading” transitions they contain.)

The conventional cut-off scheme considers only one history, btc, which is too
restrictive. On the other hand, considering all histories is fraught with problems
(infinitely many, not constructive). (Approaches by Vogler et al and Winkowski.)

Solution: Identify a finite subset of “relevant” histories for cut-off selection.

50

Example: Histories

Below, two histories for t3 and their markings are shown:

t1

p2

p3

p4

p1

p4

p3

p2

p1

t1

p5

t4

t2

t3

t2

t3

{p1,p3}

{p1,p4}

p1

51

Histories

We formalize this intuition in the notion of histories:

Let C be a configuration and t ∈ C a transition. The history of t in C is the
configuration C[[t]] := { t ′ ∈ C | t ′↗C t }.

We call Hist(t) the set of all histories that t has in the unfolding. (Generally,
these histories differ in the set of “reading” transitions they contain.)

The conventional cut-off scheme considers only one history, btc, which is too
restrictive. On the other hand, considering all histories is fraught with problems
(infinitely many, not constructive). (Approaches by Vogler et al and Winkowski.)

Solution: Identify a finite subset of “relevant” histories for cut-off selection.

52

Enriched prefix

We shall lift the notion of cut-offs from transitions to histories.
To this end we introduce the notion of an enriched prefix, which is a prefix of the
unfolding in which every transition is labelled with a subset of its histories. We
assign the marking MC to each pair 〈t , C〉.

Likewise, the ordering ≺ is lifted to histories. Now, a pair 〈t , C〉 is called a cut-off
(in the enriched prefix) if its marking MC is identical to the initial marking, or there
exists a pair 〈t ′, C′〉 ≺ 〈t , C〉 with MC′ = MC.

Output places of transition t will be considered for additions only if t is labelled
with at least one non-cut-off history.

53

Example: Enriched prefix

An example of an enriched prefix is shown below (histories/markings in blue):

{t2} / {p2,p4}

t3

t2

t3

t2

t4

p5

t1

p1

p2

p3

p4

p1

p4

p3

p2

p1

t1

{t1,t3} / {p1,p3}

{t1} / {p2,p3}

Here, the pair 〈t3, {t1, t3}〉 is a cut-off.

54

Enriched prefix

We shall lift the notion of cut-offs from transitions to histories.
To this end we introduce the notion of an enriched prefix, which is a prefix of the
unfolding in which every transition is labelled with a subset of its histories. We
assign the marking MC to each pair 〈t , C〉.

Likewise, the ordering ≺ is lifted to histories. Now, a pair 〈t , C〉 is called a cut-off
(in the enriched prefix) if its marking MC is identical to the initial marking, or there
exists a pair 〈t ′, C′〉 ≺ 〈t , C〉 with MC′ = MC.

Output places of transition t will be considered for additions only if t is labelled
with at least one non-cut-off history.

55

Example: Enriched prefix

An example of an enriched prefix is shown below (histories/markings in blue):

t1

p2

p3

p4

p1

p4

p3

p2

p1

t1

p5

t4

t2

t3

t2

t3

{t1} / {p2,p3}

{t2} / {p2,p4}

{t1,t3} / {p1,p3}

p1

Here, the pair 〈t3, {t1, t3}〉 is a cut-off.

56

Enriched prefix

We shall lift the notion of cut-offs from transitions to histories.
To this end we introduce the notion of an enriched prefix, which is a prefix of the
unfolding in which every transition is labelled with a subset of its histories. We
assign the marking MC to each pair 〈t , C〉.

Likewise, the ordering ≺ is lifted to histories. Now, a pair 〈t , C〉 is called a cut-off
(in the enriched prefix) if its marking MC is identical to the initial marking, or there
exists a pair 〈t ′, C′〉 ≺ 〈t , C〉 with MC′ = MC.

Output places of transition t will be considered for additions only if t is labelled
with at least one non-cut-off history.

57

Example: Enriched prefix

An example of an enriched prefix is shown below (histories/markings in blue):

t1

p2

p3

p4

p1

p4

p3

p2

p1

t1

p5

t4

t2

t3

t2

t3

{t1} / {p2,p3}

{t2} / {p2,p4}

{t1,t3} / {p1,p3}

{t1,t2,t3} / {p1,p4}

p1

Notice that the pair 〈t3, {t1, t2, t3}〉 is not a cut-off!

58

Example: Enriched prefix

An example of an enriched prefix is shown below (histories/markings in blue):

t1

p2

p3

p4

p1
p5

p4

p3

p2

p1

t1

t4

t2

t3

t2

t3

{t1} / {p2,p3}

{t2} / {p2,p4}

{t1,t3} / {p1,p3}

{t1,t2,t3} / {p1,p4}
p5

{t1,...,t4} / {p5}

p1

Hence, the second copy of p1 can be considered for extensions, allowing for t4.

59

Closed enriched prefixes

Problem: How do we make this effective, i.e. how does one construct and
choose the histories, and which orderings lead to a complete prefix?

An enriched prefix is closed if for each pair 〈t , C〉 s.t. C is contained in the
labelling of t , the following holds:

If t ′ ∈ C, then C[[t ′]] is in the labelling of t ′.

For ≺, we consider adequate orders (lifted to histories).

Considering only closed prefixes kills two flies/moskitoes with one strike:

Candidates for additional histories of some transition t are always constructed
by uniting histories labelling direct ↗-predecessors of t .

One can store those histories in memory by simply pointing to those histories.

60

Example: Closed prefix

t1

{H2}

t2

{H1+H2+t1}

...

{H1}

{H1+t2, H1+H2+t1+t2}

t3{H1+t2+t3, H1+H2+t1+t2+t3}

...

61

Prefix ordering

Let E1, E2 be two enriched prefixes. We write E1 v E2 if the net structure of E1

is a prefix of that of E2, and all tuples 〈t , C〉 from E1 are also in E2.

Note: When constructing a prefix, adding a transition or a pair 〈t , C〉 moves us
“upwards” in v.

Lemma: The set of closed prefixes with v forms a complete lattice.

62

Constructing a complete prefix

Theorem: Given an adequate order ≺, there is a maximal closed prefix without
cut-offs that is complete.

This gives us a strategy for constructing a complete prefix:

Start with the minimal prefix (i.e., copies of the initial marking).

Among all transitions and their additional histories that can be constructed
from direct ↗-predecessors, pick a ≺-minimal one that is not a cut-off, and
add it.

Continue until no such additions are possible.

63

Efficiency issues / Comparison with PR approach

Final contextual unfolding up to exponentially smaller than conventional Petri-net
unfolding using the PR approach. (Good.)

Hidden complexity: For 1-safe nets, we get one 〈t , C〉 tuple for every transition in
the PR unfolding. (Not so nice.) For general n-bounded nets, the memory
requirements are smaller for the contextual unfolding. (Good.)

Even for 1-safe nets, deciding coverability from the contextual unfolding is easier
than from the PR unfolding. (Good!)

Even for 1-safe nets, the contextual prefix construction may be quicker because
we have additional knowledge about the relationship between histories.
(hopefully good)

Future work: implementation in MOLE.

64

Questions?

