
On Classical, Real-Time, and Time-Bounded
Verification

Joël Ouaknine

Oxford University Computing Laboratory

(Joint work with Alex Rabinovich and James Worrell)

ACTS 2010, CMI, Chennai, January 2010

The Classical Theory of Verification

Predicate

Logic

Automata

Logic

Temporal

I Qualitative (order-theoretic), rather than quantitative (metric).
I Time is modelled as the naturals N = {0,1,2,3, . . .}.
I Note: focus on linear time (as opposed to branching time).

The Classical Theory of Verification

Predicate

Logic

Automata

Logic

Temporal

I Qualitative (order-theoretic), rather than quantitative (metric).

I Time is modelled as the naturals N = {0,1,2,3, . . .}.
I Note: focus on linear time (as opposed to branching time).

The Classical Theory of Verification

Predicate

Logic

Automata

Logic

Temporal

I Qualitative (order-theoretic), rather than quantitative (metric).
I Time is modelled as the naturals N = {0,1,2,3, . . .}.

I Note: focus on linear time (as opposed to branching time).

The Classical Theory of Verification

Predicate

Logic

Automata

Logic

Temporal

I Qualitative (order-theoretic), rather than quantitative (metric).
I Time is modelled as the naturals N = {0,1,2,3, . . .}.
I Note: focus on linear time (as opposed to branching time).

A Simple Example

‘P occurs infinitely often’

P

�♦P ∀x ∃y (x < y ∧ P(y))

A Simple Example

‘P occurs infinitely often’

P

�♦P ∀x ∃y (x < y ∧ P(y))

A Simple Example

‘P occurs infinitely often’

P

�♦P

∀x ∃y (x < y ∧ P(y))

A Simple Example

‘P occurs infinitely often’

P

�♦P ∀x ∃y (x < y ∧ P(y))

Specification and Verification

Assume the system is modelled by an automaton M.

The specification can be given by:

I A Linear Temporal Logic (LTL) formula θ.

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ | ©θ | ♦θ | �θ | θ1 U θ2

For example, �(REQ → ♦ACK).

Verification is then model checking: M |= θ ?

I A First-Order Logic (FO(<)) formula ϕ.

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example, ∀x (REQ(x) → ∃y (x < y ∧ ACK (y))).

Verification is again model checking: M |= ϕ ?

Specification and Verification

Assume the system is modelled by an automaton M.
The specification can be given by:

I A Linear Temporal Logic (LTL) formula θ.

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ | ©θ | ♦θ | �θ | θ1 U θ2

For example, �(REQ → ♦ACK).

Verification is then model checking: M |= θ ?

I A First-Order Logic (FO(<)) formula ϕ.

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example, ∀x (REQ(x) → ∃y (x < y ∧ ACK (y))).

Verification is again model checking: M |= ϕ ?

Specification and Verification

Assume the system is modelled by an automaton M.
The specification can be given by:

I A Linear Temporal Logic (LTL) formula θ.

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ | ©θ | ♦θ | �θ | θ1 U θ2

For example, �(REQ → ♦ACK).

Verification is then model checking: M |= θ ?

I A First-Order Logic (FO(<)) formula ϕ.

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example, ∀x (REQ(x) → ∃y (x < y ∧ ACK (y))).

Verification is again model checking: M |= ϕ ?

Specification and Verification

Assume the system is modelled by an automaton M.
The specification can be given by:

I A Linear Temporal Logic (LTL) formula θ.

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ | ©θ | ♦θ | �θ | θ1 U θ2

For example, �(REQ → ♦ACK).

Verification is then model checking: M |= θ ?

I A First-Order Logic (FO(<)) formula ϕ.

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example, ∀x (REQ(x) → ∃y (x < y ∧ ACK (y))).

Verification is again model checking: M |= ϕ ?

Specification and Verification

Assume the system is modelled by an automaton M.
The specification can be given by:

I A Linear Temporal Logic (LTL) formula θ.

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ | ©θ | ♦θ | �θ | θ1 U θ2

For example, �(REQ → ♦ACK).

Verification is then model checking: M |= θ ?

I A First-Order Logic (FO(<)) formula ϕ.

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example, ∀x (REQ(x) → ∃y (x < y ∧ ACK (y))).

Verification is again model checking: M |= ϕ ?

Specification and Verification

Assume the system is modelled by an automaton M.
The specification can be given by:

I A Linear Temporal Logic (LTL) formula θ.

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ | ©θ | ♦θ | �θ | θ1 U θ2

For example, �(REQ → ♦ACK).

Verification is then model checking: M |= θ ?

I A First-Order Logic (FO(<)) formula ϕ.

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example, ∀x (REQ(x) → ∃y (x < y ∧ ACK (y))).

Verification is again model checking: M |= ϕ ?

Specification and Verification

Assume the system is modelled by an automaton M.
The specification can be given by:

I A Linear Temporal Logic (LTL) formula θ.

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ | ©θ | ♦θ | �θ | θ1 U θ2

For example, �(REQ → ♦ACK).

Verification is then model checking: M |= θ ?

I A First-Order Logic (FO(<)) formula ϕ.

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example, ∀x (REQ(x) → ∃y (x < y ∧ ACK (y))).

Verification is again model checking: M |= ϕ ?

Specification and Verification

Assume the system is modelled by an automaton M.
The specification can be given by:

I A Linear Temporal Logic (LTL) formula θ.

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ | ©θ | ♦θ | �θ | θ1 U θ2

For example, �(REQ → ♦ACK).

Verification is then model checking: M |= θ ?

I A First-Order Logic (FO(<)) formula ϕ.

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example, ∀x (REQ(x) → ∃y (x < y ∧ ACK (y))).

Verification is again model checking: M |= ϕ ?

Specification and Verification

Assume the system is modelled by an automaton M.
The specification can be given by:

I A Linear Temporal Logic (LTL) formula θ.

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ | ©θ | ♦θ | �θ | θ1 U θ2

For example, �(REQ → ♦ACK).

Verification is then model checking: M |= θ ?

I A First-Order Logic (FO(<)) formula ϕ.

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example, ∀x (REQ(x) → ∃y (x < y ∧ ACK (y))).

Verification is again model checking: M |= ϕ ?

Another Example

‘P holds at every even position
(and may or may not hold at odd positions)’

P P

I It turns out it is impossible to capture this requirement
using LTL or FO(<).

I LTL and FO(<) can however capture the specification:
‘Q holds precisely at even positions’:

Q ∧�(Q →©¬Q) ∧�(¬Q →©Q)

I So one way to capture the original specification would be to
write: ‘Q holds precisely at even positions and �(Q → P)’.

I Finally, need to existentially quantify Q out:

∃Q (Q holds precisely at even positions and � (Q → P))

Another Example

‘P holds at every even position
(and may or may not hold at odd positions)’

P P

I It turns out it is impossible to capture this requirement
using LTL or FO(<).

I LTL and FO(<) can however capture the specification:
‘Q holds precisely at even positions’:

Q ∧�(Q →©¬Q) ∧�(¬Q →©Q)

I So one way to capture the original specification would be to
write: ‘Q holds precisely at even positions and �(Q → P)’.

I Finally, need to existentially quantify Q out:

∃Q (Q holds precisely at even positions and � (Q → P))

Another Example

‘P holds at every even position
(and may or may not hold at odd positions)’

P P

I It turns out it is impossible to capture this requirement
using LTL or FO(<).

I LTL and FO(<) can however capture the specification:
‘Q holds precisely at even positions’:

Q ∧�(Q →©¬Q) ∧�(¬Q →©Q)

I So one way to capture the original specification would be to
write: ‘Q holds precisely at even positions and �(Q → P)’.

I Finally, need to existentially quantify Q out:

∃Q (Q holds precisely at even positions and � (Q → P))

Another Example

‘P holds at every even position
(and may or may not hold at odd positions)’

P P

I It turns out it is impossible to capture this requirement
using LTL or FO(<).

I LTL and FO(<) can however capture the specification:
‘Q holds precisely at even positions’:

Q ∧�(Q →©¬Q) ∧�(¬Q →©Q)

I So one way to capture the original specification would be to
write: ‘Q holds precisely at even positions and �(Q → P)’.

I Finally, need to existentially quantify Q out:

∃Q (Q holds precisely at even positions and � (Q → P))

Another Example

‘P holds at every even position
(and may or may not hold at odd positions)’

P P

I It turns out it is impossible to capture this requirement
using LTL or FO(<).

I LTL and FO(<) can however capture the specification:
‘Q holds precisely at even positions’:

Q ∧�(Q →©¬Q) ∧�(¬Q →©Q)

I So one way to capture the original specification would be to
write: ‘Q holds precisely at even positions and �(Q → P)’.

