Energy and Mean-payoff Games

Laurent Doyen LSV, ENS Cachan & CNRS

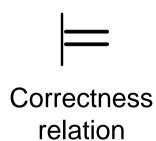
joint work with

Aldric Degorre, Raffaella Gentilini, Jean-François Raskin, Szymon Torunczyk

ACTS 2010, Chennai

Synthesis problem

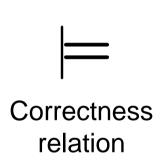
Specification



Synthesis problem

System - Model

Specification



avoid failure, ensure progress,

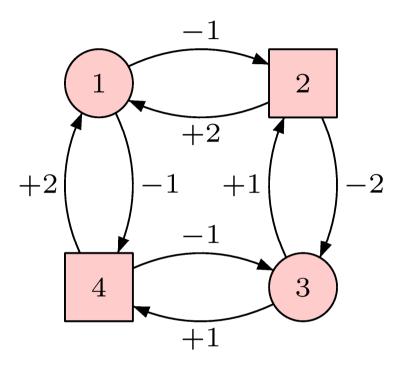
Solved as a game – system vs. environment

solution = winning strategy

This talk: quantitative games (resource-constrained systems)

Energy games (staying alive)

Energy games (CdAHS03,BFLM08)



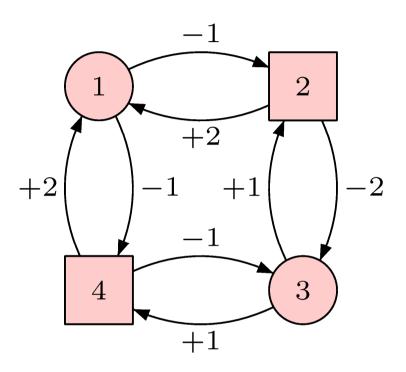
positive weight = reward

play: (1,4) (4,1) (1,4) (4,1) ...

weights: -1 +2 -1 +2 ...

energy level: **1** 0 2 1 3 2 4 3 ...

Energy games (CdAHS03,BFL+08)

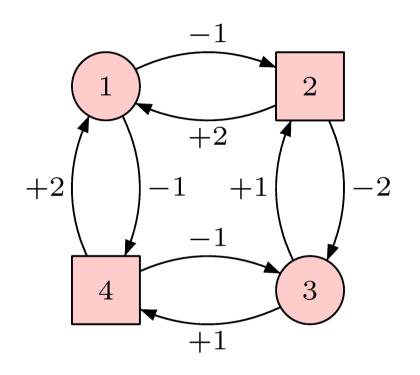


positive weight = reward

play: (1,4) (4,1) (1,4) (4,1) ...

weights: -1 +2 -1 +2 ...

energy level: 10 2 1 3 2 4 3 ...
Initial credit



Strategies:

Maximizer $\sigma: Q^* \cdot Q_{\circ} \to Q$

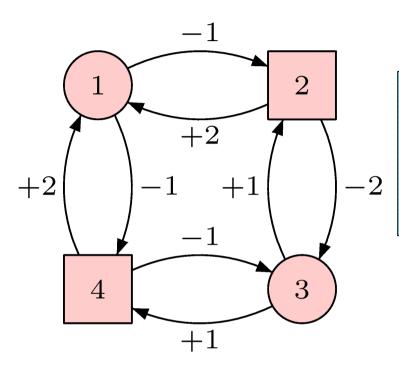
Minimizer $\pi: Q^* \cdot Q_{\square} \to Q$

play: outcome (q, σ, π)

Infinite sequence of edges consistent with strategies σ and π

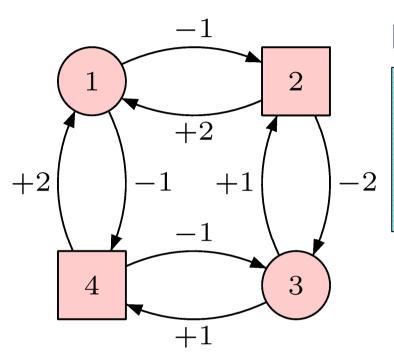
outcome is winning if:

$$> c_0 + \sum_{i=0}^{n-1} w_i \ge 0$$
 for all $n \ge 0$



Decision problem:

Decide if there exist an initial credit c_0 and a strategy of the maximizer to maintain the energy level always nonnegative.



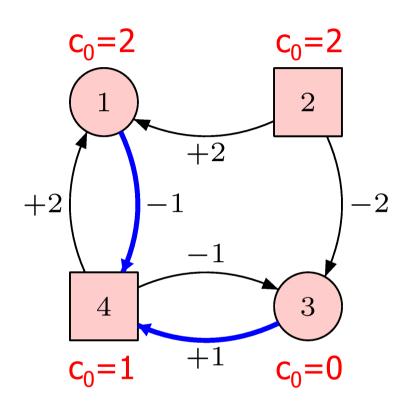
Decision problem:

Decide if there exist an initial credit co and a strategy of the maximizer to maintain the energy level always nonnegative.

For energy games, memoryless strategies suffice.

$$\sigma: Q_{\square} \to Q$$
$$\pi: Q_{\circ} \to Q$$

$$\pi:Q_{\circ}\to Q$$

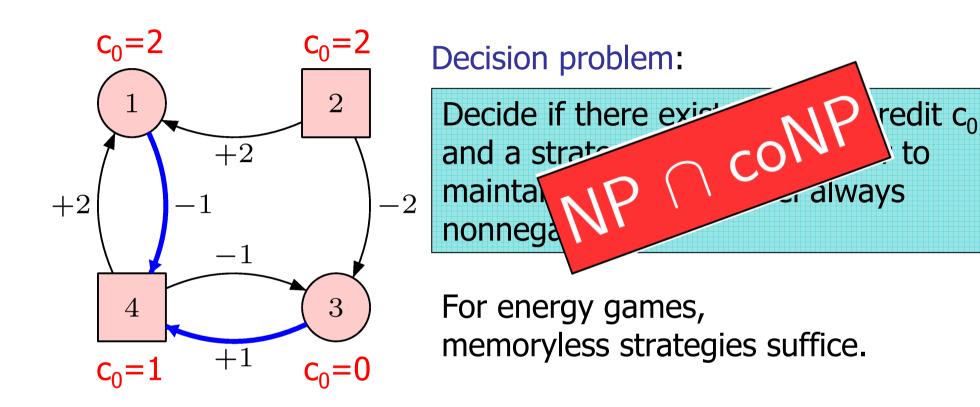


Decision problem:

Decide if there exist an initial credit c_0 and a strategy of the maximizer to maintain the energy level always nonnegative.

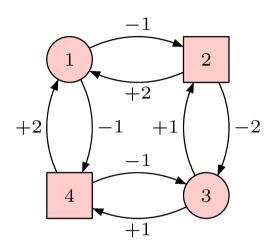
For energy games, memoryless strategies suffice.

