Weighted Automata and Concurrency

Akash Lal

Microsoft Research, India

Tayssir Touili, Nicholas Kidd and Tom Reps

ACTS Il, Chennai Mathematical Institute

Weighted Automata

e A finite-state machine with weights

abC W1®W2®W3

e A normal FSM: word — Bool
e Weighted Automata: word — Weight

Outline

e Define weights and weighted automata
e [ntersecting weighted automata
e Application
— Generalizes to composition of weighted
transducers

— Context-Bounded Analysis: Interprocedural
dataflow analysis of concurrent programs, under
a bound on the number of context switches

Earlier talks

What are Weights?

e Weights == Dataflow transformers
— Technically, they are elements of a semiring

Semiring Dataflow Analysis

D : set of weights | DataFacts — DataFacts

& : extend Compose (extends paths)

DxD—D T, 81T,=T,01,

@ : combine Meet (combines paths)

DxD—D T, ® 1, =Ad. T,(d) N 1,(d)
Wise M2 50 Y3 (W, @ W, @ Wy)

M ® (W, @ Ws)

Weighted Automata

Definition 2. A bounded idempotent semiring (or “weight domain”) is a
tuple (D, ®,®,0,1), where D is a set of weights, 0,1 € D, and © (combine)
and @ (extend) are binary operators on D such that

1. (D,®) is a commutative monoid with 0 as its neutral element, and where &
is idempotent. (D, ®) is a monoid with the neutral element 1.
2. & distributes over &, i.e., for all a,b,c € D we have
a®(bdc)=(a Eb} a@c}and(a—;b]&@c—(@c)d(bxc).

3. 0 is an annihilator with respect to @, i.e., forallac D, a®0=0=0® a.
4. In the partial order C defined by Va,b € D‘ aC b iffad b= a, there are no

infinite descending chains.

Note: extend need not be commutative

Weighted Automata

e A:word > D

e A(s) = combine of weights of all accepting paths
fors

e A(s) =@ {v(o) | oisan accepting path for s }

Weighted Automata

e A(s)= {v(o) | oisan accepting path for s}

A

A(s)

(Bool, ® is conj, @ is disj)
“true” on all edges

True iff s is accepted

(Nat, @ is plus, @ is min)
“1” on all edges

Length of shortest accepting path

(Distributive) Dataflow Analysis

Meet-Over-All-(accepting)-Paths

e A(T)=® {v(o) | ois an accepting path fors e T}

D{Als) [seT}

Weighted Automata

e Computing A(T)
A(ab*c)=D. {w; ® w, @ w,}
=w; ® (B;w,) ® ws,

A(ab*c) = (w, . w,* . wy)

X.Yy=XQvY
x* = (B, x))
(X|y)=xDy

Weight domain properties:
* Distributivity: x @ (y® z) = (x ® y) D (x ® z)
* Boundedness: All iterations x* converge

Weighted Automata Intersection

e Given A, and A,, construct A; such that for all s,
As(s) = A (s) ® A,(s)

e |f weight domain is (Bool, ® is conj, @ is disj) then
- A;=(A;NA))

11

Weighted Automata Intersection

o A, (s) =A(s) ® A,ls)

As(T) =D {As(s) | seT}
=®{A1(S)®A2(S) | SET}
T ALT) @ Ay(T)

Given aregularsetT, {(ss) | s € T}is not regular

12

Weighted Automata Intersection

o Vs, As(s) =A(s) ® A,(s)

As(abc) = (W; @ W, @ W; @ U; ® U, @ Uy)

13

Weighted Automata Intersection

o Vs, As(s) =A(s) ® A,(s)

As(abc) = (W; @ W, @ W; @ U; ® U, @ Uy)

(Wi @ Uy @ W, ® U, ® W3 ® Us)

14

Tensor Product

e Given semiring (D, ®, @), construct a new semiring
(D;, ®, D) to represent pairs of weights from D