I Finally, need to existentially quantify Q out:

∃Q (Q holds precisely at even positions and � (Q → P))

Another Example

‘P holds at every even position
(and may or may not hold at odd positions)’

P P

I It turns out it is impossible to capture this requirement
using LTL or FO(<).

I LTL and FO(<) can however capture the specification:
‘Q holds precisely at even positions’:

Q ∧�(Q →©¬Q) ∧�(¬Q →©Q)

I So one way to capture the original specification would be to
write:

‘Q holds precisely at even positions and �(Q → P)’.
I Finally, need to existentially quantify Q out:

∃Q (Q holds precisely at even positions and � (Q → P))

Another Example

‘P holds at every even position
(and may or may not hold at odd positions)’

P P

I It turns out it is impossible to capture this requirement
using LTL or FO(<).

I LTL and FO(<) can however capture the specification:
‘Q holds precisely at even positions’:

Q ∧�(Q →©¬Q) ∧�(¬Q →©Q)

I So one way to capture the original specification would be to
write: ‘Q holds precisely at even positions and �(Q → P)’.

I Finally, need to existentially quantify Q out:

∃Q (Q holds precisely at even positions and � (Q → P))

Another Example

‘P holds at every even position
(and may or may not hold at odd positions)’

P P

I It turns out it is impossible to capture this requirement
using LTL or FO(<).

I LTL and FO(<) can however capture the specification:
‘Q holds precisely at even positions’:

Q ∧�(Q →©¬Q) ∧�(¬Q →©Q)

I So one way to capture the original specification would be to
write: ‘Q holds precisely at even positions and �(Q → P)’.

I Finally, need to existentially quantify Q out:

∃Q (Q holds precisely at even positions and � (Q → P))

Another Example

‘P holds at every even position
(and may or may not hold at odd positions)’

P P

I It turns out it is impossible to capture this requirement
using LTL or FO(<).

I LTL and FO(<) can however capture the specification:
‘Q holds precisely at even positions’:

Q ∧�(Q →©¬Q) ∧�(¬Q →©Q)

I So one way to capture the original specification would be to
write: ‘Q holds precisely at even positions and �(Q → P)’.

I Finally, need to existentially quantify Q out:

∃Q (Q holds precisely at even positions and � (Q → P))

More Specification and Verification

Monadic Second-Order Logic (MSO(<)):

ϕ ::= x < y | P(x) | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ¬ϕ | ∀x ϕ | ∃x ϕ | ∀P ϕ | ∃P ϕ

Theorem (Büchi 1960)
Any MSO(<) formula ϕ can be effectively translated into an
equivalent automaton Aϕ.

Corollary (Church 1960)
The model-checking problem for automata against MSO(<)
specifications is decidable:

M |= ϕ iff L(M) ∩ L(A¬ϕ) = ∅

More Specification and Verification

Monadic Second-Order Logic (MSO(<)):

ϕ ::= x < y | P(x) | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ¬ϕ | ∀x ϕ | ∃x ϕ | ∀P ϕ | ∃P ϕ

Theorem (Büchi 1960)
Any MSO(<) formula ϕ can be effectively translated into an
equivalent automaton Aϕ.

Corollary (Church 1960)
The model-checking problem for automata against MSO(<)
specifications is decidable:

M |= ϕ iff L(M) ∩ L(A¬ϕ) = ∅

More Specification and Verification

Monadic Second-Order Logic (MSO(<)):

ϕ ::= x < y | P(x) | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ¬ϕ | ∀x ϕ | ∃x ϕ | ∀P ϕ | ∃P ϕ

Theorem (Büchi 1960)
Any MSO(<) formula ϕ can be effectively translated into an
equivalent automaton Aϕ.

Corollary (Church 1960)
The model-checking problem for automata against MSO(<)
specifications is decidable:

M |= ϕ iff L(M) ∩ L(A¬ϕ) = ∅

More Specification and Verification

Monadic Second-Order Logic (MSO(<)):

ϕ ::= x < y | P(x) | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ¬ϕ | ∀x ϕ | ∃x ϕ | ∀P ϕ | ∃P ϕ

Theorem (Büchi 1960)
Any MSO(<) formula ϕ can be effectively translated into an
equivalent automaton Aϕ.

Corollary (Church 1960)
The model-checking problem for automata against MSO(<)
specifications is decidable:

M |= ϕ iff L(M) ∩ L(A¬ϕ) = ∅

Algorithmic Complexity

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

2EXPSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

I Most problems in Computer Science sit
within PSPACE.

I Hierarchy extends much beyond:
I EXPSPACE: 2p(n)

I 2EXPSPACE: 22p(n)

I 3EXPSPACE: 222p(n)

I . . .
I ELEMENTARY:

⋃
k∈N

{kEXPSPACE}

I NON-ELEMENTARY: 222·
··

n

︸ ︷︷ ︸
n

I NON-PRIMITIVE RECURSIVE:

Ackerman: 3, 4, 8, 2048, 222·
··

2

︸ ︷︷ ︸
2048

, . . .

Algorithmic Complexity

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

2EXPSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

I Most problems in Computer Science sit
within PSPACE.

I Hierarchy extends much beyond:

I EXPSPACE: 2p(n)

I 2EXPSPACE: 22p(n)

I 3EXPSPACE: 222p(n)

I . . .
I ELEMENTARY:

⋃
k∈N

{kEXPSPACE}

I NON-ELEMENTARY: 222·
··

n

︸ ︷︷ ︸
n

I NON-PRIMITIVE RECURSIVE:

Ackerman: 3, 4, 8, 2048, 222·
··

2

︸ ︷︷ ︸
2048

, . . .

Algorithmic Complexity

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

2EXPSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

I Most problems in Computer Science sit
within PSPACE.

I Hierarchy extends much beyond:
I EXPSPACE: 2p(n)

I 2EXPSPACE: 22p(n)

I 3EXPSPACE: 222p(n)

I . . .
I ELEMENTARY:

⋃
k∈N

{kEXPSPACE}

I NON-ELEMENTARY: 222·
··

n

︸ ︷︷ ︸
n

I NON-PRIMITIVE RECURSIVE:

Ackerman: 3, 4, 8, 2048, 222·
··

2

︸ ︷︷ ︸
2048

, . . .

Algorithmic Complexity

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

2EXPSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

I Most problems in Computer Science sit
within PSPACE.

I Hierarchy extends much beyond:
I EXPSPACE: 2p(n)

I 2EXPSPACE: 22p(n)

I 3EXPSPACE: 222p(n)

I . . .
I ELEMENTARY:

⋃
k∈N

{kEXPSPACE}

I NON-ELEMENTARY: 222·
··

n

︸ ︷︷ ︸
n

I NON-PRIMITIVE RECURSIVE:

Ackerman: 3, 4, 8, 2048, 222·
··

2

︸ ︷︷ ︸
2048

, . . .

Algorithmic Complexity

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

2EXPSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

I Most problems in Computer Science sit
within PSPACE.

I Hierarchy extends much beyond:
I EXPSPACE: 2p(n)

I 2EXPSPACE: 22p(n)

I 3EXPSPACE: 222p(n)

I . . .
I ELEMENTARY:

⋃
k∈N

{kEXPSPACE}

I NON-ELEMENTARY: 222·
··

n

︸ ︷︷ ︸
n

I NON-PRIMITIVE RECURSIVE:

Ackerman: 3, 4, 8, 2048, 222·
··

2

︸ ︷︷ ︸
2048

, . . .

Algorithmic Complexity

..

.

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

2EXPSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

I Most problems in Computer Science sit
within PSPACE.

I Hierarchy extends much beyond:
I EXPSPACE: 2p(n)

I 2EXPSPACE: 22p(n)

I 3EXPSPACE: 222p(n)

I . . .

I ELEMENTARY:
⋃
k∈N

{kEXPSPACE}

I NON-ELEMENTARY: 222·
··

n

︸ ︷︷ ︸
n

I NON-PRIMITIVE RECURSIVE:

Ackerman: 3, 4, 8, 2048, 222·
··

2

︸ ︷︷ ︸
2048

, . . .

Algorithmic Complexity

..

.

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

2EXPSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

I Most problems in Computer Science sit
within PSPACE.

I Hierarchy extends much beyond:
I EXPSPACE: 2p(n)

I 2EXPSPACE: 22p(n)

I 3EXPSPACE: 222p(n)

I . . .
I ELEMENTARY:

⋃
k∈N

{kEXPSPACE}

I NON-ELEMENTARY: 222·
··

n

︸ ︷︷ ︸
n

I NON-PRIMITIVE RECURSIVE:

Ackerman: 3, 4, 8, 2048, 222·
··

2

︸ ︷︷ ︸
2048

, . . .

Algorithmic Complexity

..

.

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

2EXPSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

I Most problems in Computer Science sit
within PSPACE.