A memoryless strategy σ is winning if all cycles are nonnegative when σ is fixed.

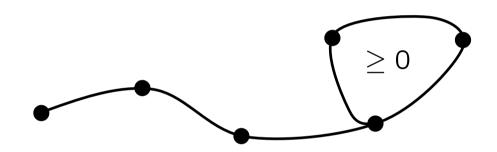


A memoryless strategy σ is winning if all cycles are nonnegative when σ is fixed.

Algorithm



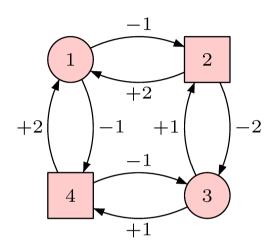
Initial credit is useful to survive before a cycle is formed



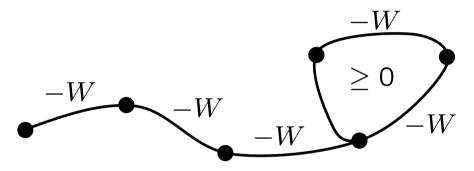
Length(AcyclicPath) ≤ Q

Q: #statesE: #edges

W: maximal weight



Initial credit is useful to survive before a cycle is formed



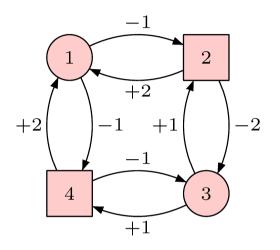
Length(AcyclicPath) ≤ Q

Q: #states

E: #edges

W: maximal weight

Minimum initial credit is at most Q'W



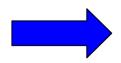
The minimum initial credit $v(\cdot)$ is such that:

in Maximizer state q:

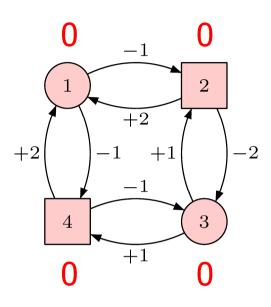
$$v(q) + w(q, q') \ge v(q')$$
 for some $(q, q') \in E$

in Minimizer state q:

$$v(q) + w(q, q') \ge v(q')$$
 for all $(q, q') \in E$

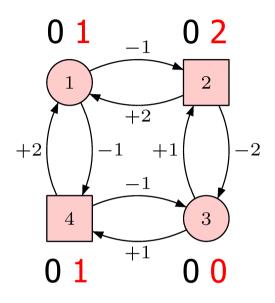


Compute successive under-approximations of the minimum initial credit.



Fixpoint algorithm:

- start with v(q) = 0



Fixpoint algorithm:

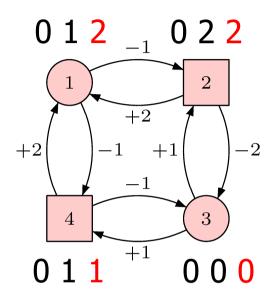
- start with v(q) = 0
- iterate

at Maximizer states:

$$v(q) \leftarrow \min\{v(q') - w(q, q') \mid (q, q') \in E\}$$

at Minimizer states:

$$v(q) \leftarrow \max\{v(q') - w(q, q') \mid (q, q') \in E\}$$



Fixpoint algorithm:

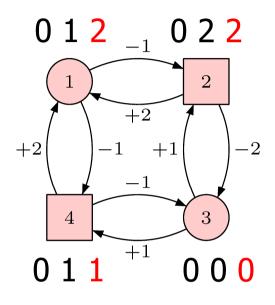
- start with v(q) = 0
- iterate

at Maximizer states:

$$v(q) \leftarrow \min\{v(q') - w(q, q') \mid (q, q') \in E\}$$

at Minimizer states:

$$v(q) \leftarrow \max\{v(q') - w(q, q') \mid (q, q') \in E\}$$



Fixpoint algorithm:

- start with v(q) = 0
- iterate

at Maximizer states:

$$v(q) \leftarrow \min\{v(q') - w(q, q') \mid (q, q') \in E\}$$

at Minimizer states:

$$v(q) \leftarrow \max\{v(q') - w(q, q') \mid (q, q') \in E\}$$

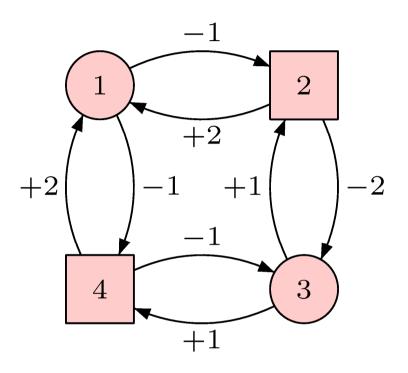
Termination argument: monotonic operators,

and finite codomain $v(q) \in \{0, 1, ..., Q \cdot W\}$

Complexity: O(E·Q·W)

Mean-payoff games

Mean-payoff games (EM79)

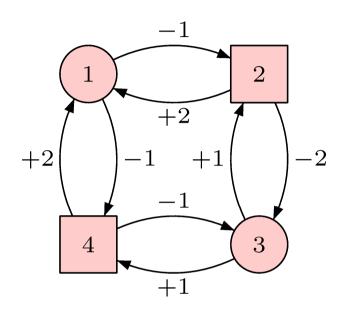


positive weight = reward

weights: -1 +2 -1 +2 ...

mean-payoff value:
$$\frac{1}{2}$$
 (limit of weight average)

Mean-payoff games (EM79)



Mean-payoff value:

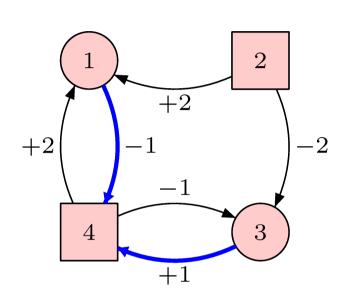
either
$$\liminf_{n\to\infty}\frac{1}{n}\cdot\sum_{i=0}^{n-1}w_i$$
 or $\limsup_{n\to\infty}\frac{1}{n}\cdot\sum_{i=0}^{n-1}w_i$

Decision problem:

Given a rational threshold ν , decide if there exists a strategy of the maximizer to ensure mean-payoff value at least ν .

Note: we can assume $\nu = 0$ e.g. by shifting all weights by ν .

Mean-payoff games



Mean-payoff value:

either
$$\liminf_{n\to\infty}\frac{1}{n}\cdot\sum_{i=0}^{n-1}w_i$$
 or $\limsup_{n\to\infty}\frac{1}{n}\cdot\sum_{i=0}^{n-1}w_i$

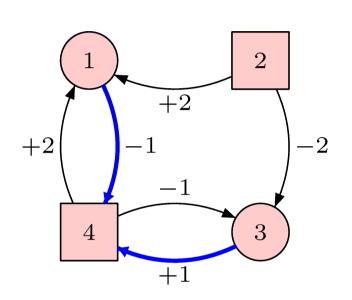
Decision problem:

Given a rational threshold ν , decide if there exists a strategy of the maximizer to ensure mean-payoff value at least ν .