Tensor:DxD — D, DeTensor: D, — D

1. Tensor(w,,w,) ® Tensor(w,,w,) = Tensor(w, ® w;, w, ® w,)
2. DeTensor(Tensor(w,,w,)) =w; ® w,
3. DeTensor(W, @ W,) = DeTensor(W,) @© DeTensor(W,)

Note that D; can be much bigger than D x D

15

Weighted Automata Intersection

o Vs, Ay(s) = Ai(s) ® Ay(s)

As(abc) = (W; @ W, @ W; @ U; ® U, @ Uy)

16

Weighted Automata Intersection
Ag(abe) = (W @ W, @ W3 @ Uy ® U, @ Us)

T(wy,uq) @ T(Wy,U,) @ T(Ws,Usg)
= T(w; @ W, ® W, Uy ® U, ® Uj)

l DeTensor

(Wi @ W, @ W3 @ Uy ® Uy ® Us)

Tensor(w,,w,) @ Tensor(w,,w,) = Tensor(w; ® w,, w, @ w,)

DeTensor(Tensor(w,,w,)) =w; & w,

17

Weighted Automata Intersection

As({abc,de})= W, @wW, @ W;®U; ® U, @ U,)
D (W, ® ws ®u, ® Us)

T(Wy,Uy) @ T(Wp,Up) ® T(Ws,Us)
D T(Wy,Uy) ® T(W5,Us)

= T(W; @ W, ® W3, Uy @ U, @ Ug)
@ T(wy ® Ws, Uy ® Us)

l DeTensor

(Wi @ W, @ W3 ® Uy ® U, ® Us)
D (w, @wW: QU ® Ug)

Tensor(w,,w,) @ Tensor(w,,w,) = Tensor(w; ® w,, w, @ w,)

DeTensor(Tensor(w,,w,)) =w; & w,
DeTensor(W, © W,) = DeTensor(W,) © DeTensor(W,) 18

Weighted Automata Intersection

Theorem: For any set of words T,
DeTensor(A;(T)) =D {A(s) ® Ay(s) | s€T}

DeTensor(© {As(s) |seT})=

® { DeTensor(As(s)) |seT}=
® { DeTensor(Tensor(A,(s),A,(s))) |seT}=
® {A,(s) ® A,(s) |se T}

19

Tensors

e Tensors are good, but do they exist?

— Yes!

If (D, ®) is commutative:

— Then D; = D, Tensor(w,,w,) = w; ® w,, DeTensor is identity
If D is the set of matrices over a commutative domain
— Extend is matrix multiplication, combine is point-wise

— Tensor is Kronecker product

20

e Kronecker product

Tensors

a.b; ab, ab, | ab,
a,b; a.b, ab; | asb,
asb; asb, asb, | a4b,
asb; asb, ab; | azb,
l DeTensor
a.b,+aby | a;b,+asb,
asb, +a,by | asb, +a,b,

21

Tensors

e Disthe set of matrices over a commutative domain
— Finite relations (matrices over Booleans)

— Affine relations (matrices over integers)

e (Q: Does tensor product exist for all (bounded idempotent)
semirings?

22

Part ll: Context-Bounded Analysis

Tensors and Concurrency

Tensors give the necessary shuffling for interleaved executions

Thread 1 Thread 2
2 7 2
W) T 1 e O Towg 1. 1)
y.— °
Automataare | (¢ 4
requiredtodo |, > T(1, w,, 1) . " T, we, 1)
this for all pathsin | (7 5 , Wg,
the program | ¢ .
......... 7
ws> T(1, 1, ws) W T(1.1, w) [Comextboumd &

.. e

/ the arity of tensor
0 « e

) operation

Application: Context-Bounded Analysis

e Context Bounded Analysis: interprocedural analysis of
concurrent programs under a bound the number of
context switches

e Weighted Pushdown System: A PDS with weights on rules.

— Natural model for recursive programs

e Theorem: If all threads are modeled using WPDSs, and the
weight domain has a tensor product, then for any bound
K, one can precisely compute MOP.

