Information Tracking in Distributed Games

Dietmar Berwanger & Łukasz Kaiser

LSV, CNRS, ENS Cachan & RWTH Aachen

ACTS II, Chennai 2010

No-go Theorem

Peterson and Reif (1979), Multiple-Person Alternation:

Infinite games
with imperfect information
of two or more players
are unsolvable.

D. Berwanger (LSV) Information Tracking ACTS 2010 2 / 23

Games with imperfect information - structure

- ▶ *n* players $i \in \{0, ..., n-1\}$, with finite sets $\begin{cases} A^i \text{ actions} \\ B^i \text{ observations} \end{cases}$
- vs Environment

Simultaneous actions $A = \times_{i < n} A^i$

Game graph
$$G = (V, \Delta, (\beta^i)_{i < n})$$

- *V* set of positions
- $\Delta \subseteq V \times A \times V$ transition relation
- $\beta^i: V \to B^i$ observation function for player *i*

Games with imperfect information - playing

- Play: path $\pi = v_0$, a_0 , v_1 , a_1 , ... from initial position v_0
 - at v, players choose an action profile $a = (a^i)_{i < n}$ simultaneously
 - Environment picks successor $w \stackrel{a}{\leftarrow} v$; each player *i* observes $\beta^i(w)$
- ▶ observation history $\beta^{i}(\pi) = \beta^{i}(v_0), \beta^{i}(v_1), \dots$

Strategy: $s^i: (VA)^*V \rightarrow A^i$ such that

$$\beta^{i}(\pi) = \beta^{i}(\pi') \implies s^{i}(\pi) = s^{i}(\pi')$$

- play π follows s^i $a^i_{\ell+1} = s^i(v_0, a_0, \dots, v_\ell)$
- outcome of a profile $s = (s^i)_{i < n}$ set of all plays that follow each s^i

Games with imperfect information - winning

```
Winning condition W \subseteq V^{\omega}
```

... mostly described via finite coloring $\gamma: V \to C$ by regular $W \subseteq C^{\omega}$

Question: Given game graph (G, γ) , winning condition $W \in C^{\omega}$, construct/decide existence of winning strategy profile, with outcome(s) $\subseteq W$.

Distributed: each player aware of strategy of other players

- only not of what they observe

Contrast to individual rationality - coordination

Distributed strategies with finite memory

Strategies s^i implemented by a finite automaton (M, q_0, μ, ν)

- reads observation $b^i \in B^i$
- updates internal state $q' = \mu(q, b^i)$
- outputs action $a^i = v(q, b^i)$

Issue #1: Representation

- factual state information explicit: state attributes, available actions
 - future and past only up to bisimulation
 - sufficient under perfect information, zero-sum, regular conditions
 - ★ require little knowledge of history
 - ★ knowledge about other player is irrelevant
- epistemic state information implicit:
 - first-order knowledge space observation history already infinite
 - higher-order knowledge may matter as well

How to represent all this information explicitely.

Extensive form of a graph game

Game graph
$$G = (V, \Delta, \beta^i, \gamma) \longrightarrow \text{extensive form } (T, \hat{\Delta}, \sim^i, \hat{\gamma})$$

- ► $(T, \hat{\Delta}, \hat{\gamma})$ tree unravelling of (V, Δ, γ) ;
- $ightharpoonup \sim^i \in T \times T$ indistinguishability relation:

 $\pi \sim^i \pi'$ if same actions and observations for player *i*

Strategy
$$s^i: (VA)^*V \to A^i$$
 with $\pi \sim^i \pi' \implies s^i(\pi) = s^i(\pi')$

► Alternativley, $\mathcal{J}^i := \text{partition of information sets induced by } \sim^i$;

 $s^i: \mathcal{J}^i \to A^i$ — memoryless in the information set

Proposition. Every game is equivalent to its extensive form.

Information vs relevant knowledge

- Information set maximal support for action
 - generated by observation histories
 - infinite

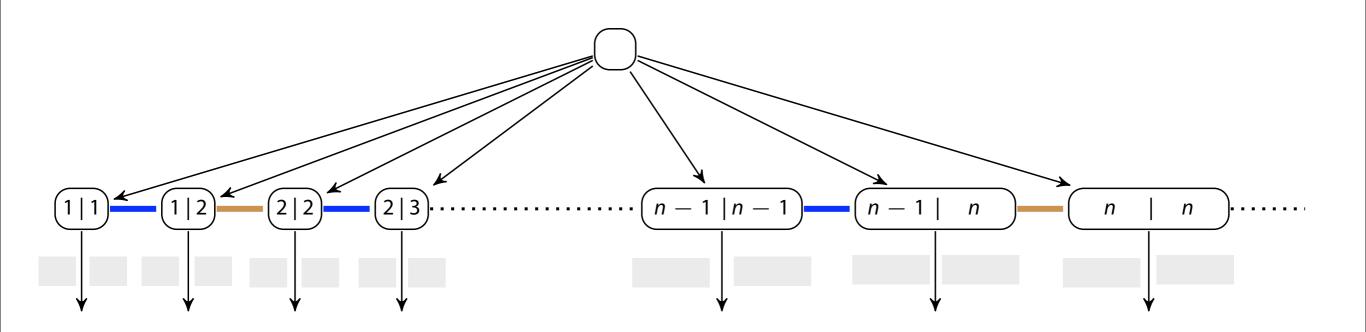
How to represent all relevant information explicitely. possibly in a finite way?

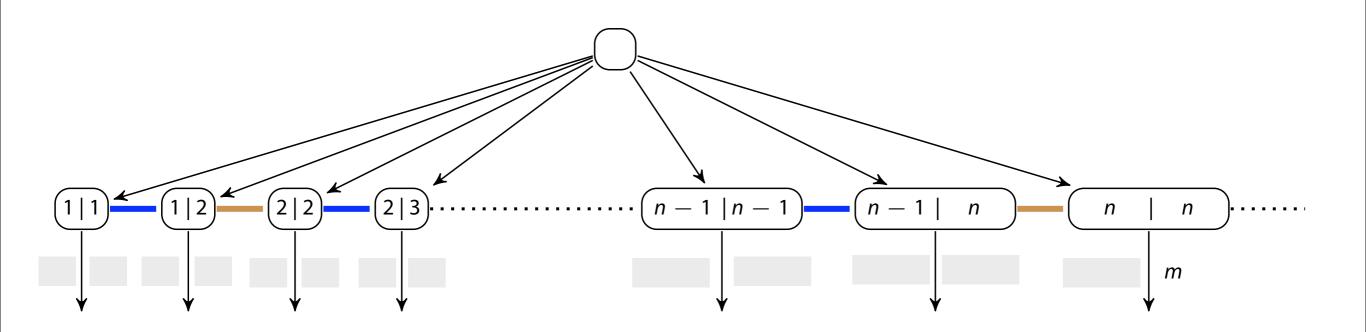
- Relevant knowledge necessary support
 - refinement of observation equivalence depending on history
 - coarsening of information equivalence depending on future

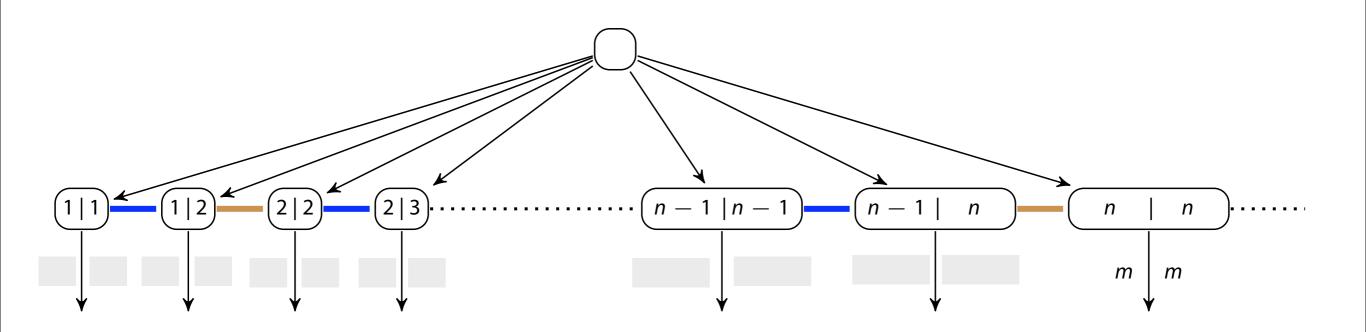
D. Berwanger (LSV)