Assuming $\nu = 0$

A memoryless strategy σ is winning if all cycles are nonnegative when σ is fixed.

Mean-payoff games



Mean-payoff value:

either
$$\liminf_{n\to\infty}\frac{1}{n}\cdot\sum_{i=0}^{n-1}w_i$$
 or $\limsup_{n\to\infty}\frac{1}{n}\cdot\sum_{i=0}^{n-1}w_i$

Decision problem:

Assuming $\nu = 0$

A memoryless strategy σ is winning if all cycles are nonnegative when σ is fixed.

Complexity

	Energy games	Mean-payoff games
Decision problem	O(E·Q·W)	O(E·Q·W) (this talk) O(E·Q²·W) [ZP96]

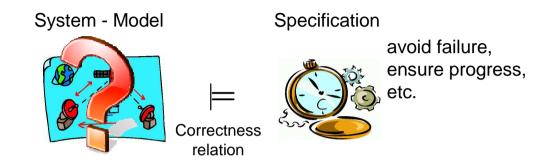
Deterministic Pseudo-polynomial algorithms

Outline

- ▶ Perfect information
 - Mean-payoff games
 - Energy games
 - Algorithms
- ► Imperfect information
 - Energy with fixed initial credit
 - Energy with unknown initial credit
 - Mean-payoff

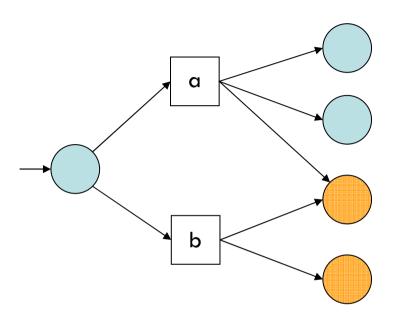
Imperfect information (staying alive in the dark)

Imperfect information – Why?



- Private variables/internal state
- Noisy sensors

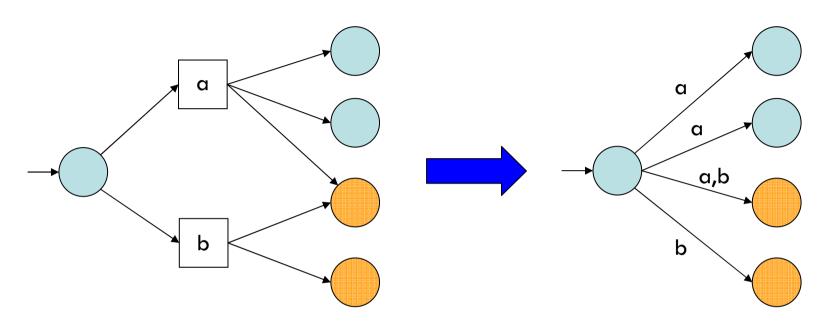
Imperfect information – How?



Coloring of the state space

observations = set of states with the same color

Imperfect information — How?

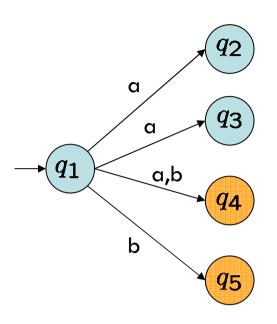


Maximizer states only

Playing the game:

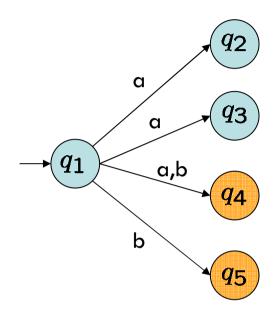
- 1. Maximizer chooses an action (a or b)
- 2. Minimizer chooses successor state (compatible with Maximizer's action)
- 3. The color of the next state is visible to Maximizer

Imperfect information – How?



Actions
$$\Sigma = \{a,b\}$$
 Observations
$$\mathsf{Obs} = \{\{q_1,q_2,q_3\},\{q_4,q_5\}\}$$

Imperfect information – How?



Observation-based strategies

$$\sigma: \mathsf{Obs}^+ \to \Sigma$$

Goal: all outcomes have

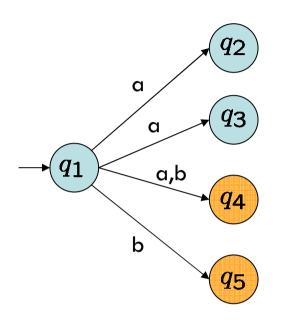
- nonnegative energy level,
- or nonnegative mean-payoff value

Actions
$$\Sigma = \{a,b\}$$
 Observations
$$\mathsf{Obs} = \{\{q_1,q_2,q_3\},\{q_4,q_5\}\}$$

Complexity

	Energy games	Mean-payoff games
Perfect information	O(E·Q·W)	O(E·Q·W) (this talk) O(E·Q²·W) [ZP96]
Imperfect	?	?

Imperfect information



Observation-based strategies

$$\sigma:\mathsf{Obs}^+\to\Sigma$$

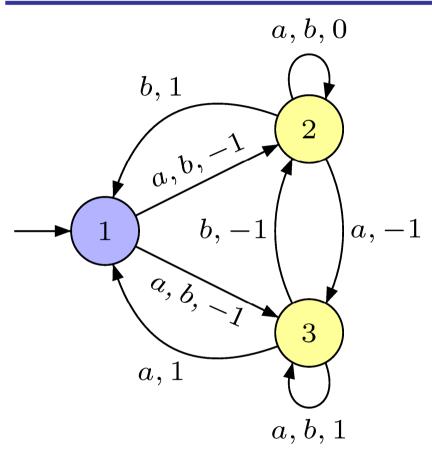
Goal: all outcomes have

- nonnegative energy level,
- or nonnegative mean-payoff value

Two variants for Energy games:

- fixed initial credit
- unknown initial credit

Fixed initial credit

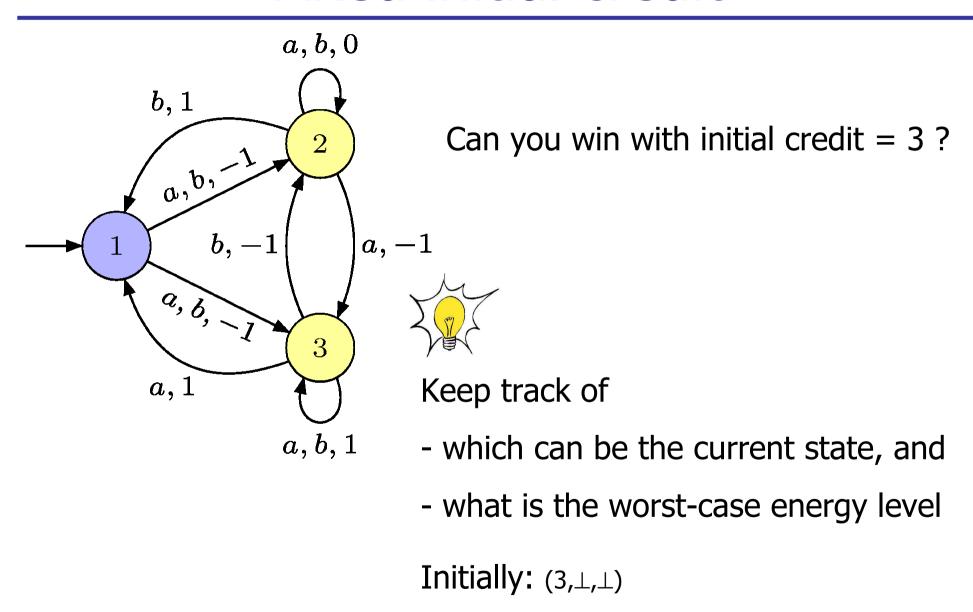


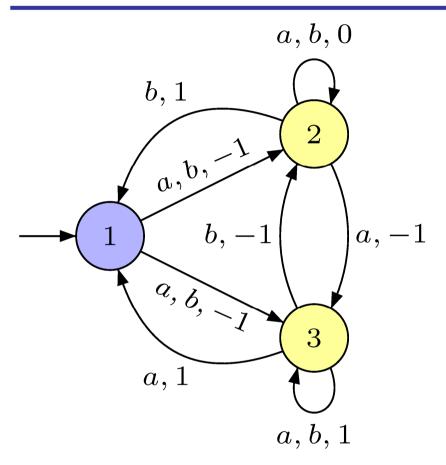
Can you win with initial credit = 3?

$$\Sigma = \{a, b\}$$

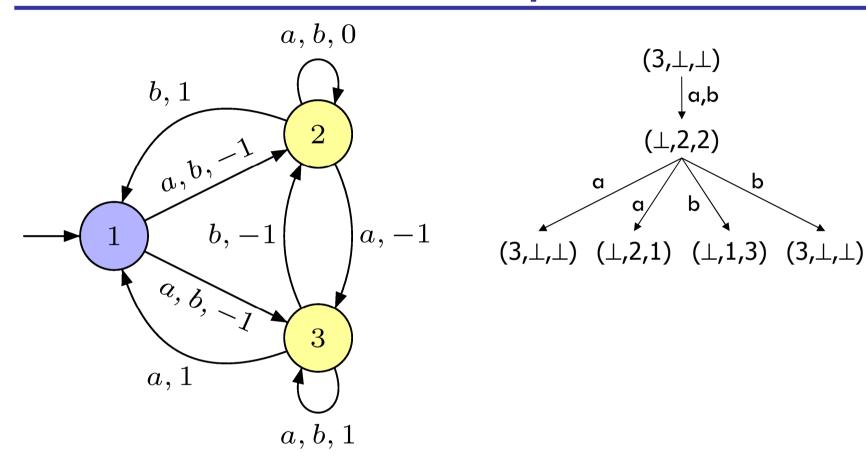
Observations Obs =
$$\{\{1\}, \{2, 3\}\}$$

Fixed initial credit

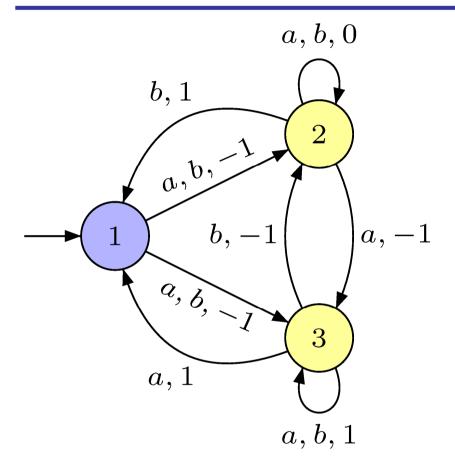


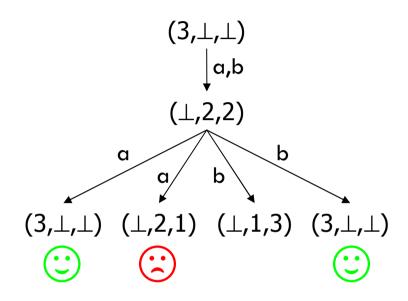


$$v(q) \leftarrow \min\{v(q') + w(q',q) \mid v(q') \neq \bot\}$$



$$v(q) \leftarrow \min\{v(q') + w(q',q) \mid v(q') \neq \bot\}$$

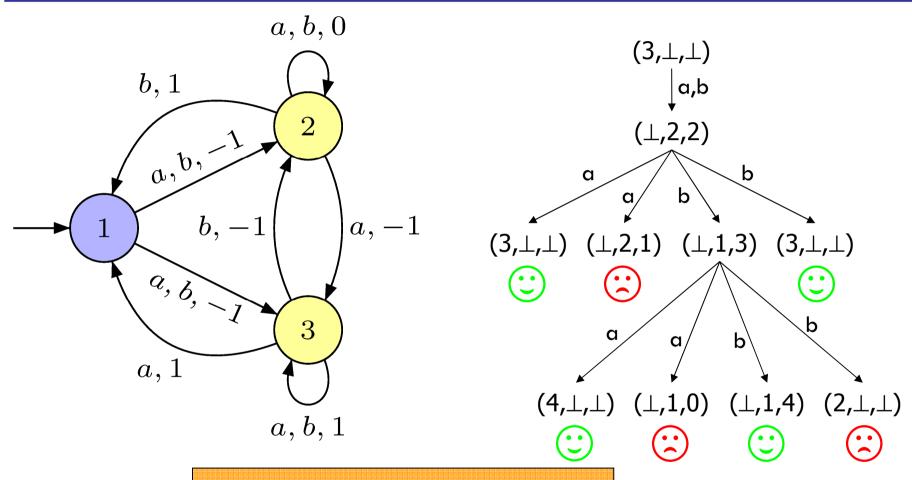




Stop search whenever

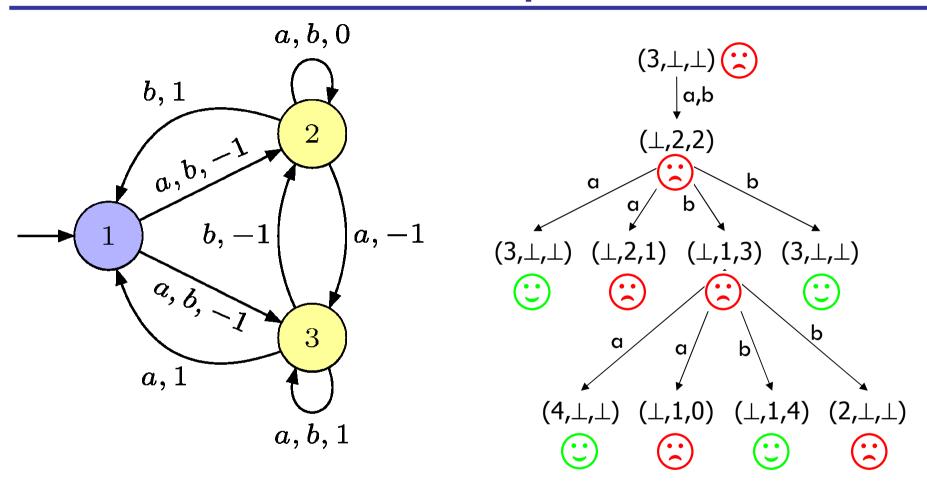
- negative value, or
- comparable ancestor