I Hierarchy extends much beyond:
I EXPSPACE: 2p(n)

I 2EXPSPACE: 22p(n)

I 3EXPSPACE: 222p(n)

I . . .
I ELEMENTARY:

⋃
k∈N

{kEXPSPACE}

I NON-ELEMENTARY: 222·
··

n

︸ ︷︷ ︸
n

I NON-PRIMITIVE RECURSIVE:

Ackerman: 3, 4, 8, 2048, 222·
··

2

︸ ︷︷ ︸
2048

, . . .

Algorithmic Complexity

..

.

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

2EXPSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

I Most problems in Computer Science sit
within PSPACE.

I Hierarchy extends much beyond:
I EXPSPACE: 2p(n)

I 2EXPSPACE: 22p(n)

I 3EXPSPACE: 222p(n)

I . . .
I ELEMENTARY:

⋃
k∈N

{kEXPSPACE}

I NON-ELEMENTARY: 222·
··

n

︸ ︷︷ ︸
n

I NON-PRIMITIVE RECURSIVE:

Ackerman: 3, 4, 8, 2048, 222·
··

2

︸ ︷︷ ︸
2048

, . . .

Algorithmic Complexity

..

.

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

2EXPSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

I Most problems in Computer Science sit
within PSPACE.

I Hierarchy extends much beyond:
I EXPSPACE: 2p(n)

I 2EXPSPACE: 22p(n)

I 3EXPSPACE: 222p(n)

I . . .
I ELEMENTARY:

⋃
k∈N

{kEXPSPACE}

I NON-ELEMENTARY: 222·
··

n

︸ ︷︷ ︸
n

I NON-PRIMITIVE RECURSIVE:

Ackerman: 3, 4, 8, 2048, 222·
··

2

︸ ︷︷ ︸
2048

, . . .

Algorithmic Complexity

..

.

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

2EXPSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

I Most problems in Computer Science sit
within PSPACE.

I Hierarchy extends much beyond:
I EXPSPACE: 2p(n)

I 2EXPSPACE: 22p(n)

I 3EXPSPACE: 222p(n)

I . . .
I ELEMENTARY:

⋃
k∈N

{kEXPSPACE}

I NON-ELEMENTARY: 222·
··

n

︸ ︷︷ ︸
n

I NON-PRIMITIVE RECURSIVE:

Ackerman: 3, 4, 8, 2048, 222·
··

2

︸ ︷︷ ︸
2048

, . . .

Complexity and Equivalence

In fact:

Theorem (Stockmeyer 1974)
FO(<) satisfiability has non-elementary complexity.

Theorem (Kamp 1968;
Gabbay, Pnueli, Shelah, Stavi 1980)
LTL and FO(<) have precisely the same expressive power.

But amazingly:

Theorem (Sistla & Clarke 1982)
LTL satisfiability and model checking are PSPACE-complete.

Complexity and Equivalence

In fact:

Theorem (Stockmeyer 1974)
FO(<) satisfiability has non-elementary complexity.

Theorem (Kamp 1968;
Gabbay, Pnueli, Shelah, Stavi 1980)
LTL and FO(<) have precisely the same expressive power.

But amazingly:

Theorem (Sistla & Clarke 1982)
LTL satisfiability and model checking are PSPACE-complete.

Complexity and Equivalence

In fact:

Theorem (Stockmeyer 1974)
FO(<) satisfiability has non-elementary complexity.

Theorem (Kamp 1968;
Gabbay, Pnueli, Shelah, Stavi 1980)
LTL and FO(<) have precisely the same expressive power.

But amazingly:

Theorem (Sistla & Clarke 1982)
LTL satisfiability and model checking are PSPACE-complete.

Logics and Automata

“The paradigmatic idea of
the automata-theoretic
approach to verification is
that we can compile
high-level logical
specifications into an
equivalent low-level
finite-state formalism.”

Moshe Vardi

Theorem
Automata are closed under all Boolean operations. Moreover,
the language inclusion problem (L(A) ⊆ L(B) ?) is
PSPACE-complete.

Logics and Automata

“The paradigmatic idea of
the automata-theoretic
approach to verification is
that we can compile
high-level logical
specifications into an
equivalent low-level
finite-state formalism.”

Moshe Vardi
Theorem
Automata are closed under all Boolean operations. Moreover,
the language inclusion problem (L(A) ⊆ L(B) ?) is
PSPACE-complete.

The Classical Theory: Expressiveness

FO(<)

MSO(<)

LTL

automata ETLTLµ

automata
counter−free

The Classical Theory: Expressiveness

FO(<)

MSO(<)

LTL

automata ETLTLµ

automata
counter−free

The Classical Theory: Expressiveness

MSO(<)

FO(<)

ETLTLµautomata

LTLautomata
counter−free

The Classical Theory: Expressiveness

MSO(<)

FO(<)

automata ETLTLµ

LTLautomata
counter−free

The Classical Theory: Complexity

..

.

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE

The Classical Theory: Complexity

..

.

NLOGSPACE−complete
reachability

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE

The Classical Theory: Complexity

..

.

NLOGSPACE−complete
reachability

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE

PSPACE−complete
language inclusion

The Classical Theory: Complexity

..

.

NLOGSPACE−complete
reachability

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE
PSPACE−complete

LTL model checking

PSPACE−complete
language inclusion

The Classical Theory: Complexity

..

.

NLOGSPACE−complete
reachability

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE

NON−ELEMENTARY
FO(<) model checking

PSPACE−complete
LTL model checking

PSPACE−complete
language inclusion

The Classical Theory: Complexity

..

.

NLOGSPACE−complete
reachability

NON−ELEMENTARY
MSO(<) model checking

NON−ELEMENTARY
FO(<) model checking

PSPACE−complete
LTL model checking

PSPACE−complete
language inclusion

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE

A Login Protocol

pw_wrong

login_name

restart

restart

log_pw_wrong

pw_correct
START VALIDATE

LOG_ERRORDELAY

connectedx x

x 60?

x

x

<60?:=0

≥

:=0

<60?x ≥10?

SPECIFICATION: �(pw_wrong −→ �[0,10)¬restart)

A Login Protocol

pw_wrong

login_name

restart

restart

log_pw_wrong

pw_correct
START VALIDATE

LOG_ERRORDELAY

connectedx x

x 60?

x

x

<60?:=0

≥

:=0

<60?x ≥10?

SPECIFICATION: �(pw_wrong −→ �[0,10)¬restart)

A Login Protocol

pw_wrong

login_name

restart

restart

log_pw_wrong

pw_correct
START VALIDATE

LOG_ERRORDELAY

connectedx x

x 60?

x

x

<60?:=0

≥

:=0

<60?x ≥10?

SPECIFICATION: �(pw_wrong −→ �[0,10)¬restart)

A Login Protocol

pw_wrong

login_name

restart

restart

log_pw_wrong

pw_correct
START VALIDATE

LOG_ERRORDELAY

connectedx x

x 60?

x

x

<60?:=0

≥

:=0

<60?x ≥10?

SPECIFICATION: �(pw_wrong −→ �[0,10)¬restart)

A Login Protocol

pw_wrong

login_name

restart

restart

log_pw_wrong

pw_correct
START VALIDATE

LOG_ERRORDELAY

connectedx x

x 60?

x

x

<60?:=0

≥

:=0

<60?x ≥10?

SPECIFICATION: �(pw_wrong −→ �[0,10)¬restart)

A Login Protocol

pw_wrong

login_name

restart

restart

log_pw_wrong

pw_correct
START VALIDATE

LOG_ERRORDELAY

connectedx x

x 60?

x

x

<60?:=0

≥

:=0

<60?x ≥10?

SPECIFICATION: �(pw_wrong −→ �[0,10)¬restart)

A Login Protocol

x ≥10? pw_wrong

login_name

restart

restart

log_pw_wrong

pw_correct
START VALIDATE

LOG_ERRORDELAY

connectedx x

x 60?

x

x

<60?:=0

≥

:=0

<60?

SPECIFICATION: �(pw_wrong −→ �[0,10)¬restart)

A Login Protocol

x ≥10? pw_wrong

login_name

restart

restart

log_pw_wrong

pw_correct
START VALIDATE

LOG_ERRORDELAY

connectedx x

x 60?

x

x

<60?:=0

≥

:=0

<60?

SPECIFICATION: �(pw_wrong −→ �[0,10)¬restart)

[. . .] When power is applied, a single ‘1’ bit is loaded into the first stage of both the
minutes and hours registers. To accomplish this, a momentary low reset signal is sent
to all the registers (at pin 9) and also a NAND gate to lock out any clock transitions at
pin 8 of the minutes registers. At the same time, a high level is applied to the data input
lines of both minutes and hours registers at pin 1. A single positive going clock pulse is
generated at the end of the reset signal which loads a high level into the first stage of
the minutes register. The rising edge of first stage output at pin 3 advances the hours
and a single bit is also loaded into the hours register. Power should remain off for 3
seconds before being re-applied to allow the filter and timing capacitors to discharge.
[. . .]