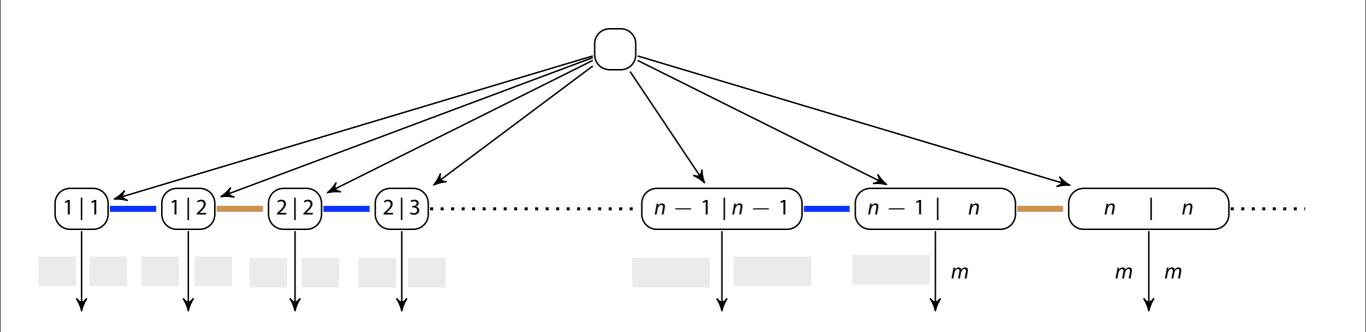
Two players, 0 and 1,

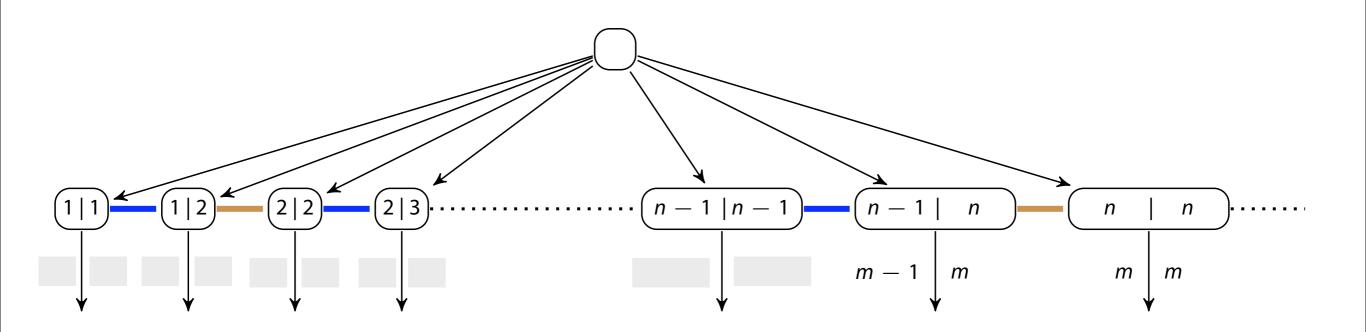
- each observes a number $n^i > 0$ such that $n^1 = n^0$ or $n^1 = n^0 + 1$
- actions: declare a number m^0 , m^1
- outcome winning if $m^1 m^0 = n^1 n^0$ and $m^1 = 1$ for $n^1 = 1$

