Weighted Automata and Concurrency

Akash Lal Microsoft Research, India

Tayssir Touili, Nicholas Kidd and Tom Reps

ACTS II, Chennai Mathematical Institute

A finite-state machine with weights

- A normal FSM: word → Bool
- Weighted Automata: word → Weight

Outline

- Define weights and weighted automata
- Intersecting weighted automata
- Application
 - Generalizes to composition of weighted transducers
 - Context-Bounded Analysis: Interprocedural dataflow analysis of concurrent programs, under a bound on the number of context switches

Earlier talks

What are Weights?

- Weights == Dataflow transformers
 - Technically, they are elements of a semiring

Semiring	Dataflow Analysis
D : set of weights	DataFacts → DataFacts
⊗ : extend	Compose (extends paths)
$D \times D \rightarrow D$	$\tau_1 \otimes \tau_2 = \tau_2 \circ \tau_1$
⊕ : combine	Meet (combines paths)
$D \times D \rightarrow D$	$\tau_1 \oplus \tau_2 = \lambda d. \ \tau_1(d) \sqcap \tau_2(d)$

Definition 2. A bounded idempotent semiring (or "weight domain") is a tuple $(D, \oplus, \otimes, \overline{0}, \overline{1})$, where D is a set of weights, $\overline{0}, \overline{1} \in D$, and \oplus (combine) and \otimes (extend) are binary operators on D such that

- (D,⊕) is a commutative monoid with 0 as its neutral element, and where ⊕
 is idempotent. (D,⊗) is a monoid with the neutral element 1.
- 2. \otimes distributes over \oplus , i.e., for all $a, b, c \in D$ we have $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$ and $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$.
- 3. $\overline{0}$ is an annihilator with respect to \otimes , i.e., for all $a \in D$, $a \otimes \overline{0} = \overline{0} = \overline{0} \otimes a$.

Note: extend need not be commutative

- A: word \rightarrow D
- A(s) = combine of weights of all accepting paths for s
- A(s) = \bigoplus { $v(\sigma) \mid \sigma$ is an accepting path for s }

• A(s) = \bigoplus { $v(\sigma) \mid \sigma$ is an accepting path for s }

А	A(s)
(Bool, ⊗ is conj, ⊕ is disj) "true" on all edges	True iff s is accepted
(Nat, ⊗ is plus, ⊕ is min)"1" on all edges	Length of shortest accepting path
(Distributive) Dataflow Analysis	Meet-Over-All-(accepting)-Paths

A(T) = ⊕ { v(σ) | σ is an accepting path for s ∈ T }
 ⊕ { A(s) | s ∈ T }

Computing A(T)

$$A(ab*c) = \bigoplus_{i} \{ w_{1} \otimes w_{2}^{i} \otimes w_{3} \}$$
$$= w_{1} \otimes (\bigoplus_{i} w_{2}^{i}) \otimes w_{3}$$

$$A(ab*c) = (w_1 . w_2* . w_3)$$

$$x . y = x \otimes y$$

$$x* = (\bigoplus_i x^i)$$

$$(x \mid y) = x \oplus y$$

Weight domain properties:

- Distributivity: $x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z)$
- Boundedness: All iterations x* converge

- Given A_1 and A_2 , construct A_3 such that for all s, $A_3(s) = A_1(s) \otimes A_2(s)$
- If weight domain is (Bool, ⊗ is conj, ⊕ is disj) then
 - $A_3 = (A_1 \cap A_2)$

• $A_3(s) = A_1(s) \otimes A_2(s)$

$$A_3(T) = \bigoplus \{ A_3(s) \mid s \in T \}$$

$$= \bigoplus \{ A_1(s) \otimes A_2(s) \mid s \in T \}$$

$$\ddagger A_1(T) \otimes A_2(T)$$

Given a regular set T, $\{(s s) \mid s \in T\}$ is not regular

• $\forall s, A_3(s) = A_1(s) \otimes A_2(s)$

• $\forall s, A_3(s) = A_1(s) \otimes A_2(s)$

Tensor Product

• Given semiring (D, \otimes, \oplus) , construct a new semiring (D_T, \otimes, \oplus) to represent pairs of weights from D

Tensor: $D \times D \to D_T$ DeTensor: $D_T \to D$

- 1. Tensor(w_1, w_2) \otimes Tensor(w_3, w_4) = Tensor($w_1 \otimes w_3, w_2 \otimes w_4$)
- 2. DeTensor(Tensor(w_1, w_2)) = $w_1 \otimes w_2$
- 3. $DeTensor(W_1 \oplus W_2) = DeTensor(W_1) \oplus DeTensor(W_2)$