(Bill Bowden, www.circuitdb.com/circuits/id/98)

[. . .] When power is applied, a single ‘1’ bit is loaded into the first stage of both the
minutes and hours registers. To accomplish this, a momentary low reset signal is sent
to all the registers (at pin 9) and also a NAND gate to lock out any clock transitions at
pin 8 of the minutes registers. At the same time, a high level is applied to the data input
lines of both minutes and hours registers at pin 1. A single positive going clock pulse is
generated at the end of the reset signal which loads a high level into the first stage of
the minutes register. The rising edge of first stage output at pin 3 advances the hours
and a single bit is also loaded into the hours register. Power should remain off for 3
seconds before being re-applied to allow the filter and timing capacitors to discharge.
[. . .]

(Bill Bowden, www.circuitdb.com/circuits/id/98)

[. . .] When power is applied, a single ‘1’ bit is loaded into the first stage of both the
minutes and hours registers. To accomplish this, a momentary low reset signal is sent
to all the registers (at pin 9) and also a NAND gate to lock out any clock transitions at
pin 8 of the minutes registers. At the same time, a high level is applied to the data input
lines of both minutes and hours registers at pin 1. A single positive going clock pulse is
generated at the end of the reset signal which loads a high level into the first stage of
the minutes register. The rising edge of first stage output at pin 3 advances the hours
and a single bit is also loaded into the hours register. Power should remain off for 3
seconds before being re-applied to allow the filter and timing capacitors to discharge.
[. . .]

(Bill Bowden, www.circuitdb.com/circuits/id/98)

BMW Hydrogen 7

BMW Hydrogen 7

Timed Systems

Timed systems occur in:

I Hardware circuits
I Communication protocols
I Cell phones
I Plant controllers
I Aircraft navigation systems
I . . .

In many instances, it is crucial to accurately model the timed
behaviour of the system.

Timed Systems

Timed systems occur in:

I Hardware circuits
I Communication protocols
I Cell phones
I Plant controllers
I Aircraft navigation systems
I . . .

In many instances, it is crucial to accurately model the timed
behaviour of the system.

From Qualitative to Quantitative

“Lift the classical theory
to the real-time world.”

Boris Trakhtenbrot, LICS 1995

Timed Automata

x ≥10? pw_wrong

login_name

restart

restart

log_pw_wrong

pw_correct
START VALIDATE

LOG_ERRORDELAY

connectedx x

x 60?

x

x

<60?:=0

≥

:=0

<60?

Timed Automata

Timed automata were introduced by Rajeev Alur at Stanford
during his PhD thesis under David Dill:

I Rajeev Alur, David L. Dill: Automata For Modeling
Real-Time Systems. ICALP 1990: 322-335

I Rajeev Alur, David L. Dill: A Theory of Timed Automata.
TCS 126(2): 183-235, 1994

Timed Automata

Time is modelled as the non-negative reals, R≥0.

Theorem (Alur, Courcourbetis, Dill 1990)
Reachability is decidable, in fact PSPACE-complete.

Unfortunately:

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.

Timed Automata

Time is modelled as the non-negative reals, R≥0.

Theorem (Alur, Courcourbetis, Dill 1990)
Reachability is decidable, in fact PSPACE-complete.

Unfortunately:

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.

Timed Automata

Time is modelled as the non-negative reals, R≥0.

Theorem (Alur, Courcourbetis, Dill 1990)
Reachability is decidable, in fact PSPACE-complete.

Unfortunately:

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.

An Uncomplementable Timed Automaton

A : //ONMLHIJK
@GF ECD

a

��
a

x :=0
//ONMLHIJK a

x=1?
//

@GF ECD
a

�� ONMLHIJKGFED@ABC
@GF ECD

a

��

1

L(A):

1

1

L(A):

A cannot be complemented:
There is no timed automaton B with L(B) = L(A).

An Uncomplementable Timed Automaton

A : //ONMLHIJK
@GF ECD

a

��
a

x :=0
//ONMLHIJK a

x=1?
//

@GF ECD
a

�� ONMLHIJKGFED@ABC
@GF ECD

a

��

L(A):
1

1

L(A):

1

1

L(A):

A cannot be complemented:
There is no timed automaton B with L(B) = L(A).

An Uncomplementable Timed Automaton

A : //ONMLHIJK
@GF ECD

a

��
a

x :=0
//ONMLHIJK a

x=1?
//

@GF ECD
a

�� ONMLHIJKGFED@ABC
@GF ECD

a

��

1

L(A):

1

1

L(A):

A cannot be complemented:
There is no timed automaton B with L(B) = L(A).

An Uncomplementable Timed Automaton

A : //ONMLHIJK
@GF ECD

a

��
a

x :=0
//ONMLHIJK a

x=1?
//

@GF ECD
a

�� ONMLHIJKGFED@ABC
@GF ECD

a

��

1

L(A):

1

1

L(A):

A cannot be complemented:
There is no timed automaton B with L(B) = L(A).

An Uncomplementable Timed Automaton

A : //ONMLHIJK
@GF ECD

a

��
a

x :=0
//ONMLHIJK a

x=1?
//

@GF ECD
a

�� ONMLHIJKGFED@ABC
@GF ECD

a

��

1

L(A):

1

1

L(A):

A cannot be complemented:
There is no timed automaton B with L(B) = L(A).

Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ∼1990]
is a central quantitative specification formalism for timed
systems.

I MTL = LTL + timing constraints on operators:

�(PEDAL → ♦[5,10] BRAKE)

I Widely cited and used (over seven hundred papers
according to scholar.google.com !).

Unfortunately:

Theorem (Alur & Henzinger 1992)
MTL satisfiability and model checking are undecidable over R≥0.
(Decidable but non-primitive recursive under certain semantic
restrictions [Ouaknine & Worrell 2005].)

Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ∼1990]
is a central quantitative specification formalism for timed
systems.

I MTL = LTL + timing constraints on operators:

�(PEDAL → ♦[5,10] BRAKE)

I Widely cited and used (over seven hundred papers
according to scholar.google.com !).

Unfortunately:

Theorem (Alur & Henzinger 1992)
MTL satisfiability and model checking are undecidable over R≥0.
(Decidable but non-primitive recursive under certain semantic
restrictions [Ouaknine & Worrell 2005].)

Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ∼1990]
is a central quantitative specification formalism for timed
systems.

I MTL = LTL + timing constraints on operators:

�(PEDAL → ♦[5,10] BRAKE)

I Widely cited and used (over seven hundred papers
according to scholar.google.com !).

Unfortunately:

Theorem (Alur & Henzinger 1992)
MTL satisfiability and model checking are undecidable over R≥0.
(Decidable but non-primitive recursive under certain semantic
restrictions [Ouaknine & Worrell 2005].)

Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ∼1990]
is a central quantitative specification formalism for timed
systems.

I MTL = LTL + timing constraints on operators:

�(PEDAL → ♦[5,10] BRAKE)

I Widely cited and used (over seven hundred papers
according to scholar.google.com !).

Unfortunately:

Theorem (Alur & Henzinger 1992)
MTL satisfiability and model checking are undecidable over R≥0.
(Decidable but non-primitive recursive under certain semantic
restrictions [Ouaknine & Worrell 2005].)

Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ∼1990]
is a central quantitative specification formalism for timed
systems.

I MTL = LTL + timing constraints on operators:

�(PEDAL → ♦[5,10] BRAKE)

I Widely cited and used (over seven hundred papers
according to scholar.google.com !).

Unfortunately:

Theorem (Alur & Henzinger 1992)
MTL satisfiability and model checking are undecidable over R≥0.

(Decidable but non-primitive recursive under certain semantic
restrictions [Ouaknine & Worrell 2005].)

Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ∼1990]
is a central quantitative specification formalism for timed
systems.

I MTL = LTL + timing constraints on operators:

�(PEDAL → ♦[5,10] BRAKE)

I Widely cited and used (over seven hundred papers
according to scholar.google.com !).

Unfortunately:

Theorem (Alur & Henzinger 1992)
MTL satisfiability and model checking are undecidable over R≥0.
(Decidable but non-primitive recursive under certain semantic
restrictions [Ouaknine & Worrell 2005].)

Metric Predicate Logic
The first-order metric logic of order (FO(<,+1)) extends FO(<)
by the unary function ‘+1’.

For example, �(PEDAL → ♦[5,10] BRAKE) becomes

∀x (PEDAL(x) → ∃y (x + 5 ≤ y ≤ x + 10 ∧ BRAKE(y)))

Theorem (Hirshfeld & Rabinovich 2007)
FO(<,+1) is strictly more expressive than MTL over R≥0.