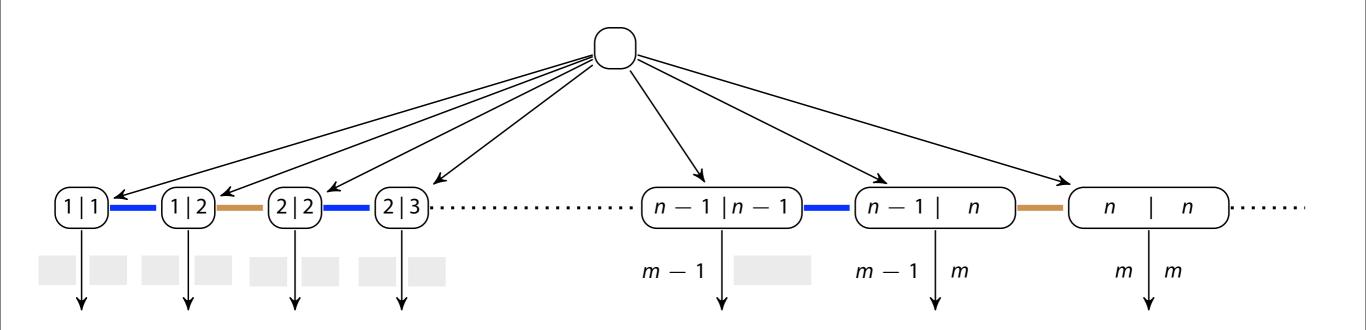


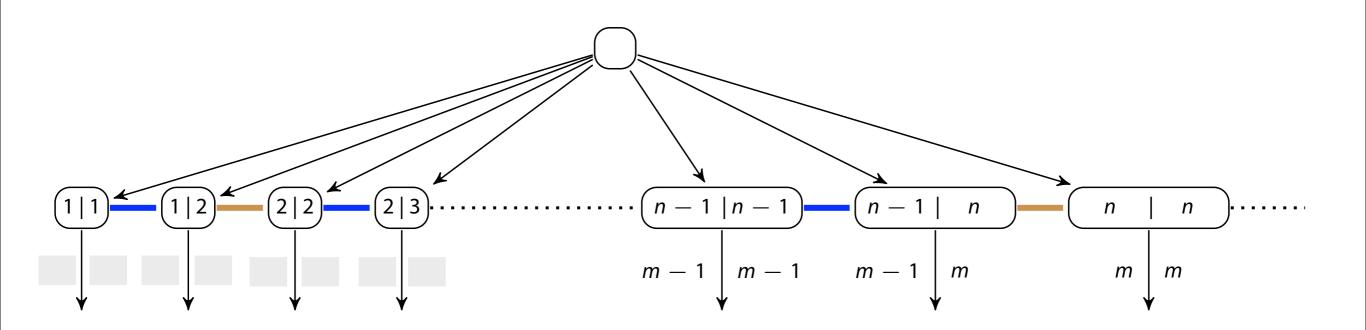


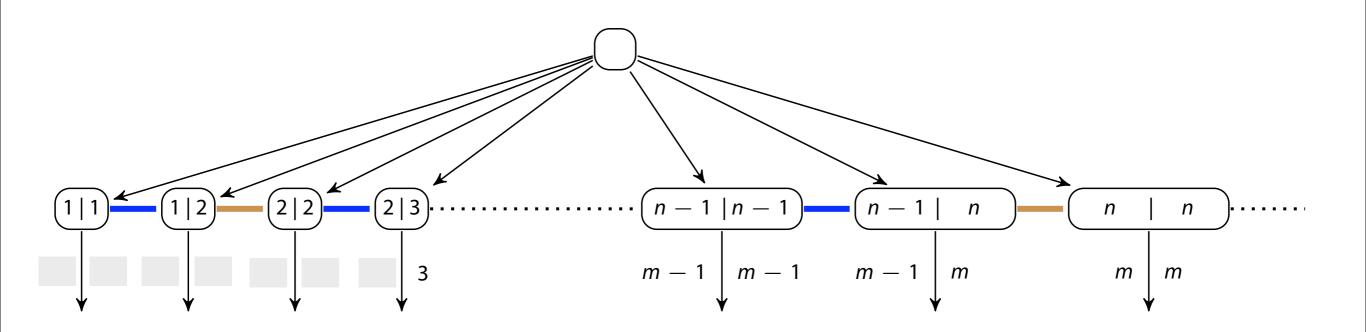


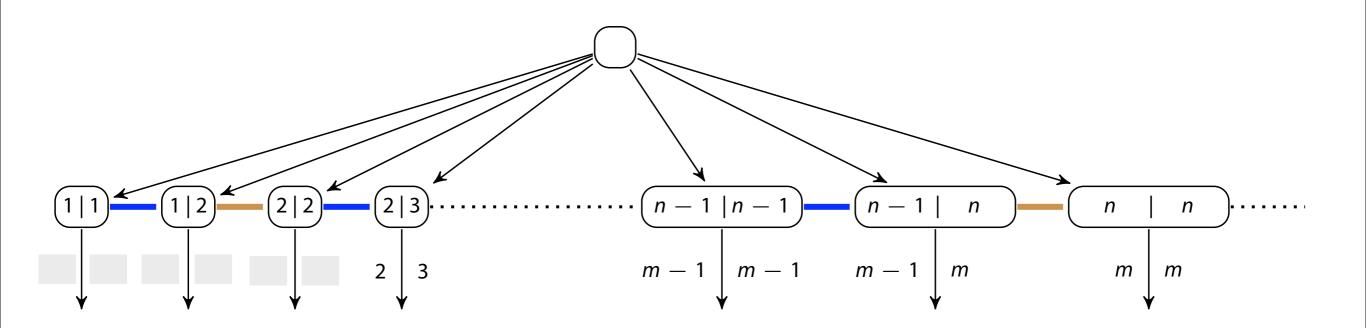


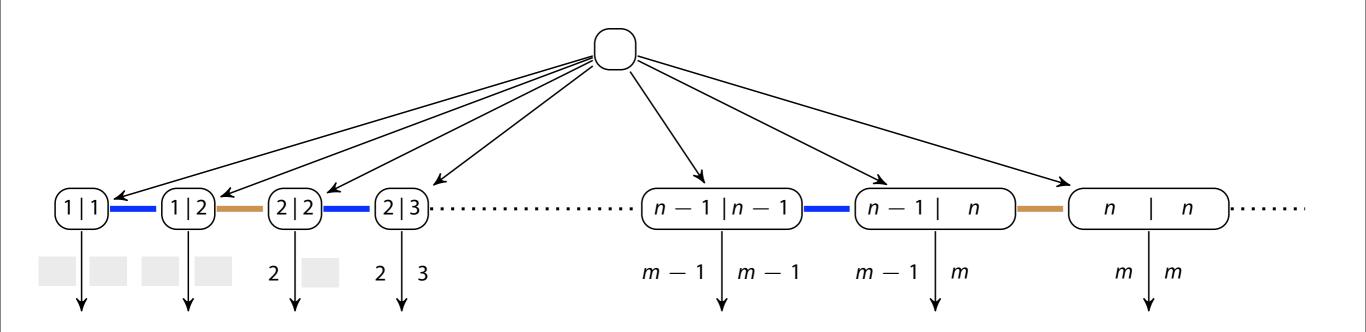


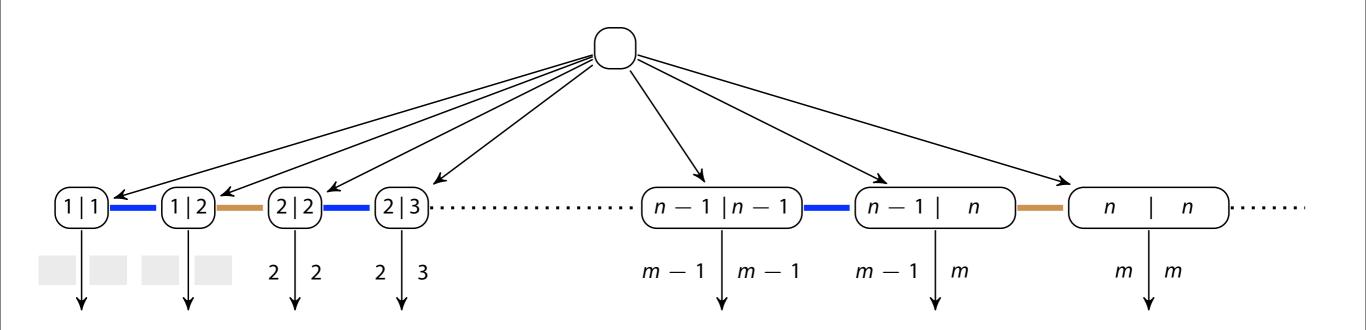


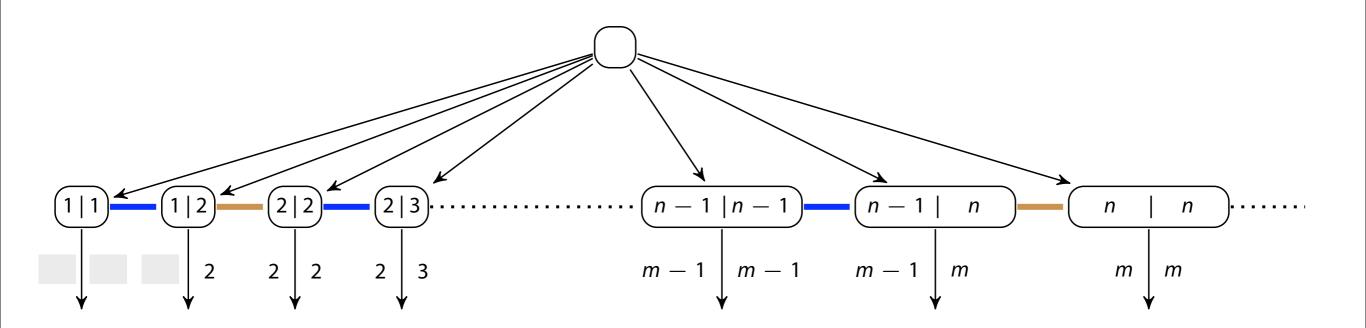


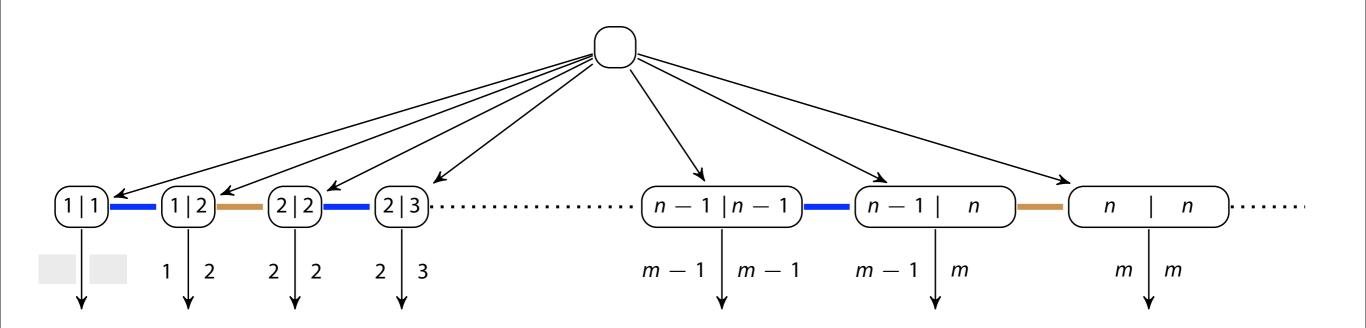


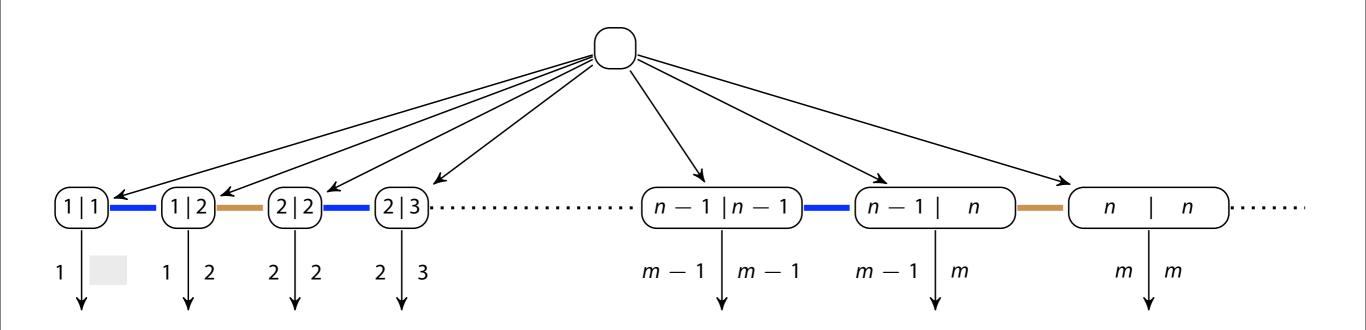


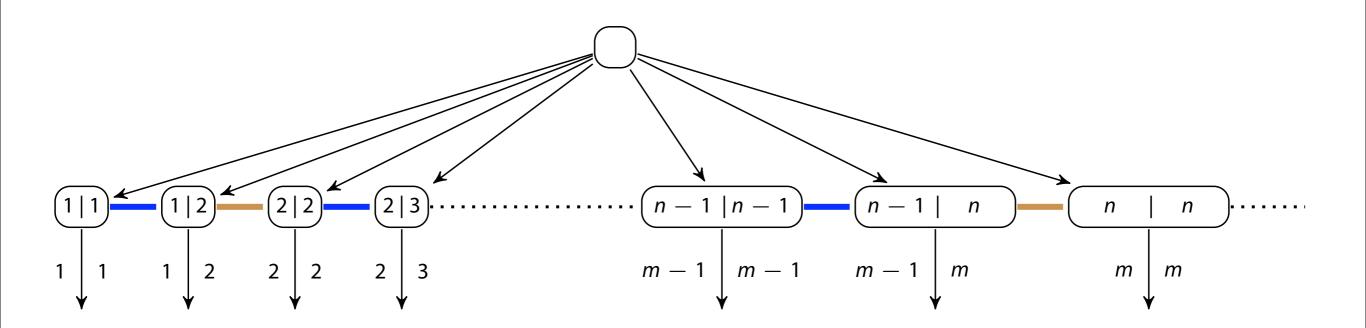


