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I Note: focus on linear time (as opposed to branching time).
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Specification and Verification

Assume the system is modelled by an automaton M.

The specification can be given by:

I A Linear Temporal Logic (LTL) formula θ.

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ | ©θ | ♦θ | �θ | θ1 U θ2

For example, �(REQ → ♦ACK ).

Verification is then model checking: M |= θ ?

I A First-Order Logic (FO(<)) formula ϕ.

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example, ∀x (REQ(x) → ∃y (x < y ∧ ACK (y))).
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Another Example

‘P holds at every even position
(and may or may not hold at odd positions)’

P P

I It turns out it is impossible to capture this requirement
using LTL or FO(<).

I LTL and FO(<) can however capture the specification:
‘Q holds precisely at even positions’:

Q ∧�(Q →©¬Q) ∧�(¬Q →©Q)

I So one way to capture the original specification would be to
write: ‘Q holds precisely at even positions and �(Q → P)’.

I Finally, need to existentially quantify Q out:

∃Q (Q holds precisely at even positions and � (Q → P))
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More Specification and Verification

Monadic Second-Order Logic (MSO(<)):

ϕ ::= x < y | P(x) | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ¬ϕ | ∀x ϕ | ∃x ϕ | ∀P ϕ | ∃P ϕ

Theorem (Büchi 1960)
Any MSO(<) formula ϕ can be effectively translated into an
equivalent automaton Aϕ.

Corollary (Church 1960)
The model-checking problem for automata against MSO(<)
specifications is decidable:

M |= ϕ iff L(M) ∩ L(A¬ϕ) = ∅
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Complexity and Equivalence

In fact:

Theorem (Stockmeyer 1974)
FO(<) satisfiability has non-elementary complexity.

Theorem (Kamp 1968;
Gabbay, Pnueli, Shelah, Stavi 1980)
LTL and FO(<) have precisely the same expressive power.

But amazingly:

Theorem (Sistla & Clarke 1982)
LTL satisfiability and model checking are PSPACE-complete.
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“The paradigmatic idea of
the automata-theoretic
approach to verification is
that we can compile
high-level logical
specifications into an
equivalent low-level
finite-state formalism.”

Moshe Vardi

Theorem
Automata are closed under all Boolean operations. Moreover,
the language inclusion problem ( L(A) ⊆ L(B) ?) is
PSPACE-complete.
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[. . . ] When power is applied, a single ‘1’ bit is loaded into the first stage of both the
minutes and hours registers. To accomplish this, a momentary low reset signal is sent
to all the registers (at pin 9) and also a NAND gate to lock out any clock transitions at
pin 8 of the minutes registers. At the same time, a high level is applied to the data input
lines of both minutes and hours registers at pin 1. A single positive going clock pulse is
generated at the end of the reset signal which loads a high level into the first stage of
the minutes register. The rising edge of first stage output at pin 3 advances the hours
and a single bit is also loaded into the hours register. Power should remain off for 3
seconds before being re-applied to allow the filter and timing capacitors to discharge.
[. . . ]

(Bill Bowden, www.circuitdb.com/circuits/id/98 )
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Timed Systems

Timed systems occur in:

I Hardware circuits
I Communication protocols
I Cell phones
I Plant controllers
I Aircraft navigation systems
I . . .

In many instances, it is crucial to accurately model the timed
behaviour of the system.
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From Qualitative to Quantitative

“Lift the classical theory
to the real-time world.”

Boris Trakhtenbrot, LICS 1995
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Timed Automata

Timed automata were introduced by Rajeev Alur at Stanford
during his PhD thesis under David Dill:

I Rajeev Alur, David L. Dill: Automata For Modeling
Real-Time Systems. ICALP 1990: 322-335

I Rajeev Alur, David L. Dill: A Theory of Timed Automata.
TCS 126(2): 183-235, 1994



Timed Automata

Time is modelled as the non-negative reals, R≥0.

Theorem (Alur, Courcourbetis, Dill 1990)
Reachability is decidable, in fact PSPACE-complete.

Unfortunately:

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.
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Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ∼1990]
is a central quantitative specification formalism for timed
systems.

I MTL = LTL + timing constraints on operators:

�(PEDAL → ♦[5,10] BRAKE)

I Widely cited and used (over seven hundred papers
according to scholar.google.com !).