Corollary: FO(<,+1) and MSO(<,+1) satisfiability and model
checking are undecidable over R≥0.

Metric Predicate Logic
The first-order metric logic of order (FO(<,+1)) extends FO(<)
by the unary function ‘+1’.
For example, �(PEDAL → ♦[5,10] BRAKE) becomes

∀x (PEDAL(x) → ∃y (x + 5 ≤ y ≤ x + 10 ∧ BRAKE(y)))

Theorem (Hirshfeld & Rabinovich 2007)
FO(<,+1) is strictly more expressive than MTL over R≥0.

Corollary: FO(<,+1) and MSO(<,+1) satisfiability and model
checking are undecidable over R≥0.

Metric Predicate Logic
The first-order metric logic of order (FO(<,+1)) extends FO(<)
by the unary function ‘+1’.
For example, �(PEDAL → ♦[5,10] BRAKE) becomes

∀x (PEDAL(x) → ∃y (x + 5 ≤ y ≤ x + 10 ∧ BRAKE(y)))

Theorem (Hirshfeld & Rabinovich 2007)
FO(<,+1) is strictly more expressive than MTL over R≥0.

Corollary: FO(<,+1) and MSO(<,+1) satisfiability and model
checking are undecidable over R≥0.

Metric Predicate Logic
The first-order metric logic of order (FO(<,+1)) extends FO(<)
by the unary function ‘+1’.
For example, �(PEDAL → ♦[5,10] BRAKE) becomes

∀x (PEDAL(x) → ∃y (x + 5 ≤ y ≤ x + 10 ∧ BRAKE(y)))

Theorem (Hirshfeld & Rabinovich 2007)
FO(<,+1) is strictly more expressive than MTL over R≥0.

Corollary: FO(<,+1) and MSO(<,+1) satisfiability and model
checking are undecidable over R≥0.

The Real-Time Theory: Expressiveness

FO(<,+1)

MTL

MSO(<,+1)

automata
timed

The Real-Time Theory: Expressiveness

FO(<,+1)

MTL

MSO(<,+1)

automata
timed

The Real-Time Theory: Complexity

2−clock+ language inclusion
UNDECIDABLE

3−clock+ reachability
PSPACE−complete

2−clock reachability
NP−hard

1−clock reachability
NLOGSPACE−complete

1−clock language inclusion
NON−PRIMITIVE RECURSIVE

..

.

NLOGSPACE−complete
reachability

NON−ELEMENTARY
MSO(<) model checking

NON−ELEMENTARY
FO(<) model checking

PSPACE−complete
LTL model checking

PSPACE−complete
language inclusion

MSO(<,+1) model checking
UNDECIDABLE

FO(<,+1) model checking
UNDECIDABLE

MTL model checking
NON−PRIMITIVE RECURSIVE/

UNDECIDABLE

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE

Classical Theory Real−Time Theory

The Real-Time Theory: Complexity

2−clock+ language inclusion
UNDECIDABLE

3−clock+ reachability
PSPACE−complete

2−clock reachability
NP−hard

1−clock language inclusion
NON−PRIMITIVE RECURSIVE

..

.

NLOGSPACE−complete
reachability

NON−ELEMENTARY
MSO(<) model checking

NON−ELEMENTARY
FO(<) model checking

1−clock reachability
NLOGSPACE−complete

PSPACE−complete
LTL model checking

PSPACE−complete
language inclusion

MSO(<,+1) model checking
UNDECIDABLE

FO(<,+1) model checking
UNDECIDABLE

MTL model checking
NON−PRIMITIVE RECURSIVE/

UNDECIDABLE

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE

Classical Theory Real−Time Theory

The Real-Time Theory: Complexity

2−clock+ language inclusion
UNDECIDABLE

3−clock+ reachability
PSPACE−complete

1−clock language inclusion
NON−PRIMITIVE RECURSIVE

..

.

NLOGSPACE−complete
reachability

NON−ELEMENTARY
MSO(<) model checking

NON−ELEMENTARY
FO(<) model checking

1−clock reachability
NLOGSPACE−complete

2−clock reachability
NP−hard

PSPACE−complete
LTL model checking

PSPACE−complete
language inclusion

MSO(<,+1) model checking
UNDECIDABLE

FO(<,+1) model checking
UNDECIDABLE

MTL model checking
NON−PRIMITIVE RECURSIVE/

UNDECIDABLE

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE

Classical Theory Real−Time Theory

The Real-Time Theory: Complexity

2−clock+ language inclusion
UNDECIDABLE

1−clock language inclusion
NON−PRIMITIVE RECURSIVE

..

.

NLOGSPACE−complete
reachability

NON−ELEMENTARY
MSO(<) model checking

NON−ELEMENTARY
FO(<) model checking

3−clock+ reachability
PSPACE−complete

1−clock reachability
NLOGSPACE−complete

2−clock reachability
NP−hard

PSPACE−complete
LTL model checking

PSPACE−complete
language inclusion

MSO(<,+1) model checking
UNDECIDABLE

FO(<,+1) model checking
UNDECIDABLE

MTL model checking
NON−PRIMITIVE RECURSIVE/

UNDECIDABLE

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE

Classical Theory Real−Time Theory

The Real-Time Theory: Complexity

2−clock+ language inclusion
UNDECIDABLE

..

.

NLOGSPACE−complete
reachability

NON−ELEMENTARY
MSO(<) model checking

NON−ELEMENTARY
FO(<) model checking

3−clock+ reachability
PSPACE−complete

1−clock reachability
NLOGSPACE−complete

2−clock reachability
NP−hard

PSPACE−complete
LTL model checking

PSPACE−complete
language inclusion

MSO(<,+1) model checking
UNDECIDABLE

FO(<,+1) model checking
UNDECIDABLE

MTL model checking
NON−PRIMITIVE RECURSIVE/

UNDECIDABLE

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE
1−clock language inclusion

NON−PRIMITIVE RECURSIVE

Classical Theory Real−Time Theory

The Real-Time Theory: Complexity

..

.

2−clock+ language inclusion
UNDECIDABLE

NLOGSPACE−complete
reachability

NON−ELEMENTARY
MSO(<) model checking

NON−ELEMENTARY
FO(<) model checking

3−clock+ reachability
PSPACE−complete

1−clock reachability
NLOGSPACE−complete

2−clock reachability
NP−hard

PSPACE−complete
LTL model checking

PSPACE−complete
language inclusion

MSO(<,+1) model checking
UNDECIDABLE

FO(<,+1) model checking
UNDECIDABLE

MTL model checking
NON−PRIMITIVE RECURSIVE/

UNDECIDABLE

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE
1−clock language inclusion

NON−PRIMITIVE RECURSIVE

Classical Theory Real−Time Theory

The Real-Time Theory: Complexity

..

.

2−clock+ language inclusion
UNDECIDABLE

MTL model checking
NON−PRIMITIVE RECURSIVE/

UNDECIDABLE

NLOGSPACE−complete
reachability

NON−ELEMENTARY
MSO(<) model checking

NON−ELEMENTARY
FO(<) model checking

3−clock+ reachability
PSPACE−complete

1−clock reachability
NLOGSPACE−complete

2−clock reachability
NP−hard

PSPACE−complete
LTL model checking

PSPACE−complete
language inclusion

MSO(<,+1) model checking
UNDECIDABLE

FO(<,+1) model checking
UNDECIDABLE

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE
1−clock language inclusion

NON−PRIMITIVE RECURSIVE

Classical Theory Real−Time Theory

The Real-Time Theory: Complexity

..

.

2−clock+ language inclusion
UNDECIDABLE

FO(<,+1) model checking
UNDECIDABLE

MTL model checking
NON−PRIMITIVE RECURSIVE/

UNDECIDABLE

NLOGSPACE−complete
reachability

NON−ELEMENTARY
MSO(<) model checking

NON−ELEMENTARY
FO(<) model checking

3−clock+ reachability
PSPACE−complete

1−clock reachability
NLOGSPACE−complete

2−clock reachability
NP−hard

PSPACE−complete
LTL model checking

PSPACE−complete
language inclusion

MSO(<,+1) model checking
UNDECIDABLE

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE
1−clock language inclusion

NON−PRIMITIVE RECURSIVE

Classical Theory Real−Time Theory

The Real-Time Theory: Complexity

..

.

MSO(<,+1) model checking
UNDECIDABLE

2−clock+ language inclusion
UNDECIDABLE

FO(<,+1) model checking
UNDECIDABLE

MTL model checking
NON−PRIMITIVE RECURSIVE/

UNDECIDABLE

NLOGSPACE−complete
reachability

NON−ELEMENTARY
MSO(<) model checking

NON−ELEMENTARY
FO(<) model checking

3−clock+ reachability
PSPACE−complete

1−clock reachability
NLOGSPACE−complete

2−clock reachability
NP−hard

PSPACE−complete
LTL model checking

PSPACE−complete
language inclusion

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE
1−clock language inclusion

NON−PRIMITIVE RECURSIVE

Classical Theory Real−Time Theory

Key Stumbling Block

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.