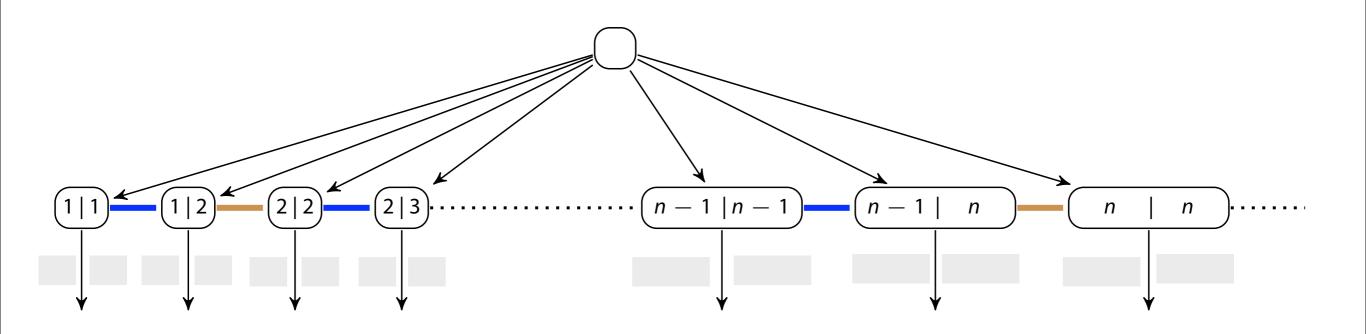












Solution of
$$\begin{cases} s^{1}(1) &= 1\\ s^{0}(n) &= s^{1}(n) \text{ unique: } s^{i}(n) = n.\\ s^{1}(n+1) &= s^{0}(n)+1 \end{cases}$$

Issue #2: Computation

Two-dimensional dynamics when viewed in extensive form:

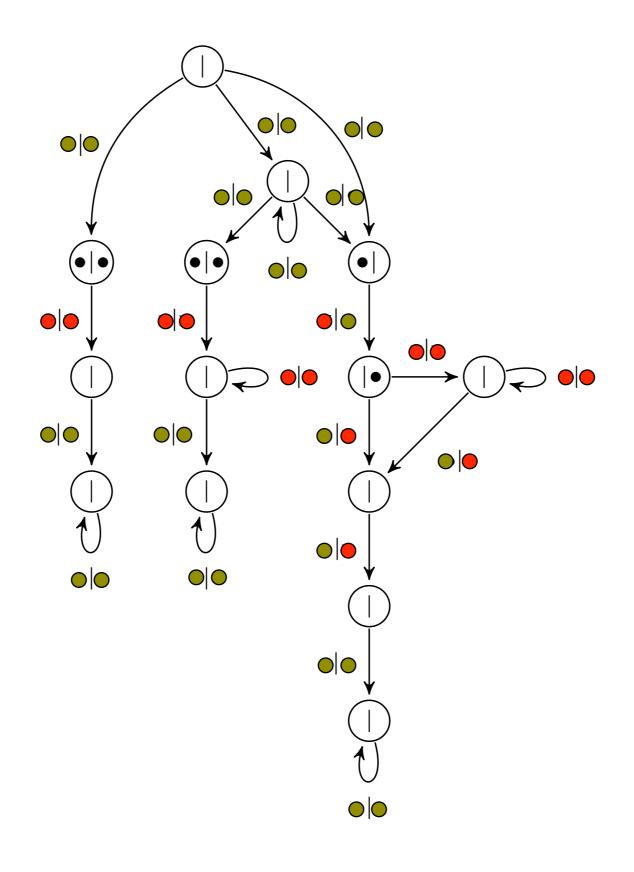
- sequences of actions (along transitions)
- chains of inference (along indistinguishability)

Both dimensions may be unbounded.