Unfortunately:

Theorem (Alur & Henzinger 1992)
MTL satisfiability and model checking are undecidable over R≥0.
(Decidable but non-primitive recursive under certain semantic
restrictions [Ouaknine & Worrell 2005].)
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Metric Predicate Logic
The first-order metric logic of order (FO(<,+1)) extends FO(<)
by the unary function ‘+1’.

For example, �(PEDAL → ♦[5,10] BRAKE) becomes

∀x (PEDAL(x) → ∃y (x + 5 ≤ y ≤ x + 10 ∧ BRAKE(y)))

Theorem (Hirshfeld & Rabinovich 2007)
FO(<,+1) is strictly more expressive than MTL over R≥0.

Corollary: FO(<,+1) and MSO(<,+1) satisfiability and model
checking are undecidable over R≥0.
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Key Stumbling Block

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.



Timed Language Inclusion: Some Related Work

I Topological restrictions and digitization techniques:
[Henzinger, Manna, Pnueli 1992], [Bošnački 1999],
[Ouaknine & Worrell 2003]

I Fuzzy semantics / noise-based techniques:
[Maass & Orponen 1996],
[Gupta, Henzinger, Jagadeesan 1997],
[Fränzle 1999], [Henzinger & Raskin 2000], [Puri 2000],
[Asarin & Bouajjani 2001], [Ouaknine & Worrell 2003],
[Alur, La Torre, Madhusudan 2005]

I Determinisable subclasses of timed automata:
[Alur & Henzinger 1992], [Alur, Fix, Henzinger 1994],
[Wilke 1996], [Raskin 1999]

I Timed simulation relations and homomorphisms:
[Lynch et al. 1992], [Taşiran et al. 1996],
[Kaynar, Lynch, Segala, Vaandrager 2003]

I Restrictions on the number of clocks:
[Ouaknine & Worrell 2004], [Emmi & Majumdar 2006]
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Time-Bounded Language Inclusion

TIME-BOUNDED LANGUAGE INCLUSION PROBLEM

Instance: Timed automata A, B, and time bound T ∈ N
Question: Is LT (A) ⊆ LT (B) ?

I Inspired by Bounded Model Checking.
I Timed systems often have time bounds (e.g. timeouts),

even if total number of actions is potentially unbounded.
I Universe’s lifetime is believed to be bounded anyway. . .
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Timed Automata and Metric Logics

I Unfortunately, timed automata cannot be complemented
even over bounded time. . .

I Key to solution is to translate problem into logic:
Behaviours of timed automata can be captured in MSO(<,+1)
(in fact, even in ∃MTL [Henzinger, Raskin, Schobbens 1998]).

I This reverses Vardi’s ‘automata-theoretic approach to
verification’ paradigm!
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Monadic Second-Order Logic

More problems:

Theorem (Shelah 1975)
MSO(<) is undecidable over [0,1).

By contrast,

Theorem

I MSO(<) is decidable over N [Büchi 1960]
I MSO(<) is decidable over Q, via [Rabin 1969]
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Finite Variability
Timed behaviours are modelled as flows (or signals):

f : [0,T ) → 2MP

P:

Q:

R:

0 1 2 3 4 5
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Predicates must have finite variability:

Disallow e.g. Q:

0 1 2 3 4 5
P:

Then:

Theorem (Rabinovich 2002)
MSO(<) satisfiability over finitely-variable flows is decidable.
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The Time-Bounded Theory of Verification

Theorem
For any fixed bounded time domain [0,T ), the satisfiability and
model-checking problems for MSO(<,+1), FO(<,+1), and MTL
are all decidable, with the following complexities:

MSO(<,+1) NON-ELEMENTARY

FO(<,+1) NON-ELEMENTARY

MTL EXPSPACE-complete

Theorem
MTL and FO(<,+1) are equally expressive over any fixed
bounded time domain [0,T ).

Theorem
Given timed automata A, B, and time bound T ∈ N, the
language inclusion problem LT (A) ⊆ LT (B) is decidable and
2EXPSPACE-complete.
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Time-Bounded Language Inclusion

I Let timed automata A, B, and time bound T be given.

I Define formula ϕacc
A (W,P) in MSO(<,+1) such that:

A accepts timed word w ⇐⇒ ϕacc
A (W,P) holds

where
I W encodes w
I P encodes a corresponding run of A.

I Define likewise ϕacc
B (W,Q) for timed automaton B.

I Then LT (A) ⊆ LT (B) iff:

∀W∀P (ϕacc
A (W,P) → ∃Qϕacc

B (W,Q))

holds over time domain [0,T ).
I This can be decided in 2EXPSPACE.