Timed Language Inclusion: Some Related Work

I Topological restrictions and digitization techniques:
[Henzinger, Manna, Pnueli 1992], [Bošnački 1999],
[Ouaknine & Worrell 2003]

I Fuzzy semantics / noise-based techniques:
[Maass & Orponen 1996],
[Gupta, Henzinger, Jagadeesan 1997],
[Fränzle 1999], [Henzinger & Raskin 2000], [Puri 2000],
[Asarin & Bouajjani 2001], [Ouaknine & Worrell 2003],
[Alur, La Torre, Madhusudan 2005]

I Determinisable subclasses of timed automata:
[Alur & Henzinger 1992], [Alur, Fix, Henzinger 1994],
[Wilke 1996], [Raskin 1999]

I Timed simulation relations and homomorphisms:
[Lynch et al. 1992], [Taşiran et al. 1996],
[Kaynar, Lynch, Segala, Vaandrager 2003]

I Restrictions on the number of clocks:
[Ouaknine & Worrell 2004], [Emmi & Majumdar 2006]

A Long Time Ago, circa 2003. . .

Use logic you must!

I have foreseen it:
everything will remain

undecidable.

cannot be complemented!
Timed automata still

bounding time?
How about

A Long Time Ago, circa 2003. . .

Use logic you must!

I have foreseen it:
everything will remain

undecidable.

cannot be complemented!
Timed automata still

bounding time?
How about

A Long Time Ago, circa 2003. . .

Use logic you must!

I have foreseen it:
everything will remain

undecidable.

bounding time?
How about

cannot be complemented!
Timed automata still

A Long Time Ago, circa 2003. . .

Use logic you must!

bounding time?
How about

I have foreseen it:
everything will remain

undecidable.

cannot be complemented!
Timed automata still

A Long Time Ago, circa 2003. . .

Use logic you must!

bounding time?
How about

I have foreseen it:
everything will remain

undecidable.

cannot be complemented!
Timed automata still

Time-Bounded Language Inclusion

TIME-BOUNDED LANGUAGE INCLUSION PROBLEM

Instance: Timed automata A, B, and time bound T ∈ N
Question: Is LT (A) ⊆ LT (B) ?

I Inspired by Bounded Model Checking.
I Timed systems often have time bounds (e.g. timeouts),

even if total number of actions is potentially unbounded.
I Universe’s lifetime is believed to be bounded anyway. . .

Time-Bounded Language Inclusion

TIME-BOUNDED LANGUAGE INCLUSION PROBLEM

Instance: Timed automata A, B, and time bound T ∈ N
Question: Is LT (A) ⊆ LT (B) ?

I Inspired by Bounded Model Checking.

I Timed systems often have time bounds (e.g. timeouts),
even if total number of actions is potentially unbounded.

I Universe’s lifetime is believed to be bounded anyway. . .

Time-Bounded Language Inclusion

TIME-BOUNDED LANGUAGE INCLUSION PROBLEM

Instance: Timed automata A, B, and time bound T ∈ N
Question: Is LT (A) ⊆ LT (B) ?

I Inspired by Bounded Model Checking.
I Timed systems often have time bounds (e.g. timeouts),

even if total number of actions is potentially unbounded.

I Universe’s lifetime is believed to be bounded anyway. . .

Time-Bounded Language Inclusion

TIME-BOUNDED LANGUAGE INCLUSION PROBLEM

Instance: Timed automata A, B, and time bound T ∈ N
Question: Is LT (A) ⊆ LT (B) ?

I Inspired by Bounded Model Checking.
I Timed systems often have time bounds (e.g. timeouts),

even if total number of actions is potentially unbounded.
I Universe’s lifetime is believed to be bounded anyway. . .

Timed Automata and Metric Logics

I Unfortunately, timed automata cannot be complemented
even over bounded time. . .

I Key to solution is to translate problem into logic:
Behaviours of timed automata can be captured in MSO(<,+1)
(in fact, even in ∃MTL [Henzinger, Raskin, Schobbens 1998]).

I This reverses Vardi’s ‘automata-theoretic approach to
verification’ paradigm!

Timed Automata and Metric Logics

I Unfortunately, timed automata cannot be complemented
even over bounded time. . .

I Key to solution is to translate problem into logic:

Behaviours of timed automata can be captured in MSO(<,+1)
(in fact, even in ∃MTL [Henzinger, Raskin, Schobbens 1998]).

I This reverses Vardi’s ‘automata-theoretic approach to
verification’ paradigm!

Timed Automata and Metric Logics

I Unfortunately, timed automata cannot be complemented
even over bounded time. . .

I Key to solution is to translate problem into logic:
Behaviours of timed automata can be captured in MSO(<,+1)
(in fact, even in ∃MTL [Henzinger, Raskin, Schobbens 1998]).

I This reverses Vardi’s ‘automata-theoretic approach to
verification’ paradigm!

Timed Automata and Metric Logics

I Unfortunately, timed automata cannot be complemented
even over bounded time. . .

I Key to solution is to translate problem into logic:
Behaviours of timed automata can be captured in MSO(<,+1)
(in fact, even in ∃MTL [Henzinger, Raskin, Schobbens 1998]).

I This reverses Vardi’s ‘automata-theoretic approach to
verification’ paradigm!

Monadic Second-Order Logic

More problems:

Theorem (Shelah 1975)
MSO(<) is undecidable over [0,1).

By contrast,

Theorem

I MSO(<) is decidable over N [Büchi 1960]
I MSO(<) is decidable over Q, via [Rabin 1969]

Monadic Second-Order Logic

More problems:

Theorem (Shelah 1975)
MSO(<) is undecidable over [0,1).

By contrast,

Theorem

I MSO(<) is decidable over N [Büchi 1960]
I MSO(<) is decidable over Q, via [Rabin 1969]

Monadic Second-Order Logic

More problems:

Theorem (Shelah 1975)
MSO(<) is undecidable over [0,1).

By contrast,

Theorem

I MSO(<) is decidable over N [Büchi 1960]
I MSO(<) is decidable over Q, via [Rabin 1969]

Finite Variability
Timed behaviours are modelled as flows (or signals):

f : [0,T) → 2MP

P:

Q:

R:

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

Predicates must have finite variability:

Disallow e.g. Q:

0 1 2 3 4 5
P:

Then:

Theorem (Rabinovich 2002)
MSO(<) satisfiability over finitely-variable flows is decidable.

Finite Variability
Timed behaviours are modelled as flows (or signals):

f : [0,T) → 2MP

P:

Q:

R:

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

Predicates must have finite variability:

Disallow e.g. Q:

0 1 2 3 4 5
P:

Then:

Theorem (Rabinovich 2002)
MSO(<) satisfiability over finitely-variable flows is decidable.

Finite Variability
Timed behaviours are modelled as flows (or signals):

f : [0,T) → 2MP

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

Q:

R:

P:

Predicates must have finite variability:

Disallow e.g. Q:

0 1 2 3 4 5
P:

Then:

Theorem (Rabinovich 2002)
MSO(<) satisfiability over finitely-variable flows is decidable.

Finite Variability
Timed behaviours are modelled as flows (or signals):

f : [0,T) → 2MP

0 1 2 3 4 5
Q:

0 1 2 3 4 5
R:

0 1 2 3 4 5
P:

Predicates must have finite variability:

Disallow e.g. Q:

0 1 2 3 4 5
P:

Then:

Theorem (Rabinovich 2002)
MSO(<) satisfiability over finitely-variable flows is decidable.

Finite Variability
Timed behaviours are modelled as flows (or signals):

f : [0,T) → 2MP

0 1 2 3 4 5
Q:

0 1 2 3 4 5
R:

0 1 2 3 4 5
P:

Predicates must have finite variability:

Disallow e.g. Q:

0 1 2 3 4 5
P:

Then:

Theorem (Rabinovich 2002)
MSO(<) satisfiability over finitely-variable flows is decidable.

Finite Variability
Timed behaviours are modelled as flows (or signals):

f : [0,T) → 2MP

0 1 2 3 4 5
Q:

0 1 2 3 4 5
R:

0 1 2 3 4 5
P:

Predicates must have finite variability:

Disallow e.g. Q:

0 1 2 3 4 5
P:

Then:

Theorem (Rabinovich 2002)
MSO(<) satisfiability over finitely-variable flows is decidable.