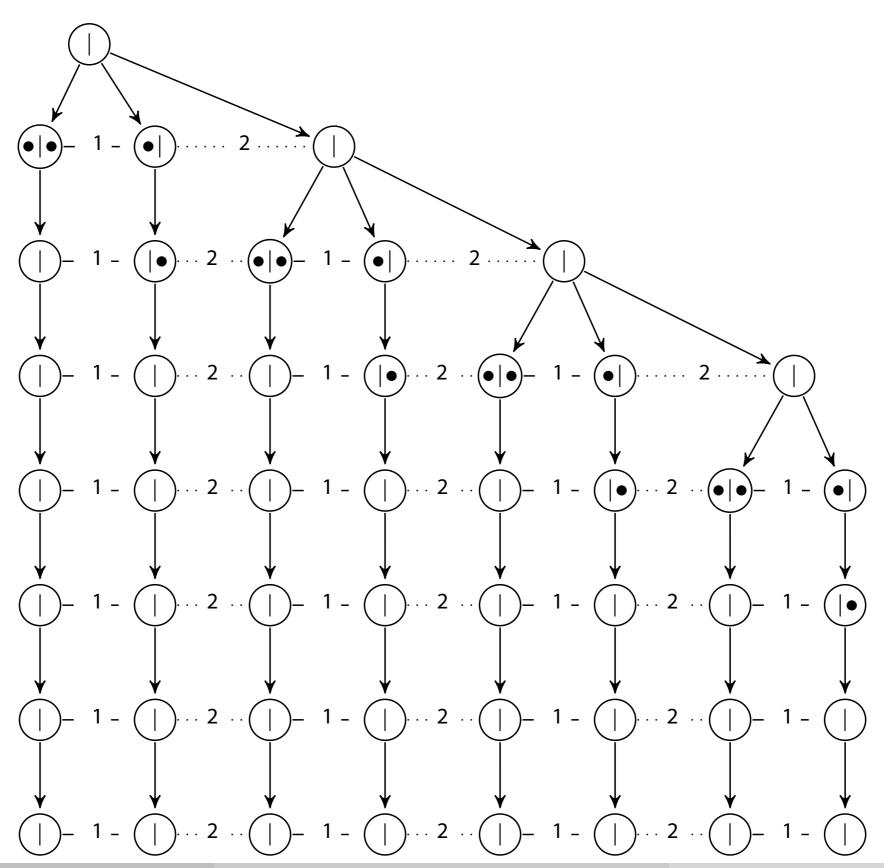
The Grid -- Undecidability

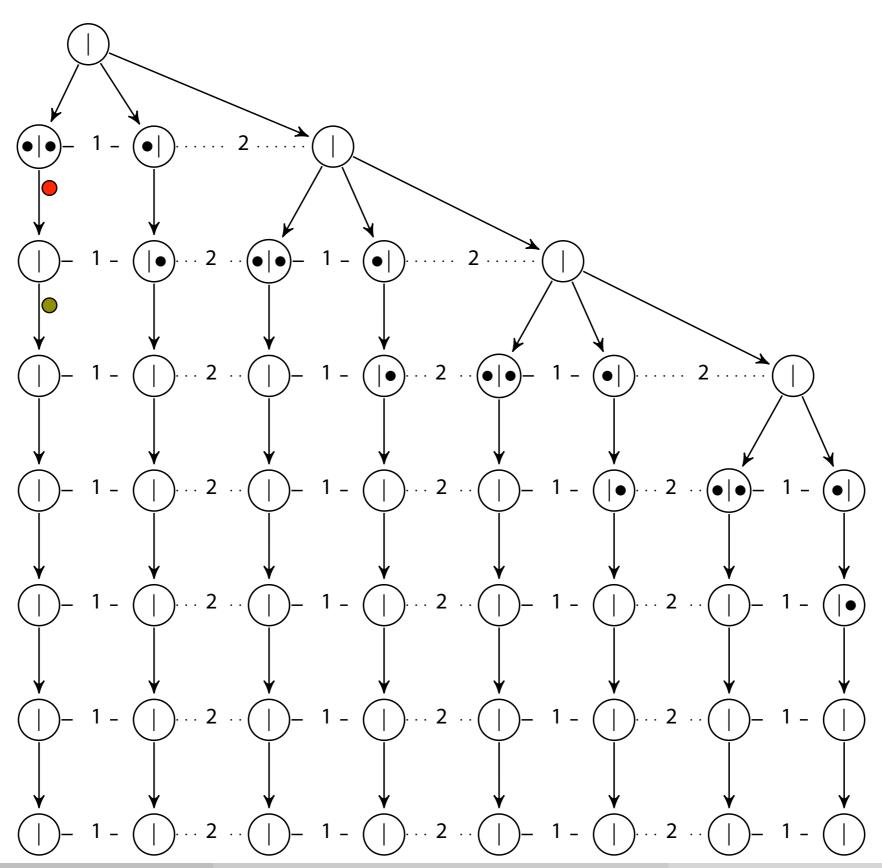
Information Tracking

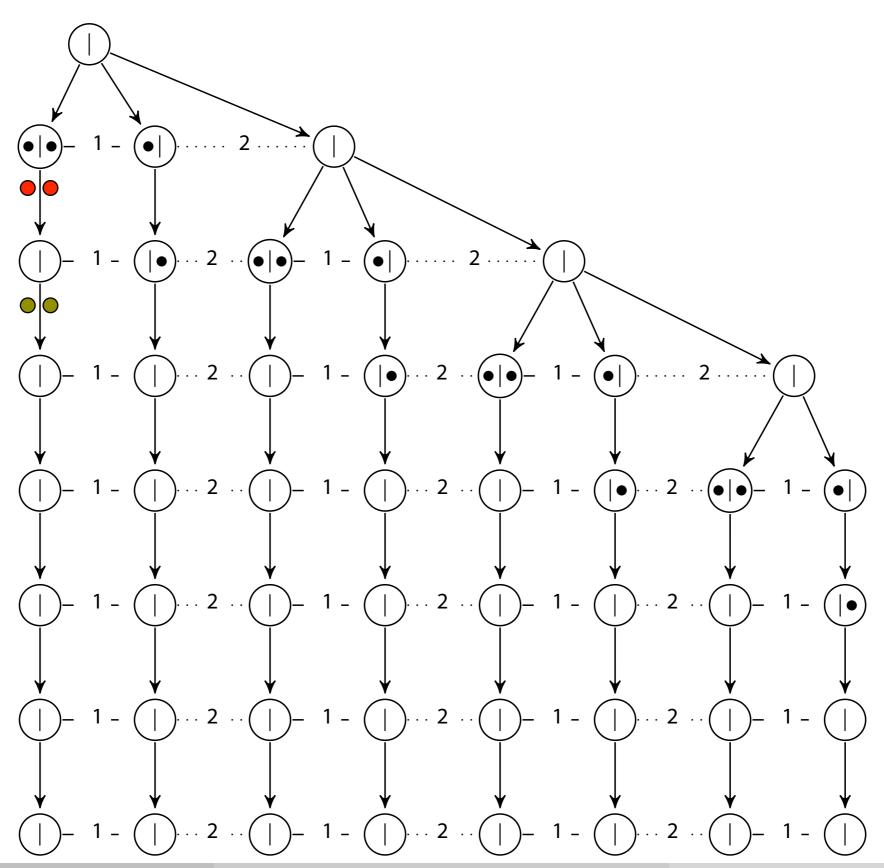
Unbounded knowledge hierarchy on a finite graph