Time-Bounded Language Inclusion

I Let timed automata A, B, and time bound T be given.
I Define formula ϕacc

A (W,P) in MSO(<,+1) such that:

A accepts timed word w ⇐⇒ ϕacc
A (W,P) holds

where
I W encodes w
I P encodes a corresponding run of A.

I Define likewise ϕacc
B (W,Q) for timed automaton B.

I Then LT (A) ⊆ LT (B) iff:

∀W∀P (ϕacc
A (W,P) → ∃Qϕacc

B (W,Q))

holds over time domain [0,T ).
I This can be decided in 2EXPSPACE.



Time-Bounded Language Inclusion

I Let timed automata A, B, and time bound T be given.
I Define formula ϕacc

A (W,P) in MSO(<,+1) such that:

A accepts timed word w ⇐⇒ ϕacc
A (W,P) holds

where
I W encodes w
I P encodes a corresponding run of A.

I Define likewise ϕacc
B (W,Q) for timed automaton B.

I Then LT (A) ⊆ LT (B) iff:

∀W∀P (ϕacc
A (W,P) → ∃Qϕacc

B (W,Q))

holds over time domain [0,T ).
I This can be decided in 2EXPSPACE.



Time-Bounded Language Inclusion

I Let timed automata A, B, and time bound T be given.
I Define formula ϕacc

A (W,P) in MSO(<,+1) such that:

A accepts timed word w ⇐⇒ ϕacc
A (W,P) holds

where
I W encodes w
I P encodes a corresponding run of A.

I Define likewise ϕacc
B (W,Q) for timed automaton B.

I Then LT (A) ⊆ LT (B) iff:

∀W∀P (ϕacc
A (W,P) → ∃Qϕacc

B (W,Q))

holds over time domain [0,T ).
I This can be decided in 2EXPSPACE.



Time-Bounded Language Inclusion

I Let timed automata A, B, and time bound T be given.
I Define formula ϕacc

A (W,P) in MSO(<,+1) such that:

A accepts timed word w ⇐⇒ ϕacc
A (W,P) holds

where
I W encodes w
I P encodes a corresponding run of A.

I Define likewise ϕacc
B (W,Q) for timed automaton B.

I Then LT (A) ⊆ LT (B) iff:

∀W∀P (ϕacc
A (W,P) → ∃Qϕacc

B (W,Q))

holds over time domain [0,T ).

I This can be decided in 2EXPSPACE.



Time-Bounded Language Inclusion

I Let timed automata A, B, and time bound T be given.
I Define formula ϕacc

A (W,P) in MSO(<,+1) such that:

A accepts timed word w ⇐⇒ ϕacc
A (W,P) holds

where
I W encodes w
I P encodes a corresponding run of A.

I Define likewise ϕacc
B (W,Q) for timed automaton B.

I Then LT (A) ⊆ LT (B) iff:

∀W∀P (ϕacc
A (W,P) → ∃Qϕacc

B (W,Q))

holds over time domain [0,T ).
I This can be decided in 2EXPSPACE.



MSO(<,+1) Time-Bounded Satisfiability

Key idea: eliminate the metric by ‘vertical stacking’.

I Let ϕ be an MSO(<,+1) formula and let T ∈ N.
I Construct an MSO(<) formula ϕ such that:

ϕ is satisfiable over [0,T ) ⇐⇒ ϕ is satisfiable over [0,1)

I Conclude by invoking decidability of MSO(<).
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We used logic as a tool to solve this problem.
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I Timed alternating automata
I Data complexity
I Time-bounded reachability for hybrid systems
I Expressiveness issues
I Implementation



Conclusion and Future Work

I For specifying and verifying real-time systems, the
time-bounded theory is much better behaved than the
real-time theory.

I Original motivation for this work was the time-bounded
language inclusion problem for timed automata.
We used logic as a tool to solve this problem.

Future work:

I Timed alternating automata
I Data complexity
I Time-bounded reachability for hybrid systems
I Expressiveness issues
I Implementation



Conclusion and Future Work

I For specifying and verifying real-time systems, the
time-bounded theory is much better behaved than the
real-time theory.

I Original motivation for this work was the time-bounded
language inclusion problem for timed automata.
We used logic as a tool to solve this problem.

Future work:

I Timed alternating automata
I Data complexity
I Time-bounded reachability for hybrid systems
I Expressiveness issues
I Implementation