Finite Variability
Timed behaviours are modelled as flows (or signals):

f : [0,T) → 2MP

0 1 2 3 4 5
Q:

0 1 2 3 4 5
R:

0 1 2 3 4 5
P:

Predicates must have finite variability:

Disallow e.g. Q:

0 1 2 3 4 5
P:

Then:

Theorem (Rabinovich 2002)
MSO(<) satisfiability over finitely-variable flows is decidable.

Finite Variability
Timed behaviours are modelled as flows (or signals):

f : [0,T) → 2MP

0 1 2 3 4 5
Q:

0 1 2 3 4 5
R:

0 1 2 3 4 5
P:

Predicates must have finite variability:

Disallow e.g. Q:

0 1 2 3 4 5
P:

Then:

Theorem (Rabinovich 2002)
MSO(<) satisfiability over finitely-variable flows is decidable.

The Time-Bounded Theory of Verification

Theorem
For any fixed bounded time domain [0,T), the satisfiability and
model-checking problems for MSO(<,+1), FO(<,+1), and MTL
are all decidable, with the following complexities:

MSO(<,+1) NON-ELEMENTARY

FO(<,+1) NON-ELEMENTARY

MTL EXPSPACE-complete

Theorem
MTL and FO(<,+1) are equally expressive over any fixed
bounded time domain [0,T).

Theorem
Given timed automata A, B, and time bound T ∈ N, the
language inclusion problem LT (A) ⊆ LT (B) is decidable and
2EXPSPACE-complete.

The Time-Bounded Theory of Verification

Theorem
For any fixed bounded time domain [0,T), the satisfiability and
model-checking problems for MSO(<,+1), FO(<,+1), and MTL
are all decidable, with the following complexities:

MSO(<,+1) NON-ELEMENTARY

FO(<,+1) NON-ELEMENTARY

MTL EXPSPACE-complete

Theorem
MTL and FO(<,+1) are equally expressive over any fixed
bounded time domain [0,T).

Theorem
Given timed automata A, B, and time bound T ∈ N, the
language inclusion problem LT (A) ⊆ LT (B) is decidable and
2EXPSPACE-complete.

The Time-Bounded Theory of Verification

Theorem
For any fixed bounded time domain [0,T), the satisfiability and
model-checking problems for MSO(<,+1), FO(<,+1), and MTL
are all decidable, with the following complexities:

MSO(<,+1) NON-ELEMENTARY

FO(<,+1) NON-ELEMENTARY

MTL EXPSPACE-complete

Theorem
MTL and FO(<,+1) are equally expressive over any fixed
bounded time domain [0,T).

Theorem
Given timed automata A, B, and time bound T ∈ N, the
language inclusion problem LT (A) ⊆ LT (B) is decidable and
2EXPSPACE-complete.

Time-Bounded Language Inclusion

I Let timed automata A, B, and time bound T be given.

I Define formula ϕacc
A (W,P) in MSO(<,+1) such that:

A accepts timed word w ⇐⇒ ϕacc
A (W,P) holds

where
I W encodes w
I P encodes a corresponding run of A.

I Define likewise ϕacc
B (W,Q) for timed automaton B.

I Then LT (A) ⊆ LT (B) iff:

∀W∀P (ϕacc
A (W,P) → ∃Qϕacc

B (W,Q))

holds over time domain [0,T).
I This can be decided in 2EXPSPACE.

Time-Bounded Language Inclusion

I Let timed automata A, B, and time bound T be given.
I Define formula ϕacc

A (W,P) in MSO(<,+1) such that:

A accepts timed word w ⇐⇒ ϕacc
A (W,P) holds

where
I W encodes w
I P encodes a corresponding run of A.

I Define likewise ϕacc
B (W,Q) for timed automaton B.

I Then LT (A) ⊆ LT (B) iff:

∀W∀P (ϕacc
A (W,P) → ∃Qϕacc

B (W,Q))

holds over time domain [0,T).
I This can be decided in 2EXPSPACE.

Time-Bounded Language Inclusion

I Let timed automata A, B, and time bound T be given.
I Define formula ϕacc

A (W,P) in MSO(<,+1) such that:

A accepts timed word w ⇐⇒ ϕacc
A (W,P) holds

where
I W encodes w
I P encodes a corresponding run of A.

I Define likewise ϕacc
B (W,Q) for timed automaton B.

I Then LT (A) ⊆ LT (B) iff:

∀W∀P (ϕacc
A (W,P) → ∃Qϕacc

B (W,Q))

holds over time domain [0,T).
I This can be decided in 2EXPSPACE.

Time-Bounded Language Inclusion

I Let timed automata A, B, and time bound T be given.
I Define formula ϕacc

A (W,P) in MSO(<,+1) such that:

A accepts timed word w ⇐⇒ ϕacc
A (W,P) holds

where
I W encodes w
I P encodes a corresponding run of A.

I Define likewise ϕacc
B (W,Q) for timed automaton B.

I Then LT (A) ⊆ LT (B) iff:

∀W∀P (ϕacc
A (W,P) → ∃Qϕacc

B (W,Q))

holds over time domain [0,T).
I This can be decided in 2EXPSPACE.

Time-Bounded Language Inclusion

I Let timed automata A, B, and time bound T be given.
I Define formula ϕacc

A (W,P) in MSO(<,+1) such that:

A accepts timed word w ⇐⇒ ϕacc
A (W,P) holds

where
I W encodes w
I P encodes a corresponding run of A.

I Define likewise ϕacc
B (W,Q) for timed automaton B.

I Then LT (A) ⊆ LT (B) iff:

∀W∀P (ϕacc
A (W,P) → ∃Qϕacc

B (W,Q))

holds over time domain [0,T).

I This can be decided in 2EXPSPACE.

Time-Bounded Language Inclusion

I Let timed automata A, B, and time bound T be given.
I Define formula ϕacc

A (W,P) in MSO(<,+1) such that:

A accepts timed word w ⇐⇒ ϕacc
A (W,P) holds

where
I W encodes w
I P encodes a corresponding run of A.

I Define likewise ϕacc
B (W,Q) for timed automaton B.

I Then LT (A) ⊆ LT (B) iff:

∀W∀P (ϕacc
A (W,P) → ∃Qϕacc

B (W,Q))

holds over time domain [0,T).
I This can be decided in 2EXPSPACE.

MSO(<,+1) Time-Bounded Satisfiability

Key idea: eliminate the metric by ‘vertical stacking’.

I Let ϕ be an MSO(<,+1) formula and let T ∈ N.
I Construct an MSO(<) formula ϕ such that:

ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1)

I Conclude by invoking decidability of MSO(<).

MSO(<,+1) Time-Bounded Satisfiability

Key idea: eliminate the metric by ‘vertical stacking’.

I Let ϕ be an MSO(<,+1) formula and let T ∈ N.

I Construct an MSO(<) formula ϕ such that:

ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1)

I Conclude by invoking decidability of MSO(<).

MSO(<,+1) Time-Bounded Satisfiability

Key idea: eliminate the metric by ‘vertical stacking’.

I Let ϕ be an MSO(<,+1) formula and let T ∈ N.
I Construct an MSO(<) formula ϕ such that:

ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1)

I Conclude by invoking decidability of MSO(<).

MSO(<,+1) Time-Bounded Satisfiability

Key idea: eliminate the metric by ‘vertical stacking’.

I Let ϕ be an MSO(<,+1) formula and let T ∈ N.
I Construct an MSO(<) formula ϕ such that:

ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1)

I Conclude by invoking decidability of MSO(<).

From MSO(<,+1) to MSO(<)

1

3

2

P

P

:

:

:

P

0 1

0 1

0 1

P:
0 1 2 3

Replace every:
I ∀x ψ(x)

by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2

by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2

I P(x + k)

by Pk (x)

I ∀P ψ

by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

1

3

2

P

P

:

:

:

P

P:
0 1

0 1

0 1

0 1 2 3

Replace every:
I ∀x ψ(x)

by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2

by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2

I P(x + k)

by Pk (x)

I ∀P ψ

by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

1

3

2

P

P

:

:

:

P

0 1

0 1

0 1

P:
0 1 2 3

Replace every:
I ∀x ψ(x)

by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2

by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2

I P(x + k)

by Pk (x)

I ∀P ψ

by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

2

1

0

P

P

P

:

:

:

0 1

0 1

0 1

P:
0 1 2 3

Replace every:
I ∀x ψ(x)

by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2

by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2

I P(x + k)

by Pk (x)

I ∀P ψ

by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

2

1

0

0 1

0 1

0 1

P:

P

P

P

0 1 2 3
:

:

:

Replace every:
I ∀x ψ(x)

by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2

by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2

I P(x + k)

by Pk (x)

I ∀P ψ

by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

2

1

0

0 1

0 1

0 1

P:

P

P

P

0 1 2 3
:

:

:

Replace every:
I ∀x ψ(x)

by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2

by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2

I P(x + k)

by Pk (x)

I ∀P ψ

by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

2

1

0

0 1

0 1

0 1

P:

P

P

P

0 1 2 3
:

:

:

Replace every:
I ∀x ψ(x)

by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2

by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2

I P(x + k)

by Pk (x)

I ∀P ψ

by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

2

1

0

0 1

0 1

0 1

P:

P

P

P

0 1 2 3
:

:

:

Replace every:
I ∀x ψ(x)

by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2

by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2

I P(x + k)

by Pk (x)

I ∀P ψ

by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

2

1

0

0 1

0 1

0 1

P:

P

P

P

0 1 2 3
:

:

:

Replace every:
I ∀x ψ(x)

by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2

by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2

I P(x + k)

by Pk (x)

I ∀P ψ

by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

2

1

0

0 1

0 1

0 1

P:

P

P

P

0 1 2 3
:

:

:

Replace every:
I ∀x ψ(x)

by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2

by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2

I P(x + k)

by Pk (x)

I ∀P ψ

by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

2

1

0

0 1

0 1

0 1

P:

P

P

P

0 1 2 3
:

:

:

Replace every:
I ∀x ψ(x)

by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2

by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2

I P(x + k)

by Pk (x)

I ∀P ψ

by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

2

1

0

0 1

0 1

0 1

P:

P

P

P

0 1 2 3
:

:

:

Replace every:
I ∀x ψ(x)

by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2

by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2

I P(x + k)

by Pk (x)

I ∀P ψ

by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

2

1

0

0 1

0 1

0 1

P:

P

P

P

0 1 2 3
:

:

:
Replace every:

I ∀x ψ(x)

by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2

by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2

I P(x + k)

by Pk (x)

I ∀P ψ

by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

2

1

0

0 1

0 1

0 1

P:

P

P

P

0 1 2 3
:

:

:
Replace every:

I ∀x ψ(x) by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2

by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2

I P(x + k)

by Pk (x)

I ∀P ψ

by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

2

1

0

0 1

0 1

0 1

P:

P

P

P

0 1 2 3
:

:

:
Replace every:

I ∀x ψ(x) by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2

by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2
I P(x + k)

by Pk (x)

I ∀P ψ

by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

2

1

0

0 1

0 1

0 1

P:

P

P

P

0 1 2 3
:

:

:
Replace every:

I ∀x ψ(x) by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2 by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2

I P(x + k)

by Pk (x)

I ∀P ψ

by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

2

1

0

0 1

0 1

0 1

P:

P

P

P

0 1 2 3
:

:

:
Replace every:

I ∀x ψ(x) by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2 by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2
I P(x + k)

by Pk (x)
I ∀P ψ

by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

2

1

0

0 1

0 1

0 1

P:

P

P

P

0 1 2 3
:

:

:
Replace every:

I ∀x ψ(x) by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2 by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2
I P(x + k) by Pk (x)

I ∀P ψ

by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

2

1

0

0 1

0 1

0 1

P:

P

P

P

0 1 2 3
:

:

:
Replace every:

I ∀x ψ(x) by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2 by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2
I P(x + k) by Pk (x)
I ∀P ψ

by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

2

1

0

0 1

0 1

0 1

P:

P

P

P

0 1 2 3
:

:

:
Replace every:

I ∀x ψ(x) by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2 by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2
I P(x + k) by Pk (x)
I ∀P ψ by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

From MSO(<,+1) to MSO(<)

2

1

0

0 1

0 1

0 1

P:

P

P

P

0 1 2 3
:

:

:
Replace every:

I ∀x ψ(x) by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2 by


x < y if k1 = k2

true if k1 < k2

false if k1 > k2
I P(x + k) by Pk (x)
I ∀P ψ by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

The Time-Bounded Theory: Expressiveness

FO(<) LTL

MSO(<)

MSO(<,+1)

FO(<,+1) MTL

automata
timed

automata

The Time-Bounded Theory: Expressiveness

FO(<) LTL

MSO(<)

MSO(<,+1)

FO(<,+1) MTL

automata
timed

automata

The Time-Bounded Theory: Expressiveness

FO(<) LTL

MSO(<)

MSO(<,+1)

FO(<,+1) MTL

automata
timed

automata

The Time-Bounded Theory: Complexity

..

.

NLOGSPACE−complete
reachability

PSPACE−complete
LTL model checking

PSPACE−complete
language inclusion

MSO(<) model checking
NON−ELEMENTARY

FO(<) model checking
NON−ELEMENTARY

MSO(<,+1) model checking
NON−ELEMENTARY

FO(<,+1) model checking
NON−ELEMENTARY

MTL model checking
EXPSPACE−complete

language inclusion
2EXPSPACE−complete

reachability
PSPACE−complete

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE

Classical Theory Time−Bounded Theory

The Time-Bounded Theory: Complexity

..

.

NLOGSPACE−complete
reachability

PSPACE−complete
LTL model checking

PSPACE−complete
language inclusion reachability

PSPACE−complete

MSO(<) model checking
NON−ELEMENTARY

FO(<) model checking
NON−ELEMENTARY

MSO(<,+1) model checking
NON−ELEMENTARY

FO(<,+1) model checking
NON−ELEMENTARY

MTL model checking
EXPSPACE−complete

language inclusion
2EXPSPACE−complete

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE

Classical Theory Time−Bounded Theory

The Time-Bounded Theory: Complexity

..

.

NLOGSPACE−complete
reachability

PSPACE−complete
LTL model checking

PSPACE−complete
language inclusion reachability

PSPACE−complete

language inclusion
2EXPSPACE−complete

MSO(<) model checking
NON−ELEMENTARY

FO(<) model checking
NON−ELEMENTARY

MSO(<,+1) model checking
NON−ELEMENTARY

FO(<,+1) model checking
NON−ELEMENTARY

MTL model checking
EXPSPACE−complete

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE

Classical Theory Time−Bounded Theory

The Time-Bounded Theory: Complexity

..

.

NLOGSPACE−complete
reachability

PSPACE−complete
LTL model checking

PSPACE−complete
language inclusion

MTL model checking
EXPSPACE−complete

reachability
PSPACE−complete

language inclusion
2EXPSPACE−complete

MSO(<) model checking
NON−ELEMENTARY

FO(<) model checking
NON−ELEMENTARY

MSO(<,+1) model checking
NON−ELEMENTARY

FO(<,+1) model checking
NON−ELEMENTARY

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE

Classical Theory Time−Bounded Theory

The Time-Bounded Theory: Complexity

..

.

NLOGSPACE−complete
reachability

PSPACE−complete
LTL model checking

PSPACE−complete
language inclusion

MTL model checking
EXPSPACE−complete

reachability
PSPACE−complete

language inclusion
2EXPSPACE−complete

MSO(<) model checking
NON−ELEMENTARY

FO(<) model checking
NON−ELEMENTARY

FO(<,+1) model checking
NON−ELEMENTARY

MSO(<,+1) model checking
NON−ELEMENTARY

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE

Classical Theory Time−Bounded Theory

The Time-Bounded Theory: Complexity

..

.

NLOGSPACE−complete
reachability

PSPACE−complete
LTL model checking

PSPACE−complete
language inclusion

MTL model checking
EXPSPACE−complete

reachability
PSPACE−complete

language inclusion
2EXPSPACE−complete

MSO(<,+1) model checking
NON−ELEMENTARY

MSO(<) model checking
NON−ELEMENTARY

FO(<) model checking
NON−ELEMENTARY

FO(<,+1) model checking
NON−ELEMENTARY

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE

Classical Theory Time−Bounded Theory

Conclusion and Future Work

I For specifying and verifying real-time systems, the
time-bounded theory is much better behaved than the
real-time theory.

I Original motivation for this work was the time-bounded
language inclusion problem for timed automata.
We used logic as a tool to solve this problem.

Future work:

I Timed alternating automata
I Data complexity
I Time-bounded reachability for hybrid systems
I Expressiveness issues
I Implementation

Conclusion and Future Work

I For specifying and verifying real-time systems, the
time-bounded theory is much better behaved than the
real-time theory.

I Original motivation for this work was the time-bounded
language inclusion problem for timed automata.
We used logic as a tool to solve this problem.

Future work:

I Timed alternating automata
I Data complexity
I Time-bounded reachability for hybrid systems
I Expressiveness issues
I Implementation

Conclusion and Future Work

I For specifying and verifying real-time systems, the
time-bounded theory is much better behaved than the
real-time theory.

I Original motivation for this work was the time-bounded
language inclusion problem for timed automata.
We used logic as a tool to solve this problem.

Future work:

I Timed alternating automata
I Data complexity
I Time-bounded reachability for hybrid systems
I Expressiveness issues
I Implementation