$$v(q) \leftarrow \min\{v(q') + w(q',q) \mid v(q') \neq \bot\}$$

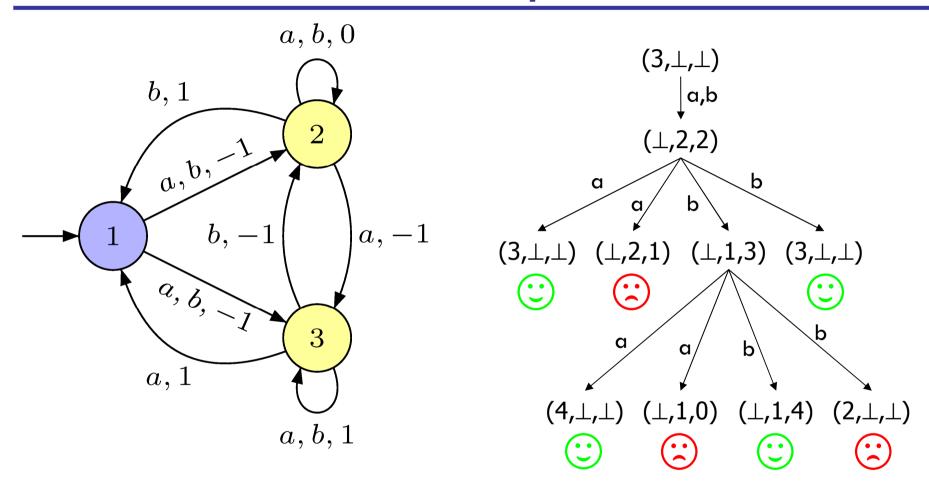


Stop search whenever:

- negative value, or
- comparable ancestor



Initial credit = 3 is not sufficient!

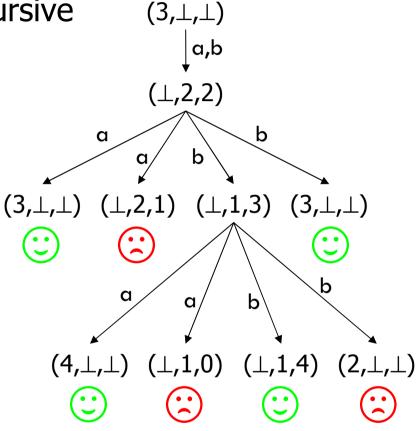


Search will terminate because \mathbb{N}^d is well-quasi ordered.

Upper bound: non-primitive recursive

Lower bound: EXPSPACE-hard

Proof (not shown in this talk): reduction from the infinite execution problem of Petri Nets.



Search will terminate because \mathbb{N}^d is well-quasi ordered.

Complexity

	Energy games (unknown initial credit)	Mean-payoff games
Perfect information	O(E·Q·W)	O(E·Q·W) (this talk) O(E·Q²·W) [ZP96]
Imperfect information	r.e.	?

Memory requirement

With imperfect information:

Corollary: Finite-memory strategies suffice in energy games

Memory requirement

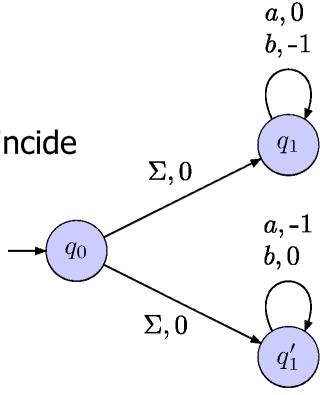
With imperfect information:

Corollary: Finite-memory strategies suffice in energy games

In mean-payoff games:

• infinite memory may be required

• limsup vs. liminf definition do not coincide



Memory requirement

	Energy games	Mean-payoff games
Perfect information	memoryless	memoryless
Imperfect information	finite memory	infinite memory

Unknown initial credit

Theorem

The unknown initial credit problem for energy games is undecidable.

(even for blind games)

Proof:

Using a reduction from the halting problem of 2-counter machines.

2-counter machines

- 2 counters c₁, c₂
- increment, decrement, zero test

```
q1: inc c<sub>1</sub> goto q2
```

q2: inc c₁ goto q3

q3: if $c_1 == 0$ goto q6 else dec c_1 goto q4

q4: inc c₂ goto q5

q5: inc c₂ goto q3

q6: halt

2-counter machines

- 2 counters c₁, c₂
- increment, decrement, zero test

q1: inc c₁ goto q2

q2: inc c₁ goto q3

q3: if $c_1 == 0$ goto q6 else dec c_1 goto q4

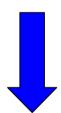
q4: inc c₂ goto q5

q5: inc c₂ goto q3

q6: halt

q: inc c goto q'

 $q: \mathbf{if} \ c = 0 \mathbf{then} \mathbf{goto} \ q' \mathbf{else} \ \mathrm{dec} \ c \mathbf{goto} \ q''.$



(q, inc, c, q')

(q, 0?, c, q') and (q, dec, c, q'')

$$\begin{pmatrix} q_1 \\ 0 \\ 0 \end{pmatrix} \xrightarrow{(q_1, inc, c_1, q_2)} \begin{pmatrix} q_2 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{(q_2, inc, c_1, q_3)} \begin{pmatrix} q_3 \\ 2 \\ 0 \end{pmatrix} \xrightarrow{(q_3, dec, c_1, q_4)} \begin{pmatrix} q_4 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{(q_4, inc, c_2, q_5)} \begin{pmatrix} q_5 \\ 1 \\ 1 \end{pmatrix} \xrightarrow{\dots}$$

Reduction

Halting problem:

Given M and state q_{halt} , decide if q_{halt} is reachable (i.e., M halts).

q1: inc c₁ goto q2

q2: inc c₁ goto q3

q3: if $c_1 == 0$ goto q6 else dec c_1 goto q4

q4: inc c₂ goto q5

q5: inc c₂ goto q3

q6: halt

Reduction:

Given M, construct G_M such that M halts iff there exists a winning strategy in G_M (with some initial credit).