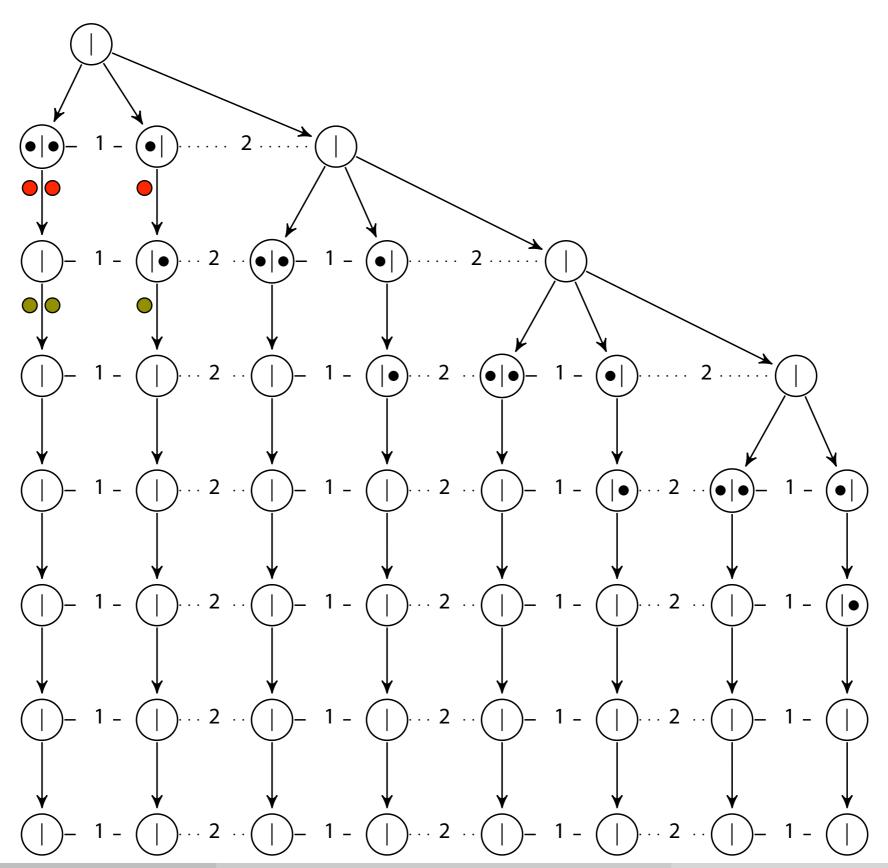


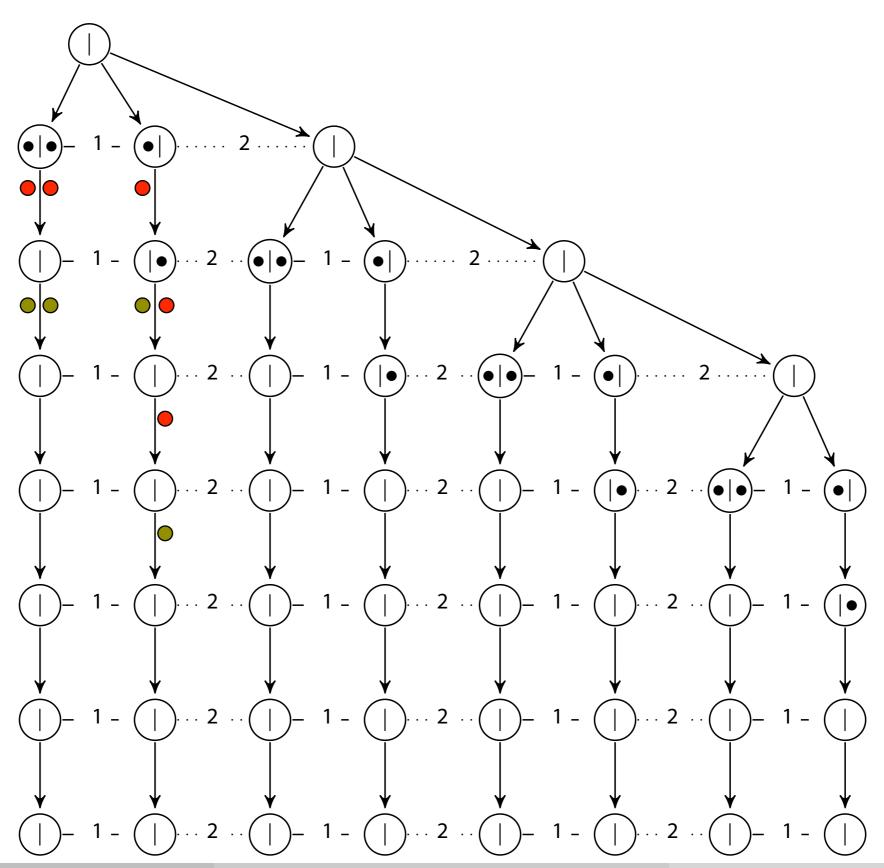
12 / 23

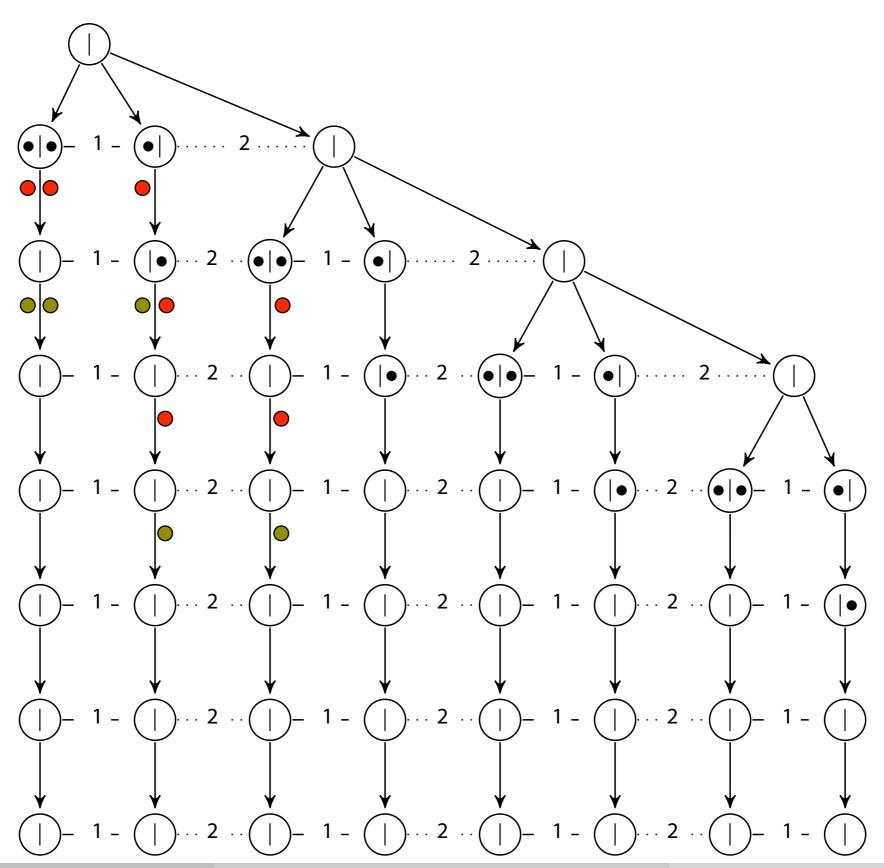


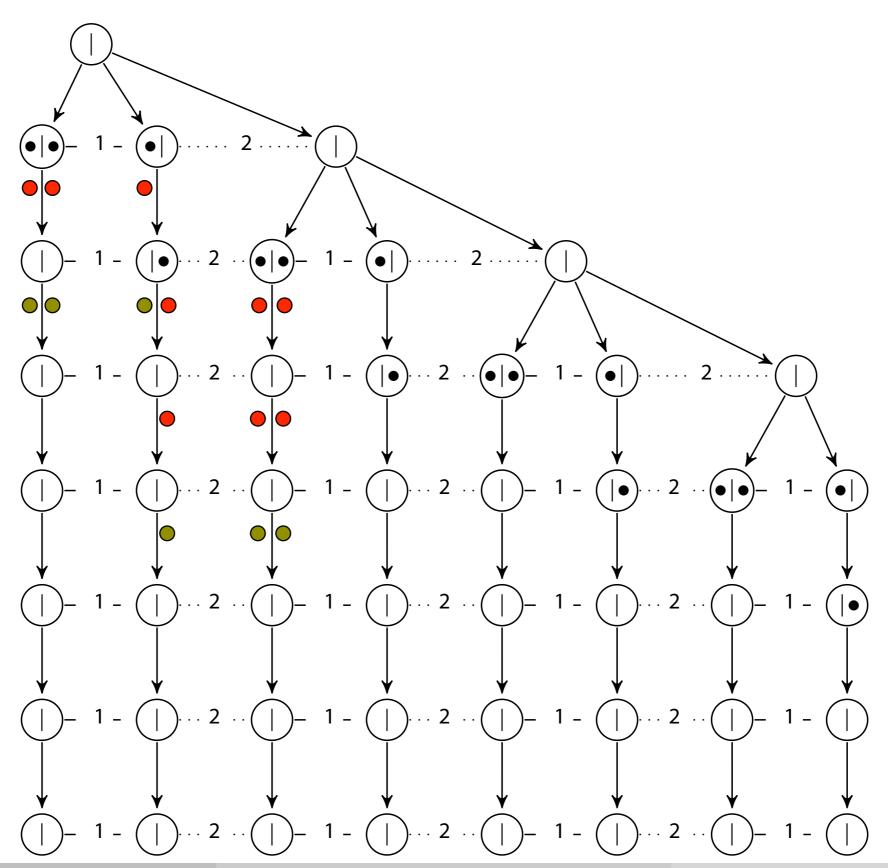


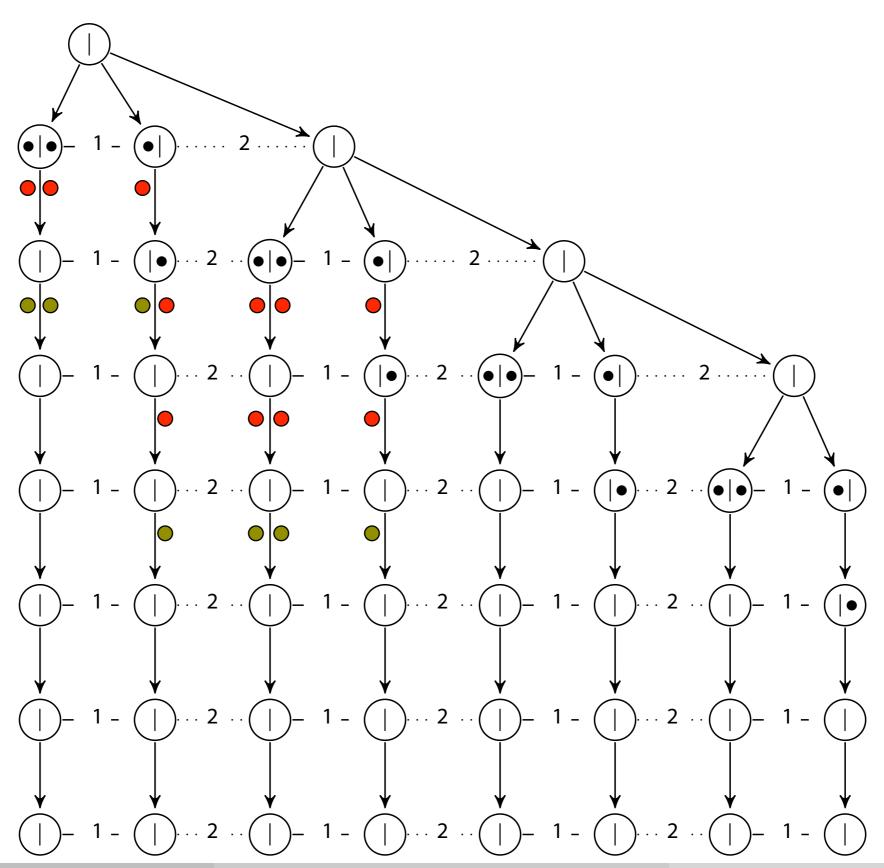


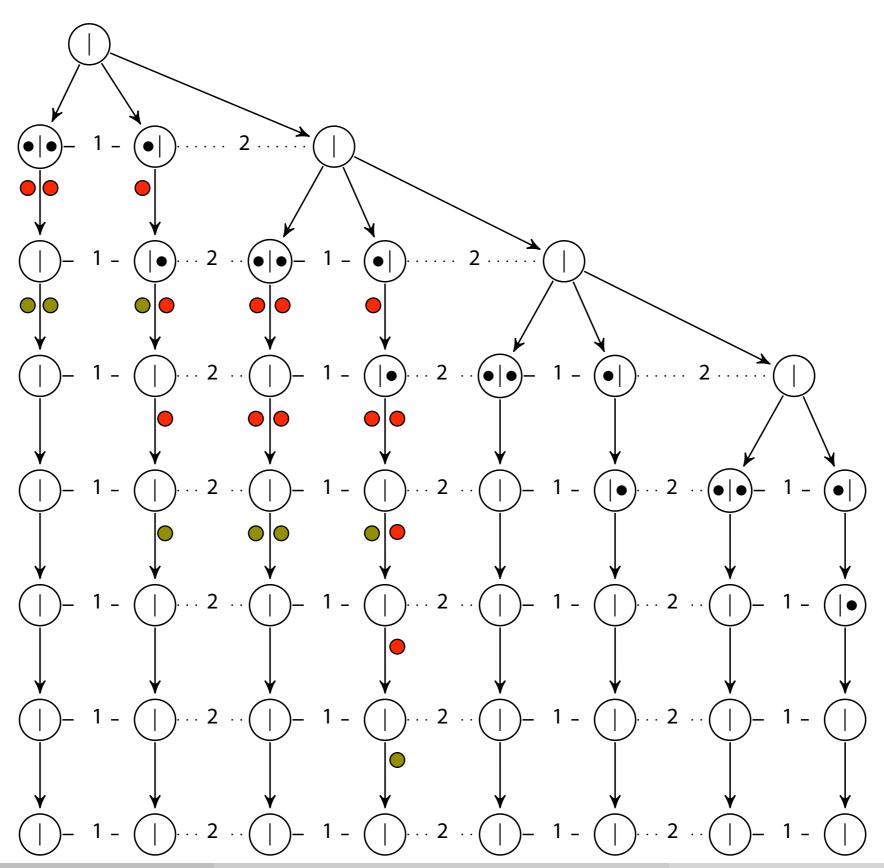


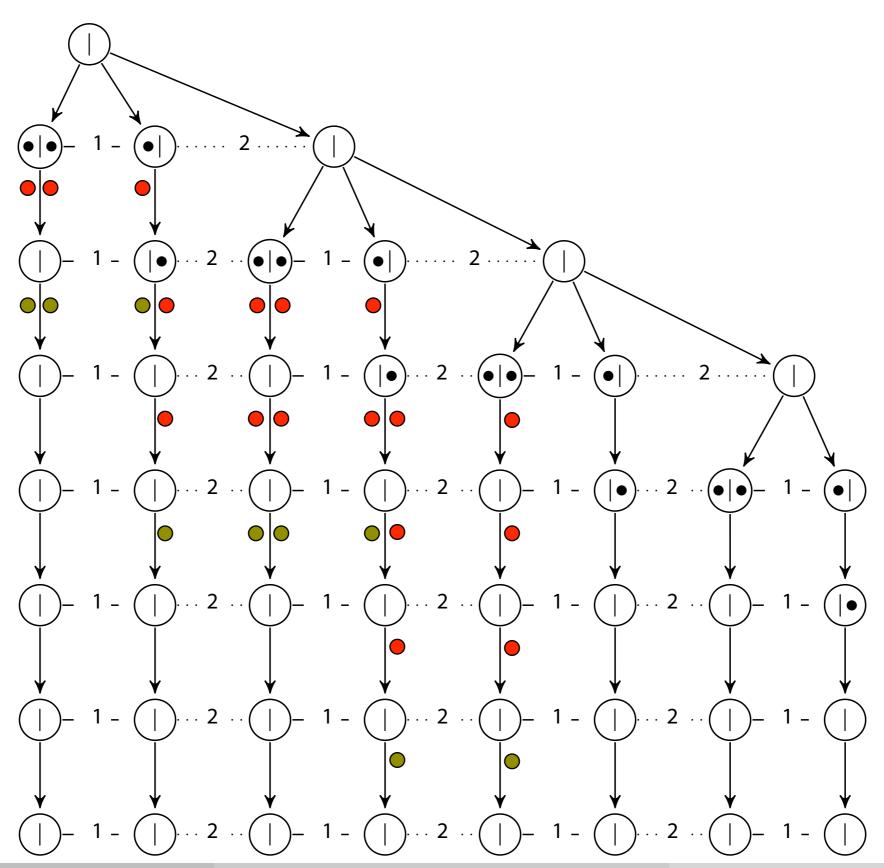


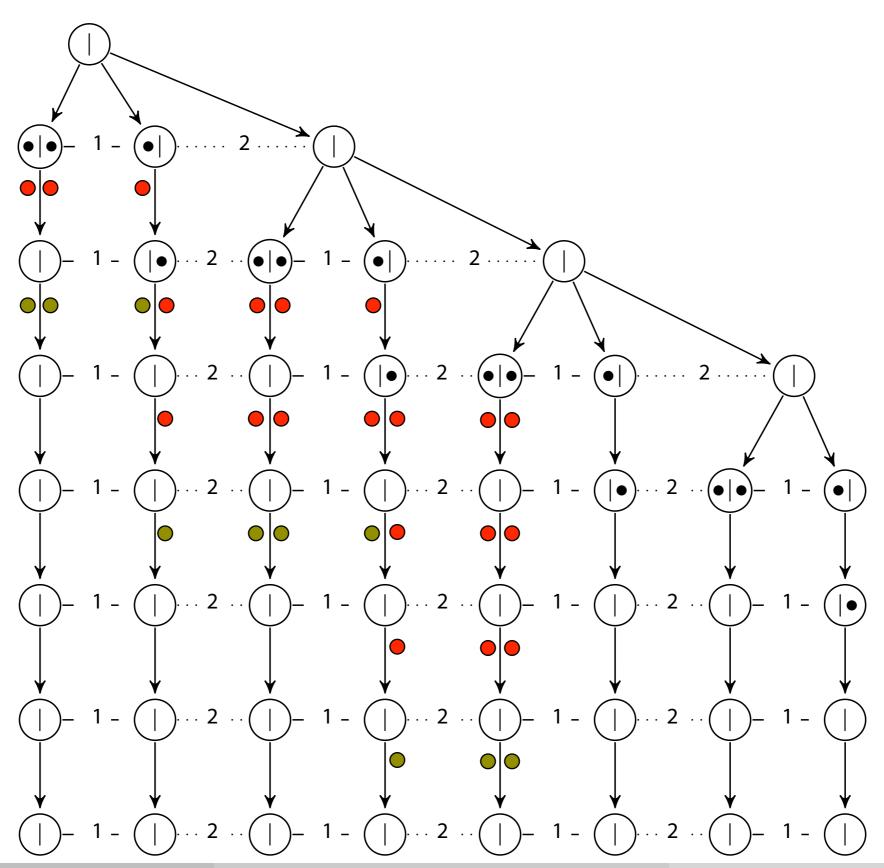


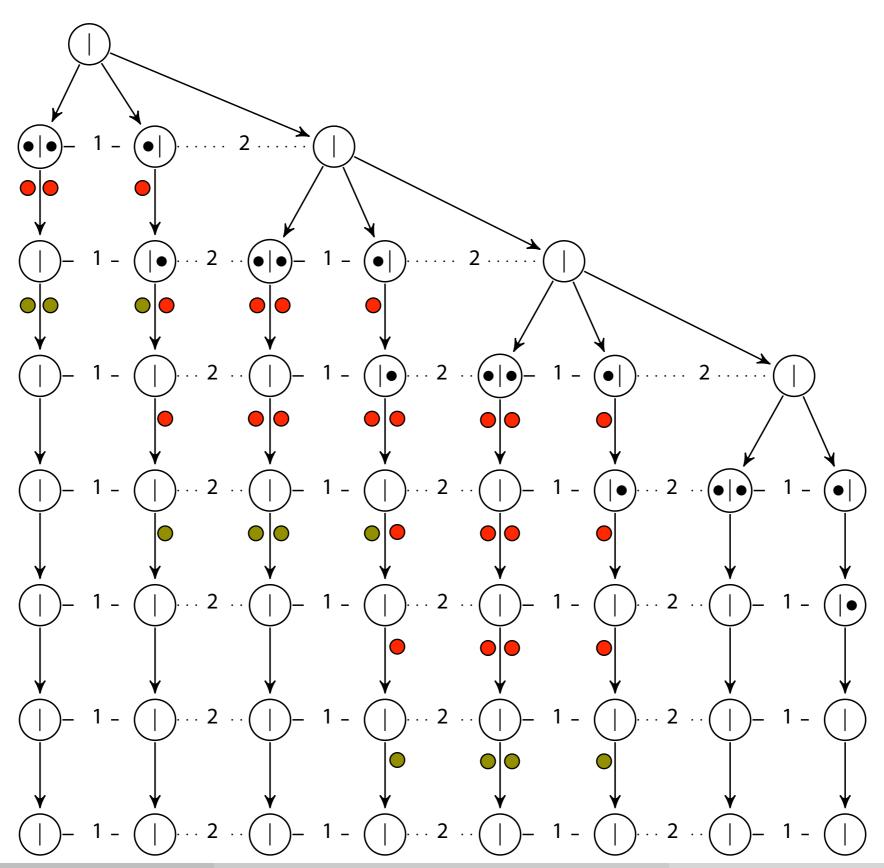


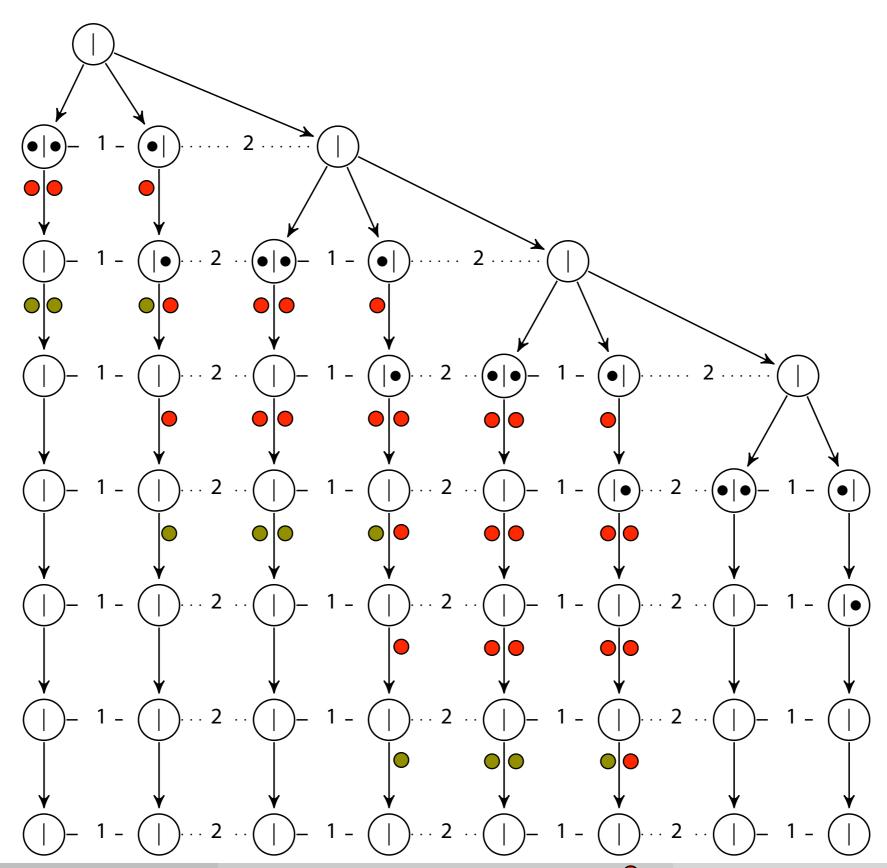


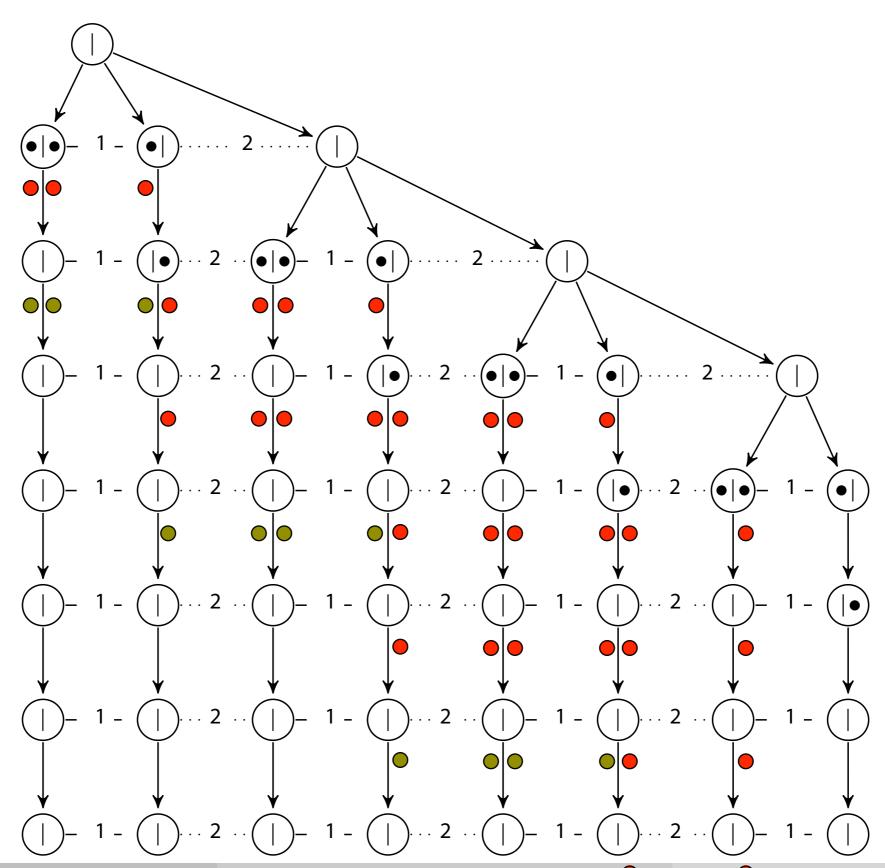




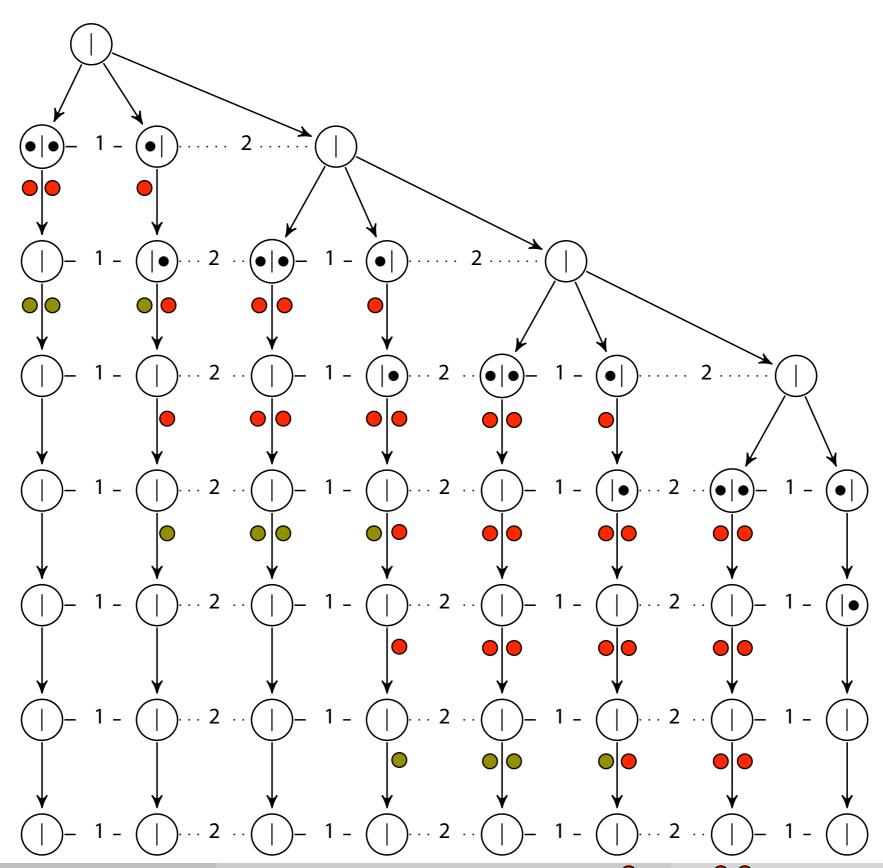








D. Berwanger (LSV)



D. Berwanger (LSV)

Undecidability

Game for a Turing machine $\mathcal{M} = (Q, \Sigma, q_0, \delta, F)$

Two players, action sequences should encode configurations $\in \Sigma^*(q, c)\Sigma^*$

- Actions $\Sigma \cup (Q \times \Sigma)$
- Observations ∘, •

Game graph almost as before. $\begin{cases} s^1(1) = \text{Init} \\ s^0(n) = s^1(n) \\ s^1(n+1) \vdash s^0(n) \end{cases}$

- ► Final states unsafe: winning strategy, if machine never halts.
- ► Final states loop: finite-memory winnning strategy if machine halts.

Interim Summary