Note that D_T can be much bigger than $D \times D$

• $\forall s, A_3(s) = A_1(s) \otimes A_2(s)$

 $\mathsf{A_3(abc)} = (\mathsf{w_1} \, \otimes \, \mathsf{w_2} \, \otimes \, \mathsf{w_3} \, \otimes \, \mathsf{u_1} \, \otimes \, \mathsf{u_2} \, \otimes \, \mathsf{u_3})$

$$A_3(abc) = (w_1 \otimes w_2 \otimes w_3 \otimes u_1 \otimes u_2 \otimes u_3)$$

Tensor(
$$w_1, w_2$$
) \otimes Tensor(w_3, w_4) = Tensor($w_1 \otimes w_3, w_2 \otimes w_4$)

DeTensor(Tensor(
$$w_1, w_2$$
)) = $w_1 \otimes w_2$

Tensor(
$$w_1, w_2$$
) \otimes Tensor(w_3, w_4) = Tensor($w_1 \otimes w_3, w_2 \otimes w_4$)

DeTensor(Tensor(
$$w_1, w_2$$
)) = $w_1 \otimes w_2$
DeTensor($W_1 \oplus W_2$) = DeTensor(W_1) \oplus DeTensor(W_2)

```
<u>Theorem</u>: For any set of words T,

DeTensor(A_3(T)) = \bigoplus \{A_1(s) \otimes A_2(s) \mid s \in T \}
```

```
DeTensor( \bigoplus { A<sub>3</sub>(s) | s ∈ T } ) =

\bigoplus { DeTensor( A<sub>3</sub>(s) ) | s ∈ T } =

\bigoplus { DeTensor(Tensor(A<sub>1</sub>(s),A<sub>2</sub>(s)) ) | s ∈ T } =

\bigoplus {A<sub>1</sub>(s) \bigotimes A<sub>2</sub>(s) | s ∈ T }
```

Tensors

- Tensors are good, but do they exist?
 - Yes!
- If (D, \otimes) is commutative:
 - Then $D_T = D$, Tensor $(w_1, w_2) = w_1 \otimes w_2$, DeTensor is identity
- If D is the set of matrices over a commutative domain
 - Extend is matrix multiplication, combine is point-wise
 - Tensor is Kronecker product

Tensors

• Kronecker product

a ₁	a_2
a_3	a_4

b ₁	b ₂
b ₃	b_4

a ₁ b ₁	a_1b_2	a ₂ b ₁	a ₂ b ₂
a₁b₃	a₁b₄	a ₂ b ₃	a ₂ b ₄
a ₃ b ₁	a ₃ b ₂	a ₄ b ₁	a ₄ b ₂
a ₃ b ₃	a ₃ b ₄	a ₄ b ₃	a ₄ b ₄

DeTensor

$a_1b_1 + a_2b_3$	$a_1b_2 + a_2b_4$
$a_3b_1 + a_4b_3$	$a_3b_2 + a_4b_4$

Tensors

- D is the set of matrices over a commutative domain
 - Finite relations (matrices over Booleans)
 - Affine relations (matrices over integers)
- Q: Does tensor product exist for all (bounded idempotent) semirings?

Part II: Context-Bounded Analysis

Tensors and Concurrency

Tensors give the necessary shuffling for interleaved executions

Application: Context-Bounded Analysis

- Context Bounded Analysis: interprocedural analysis of concurrent programs under a bound the number of context switches
- Weighted Pushdown System: A PDS with weights on rules.
 - Natural model for recursive programs
- Theorem: If all threads are modeled using WPDSs, and the weight domain has a tensor product, then for any bound K, one can precisely compute MOP.
 - Can solve reachability previsely
 - Can solve dataflow analysis precisely

Context-bounded analysis

Abstract model

$$G \times L_1 \times L_2 \times ... \times L_n$$

Context-bounded analysis

Transition Systems

Transition system for an execution context

$$\Rightarrow$$
^c equals $\Rightarrow_{T_1}^* U \Rightarrow_{T_2}^* U \dots U \Rightarrow_{T_n}^*$

Context-bounded analysis

• Want to check reachability in the transition system:

- In interprocedural analysis
 - Procedure re-analyzed for each input
 - Instead, one can build a summary
- We create a summary of an entire thread
 - Mapping starting states (input) to reachable states (output)
- Transducers: FSMs with an input and a output tape

Reachability in a PDS can be modeled using a transducer
 [Caucal '92]

$$(g_1, l_1) \rightarrow_T^* (g_2, l_2) \text{ iff } ((g_1, l_1), (g_2, l_2)) \in L(\tau)$$

Advantage: transducers can be composed

$$(r_1,r_2) \in L(\tau_1)$$
 and $(r_2,r_3) \in L(\tau_2)$ then $(r_1,r_3) \in L(\tau_1;\tau_2)$

For:	Construct:
$(g,l_i) \rightarrow_{Ti}^* (g',l_i')$	$ au_{ extbf{i}}$
$(g, l_1,, l_i,, l_n) \Rightarrow_{Ti}^*$ $(g', l_1,, l_i',, l_n)$	$ au_{ extbf{i}}^{ ext{e}}$
\Rightarrow ^c equals \Rightarrow_{T1} * U U \Rightarrow_{Tn} *	$\tau_c = \tau_1^e U \tau_2^e U \dots U \tau_n^e$
$\Rightarrow^{c} \dots \Rightarrow^{c} \Rightarrow^{c}$	τ_c ;; τ_c ; τ_c

- Context-bounded analysis reduces into a membership query on a transducer
- We'll extend these results to Weighted PDSs
 - Constructing weighted transducers
 - Composing weighted transducers
- Weighted Transducer: Given an input word s_1 , the transducer can write s_2 with a weight w (combine over all paths that write s_2)

$$-\tau(s_1,s_2) = w$$

For:	Construct:
$(g,l_i) \rightarrow_{Ti}^* (g',l_i')$	τ _i [TACAS'08]
$(g, l_1,, l_i,, l_n) \Rightarrow_{Ti}^*$ $(g', l_1,, l_i',, l_n)$	$ au_{ extbf{i}}^{ ext{e}}$
\Rightarrow ^c equals \Rightarrow_{T1} * U U \Rightarrow_{Tn} *	$\tau_c = \tau_1^e U \tau_2^e U \dots U \tau_n^e$
$\Rightarrow^{c} \dots \Rightarrow^{c} \Rightarrow^{c}$	τ_c ;; τ_c ; τ_c

34

How Thread Summarization Works

For a single thread:

$$-\tau_i(s_1,s_2)$$
 = Reachable(s_1,s_2)

$$-\tau_{i}(s_{1},s_{2}) = MOP(s_{1},s_{2})$$

Definition of composition

$$- \tau_3(s_1,s_2) = \vee_s \{ \tau_1(s_1,s) \wedge \tau_2(s,s_2) \}$$

$$- \tau_3(s_1,s_2) = \bigoplus_s \{ \tau_1(s_1,s) \otimes \tau_2(s,s_2) \}$$

• Consider the path:

$$-\underbrace{(g_{1},l_{1},l_{2})}_{S_{1}} \rightarrow_{T_{1}}^{*} \underbrace{(g_{2},l_{1},l_{2})}_{S_{2}} \rightarrow_{T_{2}}^{*} \underbrace{(g_{3},l_{1},l_{2})}_{S_{2}}$$

$$MOP(s_{1},s_{2}) = \oplus_{s} \qquad \tau_{1}(s_{1},s) \qquad \otimes \qquad \tau_{2}(s,s_{2})$$

$$\tau_{3}(s_{1},s_{2})$$

Composing Transducers

• $\tau_3(s_1,s_2) = \bigoplus_s \{ \tau_1(s_1,s) \otimes \tau_2(s,s_2) \}$

ab
$$\rightarrow$$
 ef $w_1 \otimes w_2 \otimes w_3 \otimes w_4$
 $\oplus w_5 \otimes w_6 \otimes w_7 \otimes w_8$

Composing Transducers

• $\tau_3(s_1,s_2) = \bigoplus_s \{ \tau_1(s_1,s) \otimes \tau_2(s,s_2) \}$

Composing Transducers

• $\tau_3(s_1,s_2) = \bigoplus_s \{ \tau_1(s_1,s) \otimes \tau_2(s,s_2) \}$

Summary

- We gave an algorithm for intersecting weighted automata
 - Extend need not be commutative
 - Requires tensor product for "shuffling"
- Generalizes to transducer composition
- Solves Context-Bounded Analysis