- Deterministic machine
- Nonnegative counters

Reduction

q1: inc c₁ goto q2

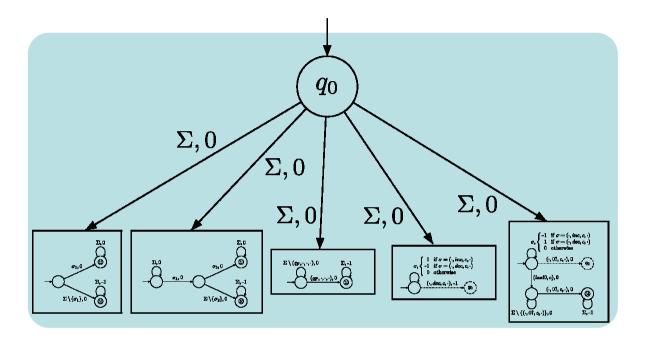
q2: inc c₁ goto q3

q3: if $c_1 == 0$ goto q6 else dec c_1 goto q4

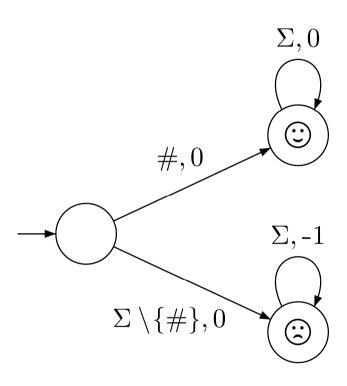
q4: inc c₂ goto q5

q5: inc c₂ goto q3

q6: halt

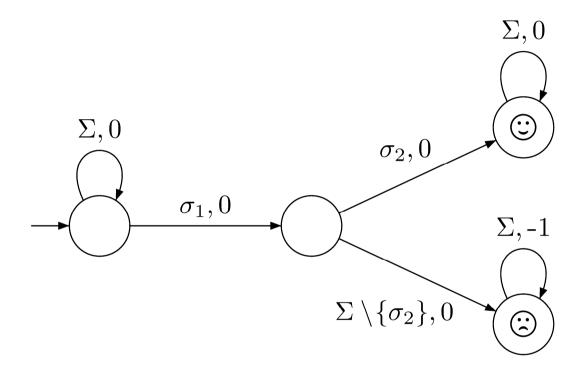


- Blind game (unique observation)
- Initial nondeterministic jump to several gadgets
- Winning strategy = (#AcceptingRun)^ω



Gadget 1:

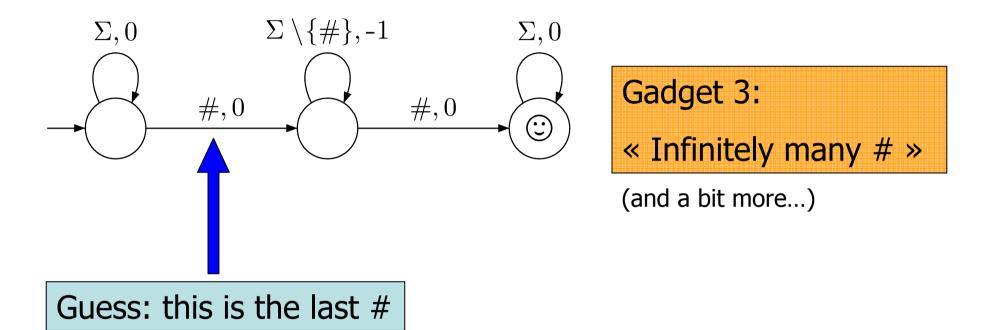
« First symbol is # »

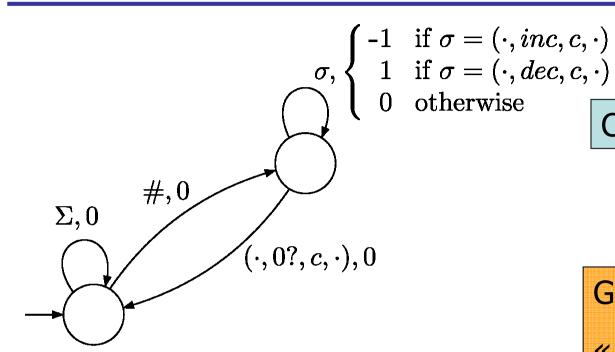


Gadget 2:

« Every σ_1 is followed by σ_2 »

E.g.,
$$\sigma_1 = (q, \cdot, \cdot, q')$$
 and $\sigma_2 = (q', \cdot, \cdot, q'')$

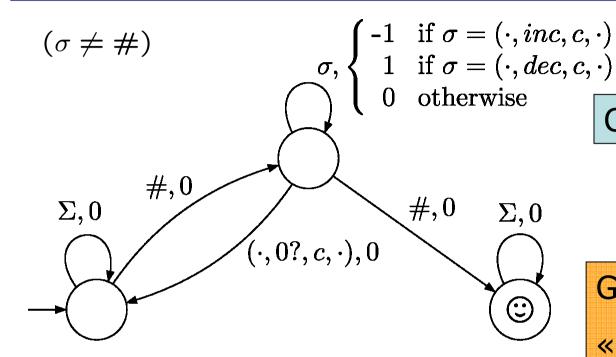




Check zero tests on c

Gadget 4:

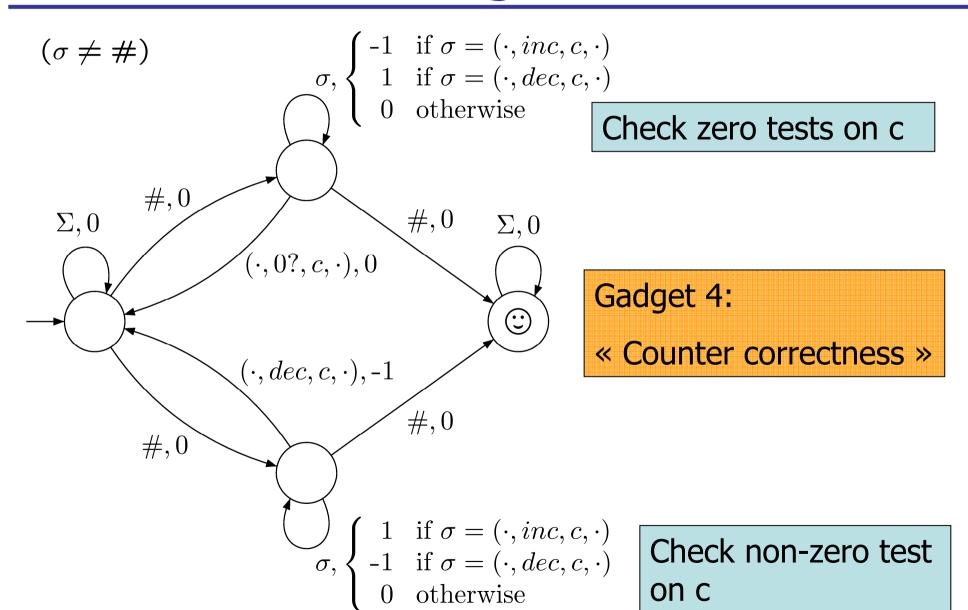
« Counter correctness »