— Can solve reachability previsely
— Can solve dataflow analysis precisely

25

Context-bounded analysis

e Abstract model

Shared Memory

r —

>

.
|

=)

|

GxLyxL,x...xL,

27

Context-bounded analysis

¢ Transition Systems

(g,1;) —u (8°,1;7)

[Shared Memory} (g1, 1iyey 1) =4 (87,14,.,17,.,1)

— /

)

e Transition system for an execution context

=>¢equals > *U="U ... U=>4"

28

Context-bounded analysis

e Want to check reachability in the transition system:

5\C —C —C —C =C

\ J
e

k+1 times

29

Thread Summarization

e |ninterprocedural analysis
— Procedure re-analyzed for each input

— Instead, one can build a summary

e We create a summary of an entire thread
— Mapping starting states (input) to reachable states (output)

e Transducers: FSMs with an input and a output tape

30

Thread Summarization

e Reachability in a PDS can be modeled using a transducer
[Caucal ‘92]

(81,1) =17 (8,,1,) iff ((81,11), (8,,1,)) € L(7)

ry: [glob,stack]
\
T

—
r,: [glob,stack]

e Advantage: transducers can be composed

(ry,r») € L(ty) and (r,,r3) € L(t,) then (ry,r3) € L(ty ; To)

31

Thread Summarization

For: Construct:
(8,1;) —»n* (8,1) T.
1
(85 Lisws Lisws 1p) =y 7,8
(g ,1,051 ,051))
=¢ equals T =

3 *
>,* U .. U =

=¢ .. ¢ =€

2

Thread Summarization

e Context-bounded analysis reduces into a membership
query on a transducer

o We'll extend these results to Weighted PDSs
— Constructing weighted transducers
— Composing weighted transducers

e Weighted Transducer: Given an input word s,, the
transducer can write s, with a weight w (combine over all
paths that write s,)

- T(S{,S,) = W

33

Thread Summarization

For: Construct:

(8,1;) —»n* (8,1) Ts

[TACAS’ 08]

(g ,11,..._, liJ"’J ln) le* T°e

(g,1,0,1,.,1)) 1

=¢ equals T, =

Znt U U =5 72U 5 U o U &E
=¢ ... ¢ =€ T DT T,

How Thread Summarization Works

e For asingle thread:
— Ti(s1,5,) = Reachable(s,,s,)
— Ti(sy,S,) = MOP(s,,s,)
e Definition of composition
— T3(54,5,) = V. { T,(51,5) A T,(s,5,) }

— T5(s1,S,) = O, { T4(51,5) ® T,5(s,5,) }
e Consider the path:
_ * 3 * J 3
\(81: 1,, 12)} —T11 \(32:11 :122 712 (\33:11 > 1, 2

Y Y Y
S S S
\1 AN 2
Y Y
MOP(S1,82) = @s T‘I(SDS) ® TZ(S’ 82)

T~(S4,S
3(S1,S5) 35

Composing Transducers

® T,(s4,5,) =D {T,(s1,5) ® T,(s,5,) }

ab - cd; w,®@w, cidi—ef w;®@w,
ab - c,d, Wz ® wg c.d, > ef w,® wg

ab > ef W, W, ®@w;® w,
D Wy Q@ Wg ® W, ® Wyg

36

Composing Transducers

® T,(s4,5,) =D {T,(s1,5) ® T,(s,5,) }

Composing Transducers

® T,(s4,5,) =D {T,(s1,5) ® T,(s,5,) }

T(wy @ wy, Wy @ Wy)
@ T(ws ® wg, W, ® Wy)

l DeTensor

D Wy Q@ Wg ® W, ® Wyg

38

Summary

e We gave an algorithm for intersecting weighted
automata

— Extend need not be commutative
— Requires tensor product for “shuffling”

e Generalizes to transducer composition
e Solves Context-Bounded Analysis

39