Check zero tests on c

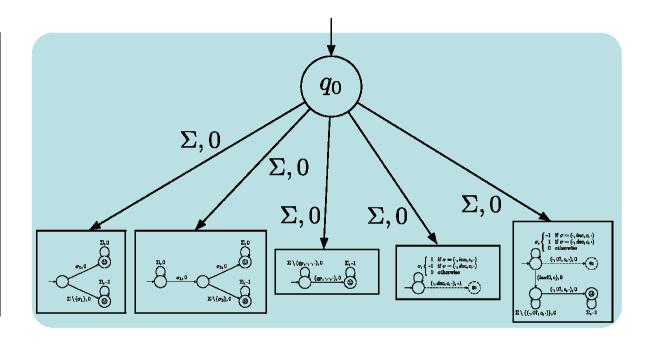
Gadget 4:

« Counter correctness »



Correctness

q1: inc c_1 goto q2 q2: inc c_1 goto q3 q3: if $c_1 == 0$ goto q6 else dec c_1 goto q4 q4: inc c_2 goto q5 q5: inc c_2 goto q3 q6: halt



- If M halts, then $(\#AcceptingRun)^{\omega}$ is a winning strategy with initial credit Length(AcceptingRun).
- If there exists a winning strategy with finite initial credit, then # occurs infinitely often, and finitely many cheats occur. Hence, M has an accepting run.

Mean-payoff games

Theorem

Mean-payoff games are undecidable (not co-r.e.).

(even blind games)

Proof:

Using a reduction from the halting problem of 2-counter machines.

Nota: the proof works for both limsup and liminf, but only for strict mean-payoff objective (i.e., MP $> \nu$)

Mean-payoff games

Theorem

Mean-payoff games are undecidable (not co-r.e.).

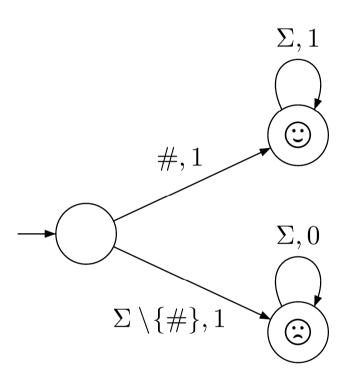
(even blind games)

Proof:

Using a reduction from the halting problem of 2-counter machines.

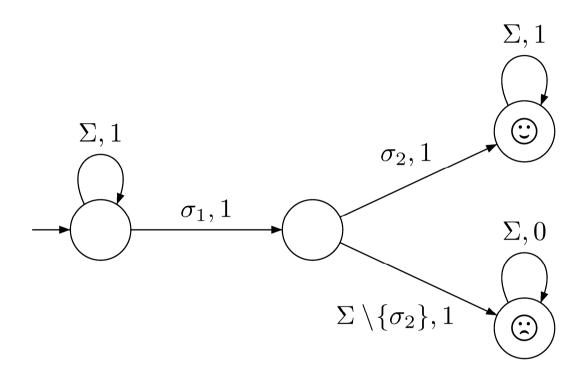
Reduction:

Given M, construct G_M such that M halts iff there exists a strategy to ensure strictly positive mean-payoff value.



Gadget 1:

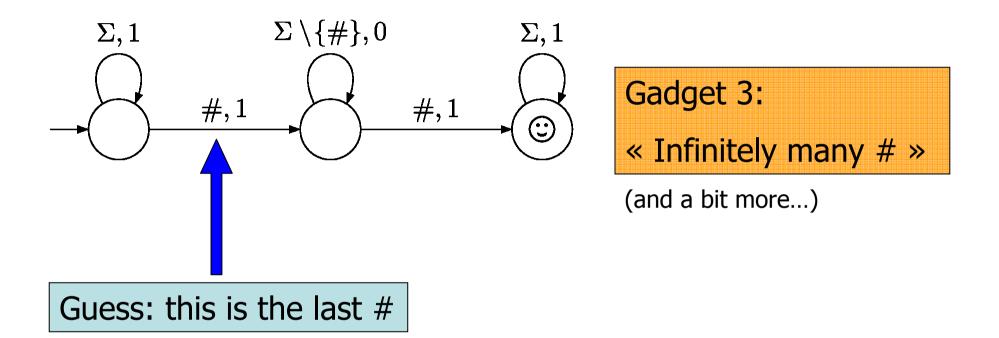
« First symbol is # »

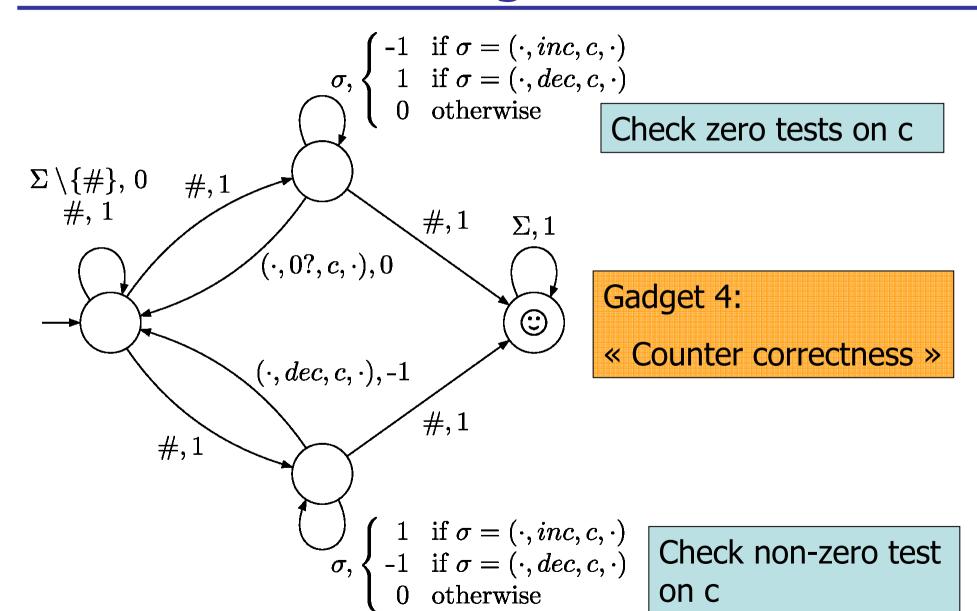


Gadget 2:

« Every σ_1 is followed by σ_2 »

E.g.,
$$\sigma_1 = (q, \cdot, \cdot, q')$$
 and $\sigma_2 = (q', \cdot, \cdot, q'')$





Complexity

	Energy games (unknown initial credit)	Mean-payoff games
Perfect information	O(E·Q·W)	O(E·Q·W) (this talk) O(E·Q²·W) [ZP96]
Imperfect information	r.e. not co-r.e.	? not co-r.e.

Mean-payoff games

Theorem

Mean-payoff games are undecidable (not r.e.).

(for games with at least 2 observations)

Proof:

Using a reduction from the non-halting problem of 2-counter machines.

Nota: the proof works only for limsup and non-strict mean-payoff objective (i.e., MP $\geq \nu$)

Mean-payoff games

Theorem

Mean-payoff games are undecidable (not r.e.).

(for games with at least 2 observations)

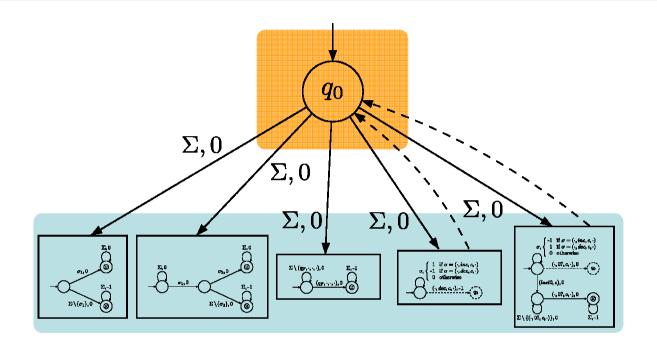
Proof:

Using a reduction from the non-halting problem of 2-counter machines.

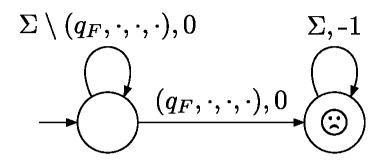
Reduction:

Given M, construct G_M such that M **does not halt** iff there exists a strategy to ensure strictly nonnegative mean-payoff value.

Reduction



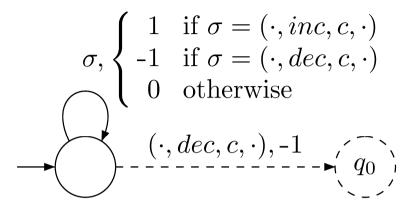
- 2-observation game
- Initial nondeterministic jump to several gadgets (+ back-edges)
- Winning strategy = Non-terminatingRun



Gadget 3:

« avoid halting state »

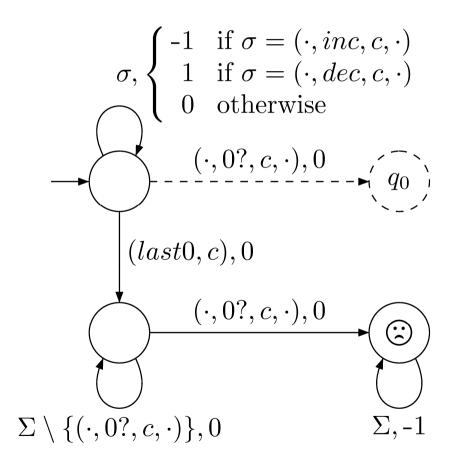
Reminder: Winning strategy = Non-terminatingRun



Check non-zero test on c

Gadget 5 and 6:

« Counter correctness »

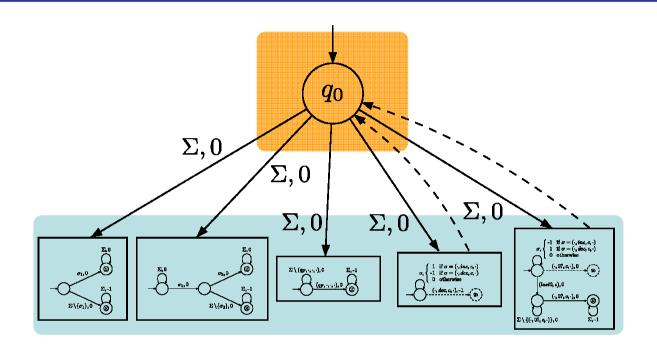


Gadget 5 and 6:

« Counter correctness »

Check zero tests on c

Correctness



- If M does not halt, then Non-terminatingRun is a winning strategy.
- If M halts, then Maximizer has to cheat within L steps where L = Size(AcceptingRun), or reaches halting state, thus he ensures mean-payoff at most -1/L.

Complexity

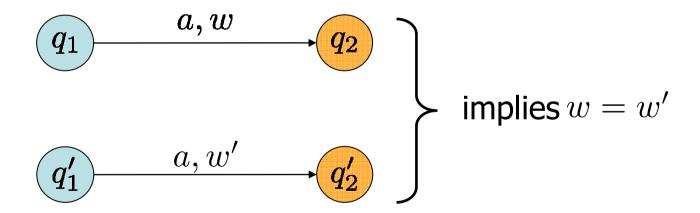
	Energy games (unknown initial credit)	Mean-payoff games
Perfect information	O(E·Q·W)	O(E·Q·W) (this talk) O(E·Q²·W) [ZP96]
Imperfect	r.e. not co-r.e.	not r.e. not co-r.e.

Nota: whether there exists a finite-memory winning strategy in mean-payoff games is also undecidable.

Decidability result

Energy and mean-payoff games with **visible** weights are decidable (EXPTIME-complete).

Weights are visible if



Weighted subset construction is finite

Complexity

	Energy games (unknown initial credit)	Mean-payoff games
Perfect information	O(E·Q·W)	O(E·Q·W) (this talk) O(E·Q²·W) [ZP96]
Imperfect	r.e. not co-r.e.	not r.e. not co-r.e.
Visible weights	EXPTIME-complete	EXPTIME-complete

Conclusion

- Quantitative games with imperfect information
 - Undecidable in general
 - Energy with fixed initial credit decidable
 - Visible weights decidable
- Open questions
 - Strict vs. non-strict mean-payoff
 - Liminf vs. Limsup
 - Blind mean-payoff games
- Related work
 - Incorporate liveness conditions (e.g. parity)

The end

Thank you!

Questions?

References

[CdAHS03] A.Chakrabarti, L. de Alfaro, T.A. Henzinger, and M. Stoelinga. **Resource interfaces**, Proc. of EMSOFT: Embedded Software, LNCS 2855, Springer, pp.117-133, 2003

[EM79] A. Ehrenfeucht, and J. Mycielski, **Positional Strategies for Mean-Payoff Games**, International Journal of Game Theory, vol. 8, pp. 109-113, 1979

P. Bouyer, U. Fahrenberg, K.G. Larsen, N. Markey, and J. Srba, **Infinite Runs in Weighted Timed Automata with Energy Constraints**, Proc. of FORMATS: Formal Modeling and Analysis of Timed Systems, LNCS 5215, Springer, pp. 33-47, 2008