- There are finite games where the grand coalition can win, but not with a finite-memory strategy.
- ► The question of whether the winning coalition has a winning strategy is undecidable, even when restricted to finite-memory strategies.
- ► There are classes of finite games where grand coalition has finite-memory winning strategies, but their memory requirement cannot be bounded by any computable function.

Bisimulation

Bisimulation on a game graph $G = (V, \Delta, \beta^i, \gamma)$.

- relation $Z \subseteq V \times V$ such that, whenever $(v, v') \in Z$,
- $ightharpoonup \gamma(v) = \gamma(v'); \quad \beta^i(v) = \beta^i(v') \text{ for all } i$
- ▶ for all w with $v \xrightarrow{a} w$ there exists w' with $v' \xrightarrow{a} w'$ and $(w, w') \in Z$
- ▶ for all w' with $v' \xrightarrow{a} w'$ there exists w with $v \xrightarrow{a} w$ and $(w, w') \in Z$

Maximal bisimulation \simeq -- equivalence, quotient G/\simeq .

The tracking of a game

Idea: Regard indistinguishability \sim^i in extensive form as a (symmetric) edge relation $\stackrel{i}{\leadsto}$.

- ightharpoonup Expand unravelling of G with $\stackrel{i}{\leadsto}$;
- ightharpoonup Take maxmial bisimulation \simeq on this expansion;
- ▶ Tracking: quotient of unravelling of G under \simeq :

$$Tr(G) := Unr(G) / \simeq$$

Remark.

- ightharpoonup Tr(G) is bisimilar to G;
- the two games have the same extensive form

Main result

In every game with finite tracking the grand coalition has a winning strategy iff it has one with finite memory

Proof (1) - Knowledge equivalence in extensive form

In the extensive form:

- ightharpoonup winning strategies need not distinguish between \simeq bisimilar position.
- ightharpoonup cannot distinguish between \sim^i -indistinguishable positions.

Take $\approx^i := (\sim^i \cup \simeq)^*$ - transitive closure.

Lemma. If there exists a winning strategy profile, there also exists one s with $s^i(x) = s^i(y)$ whenever $x \approx^i y$.

Proof (2) - Projection to tracking

 \mathcal{K}^i = partition induced by \approx^i on unravelling.

 $K^i(\pi) \in \mathcal{K}^i$ class of initial play π

Lemma. $K^i(\pi)$ is positional in any tracked game: if π , π' end in the same position, then $K^i(\pi) = K^i(\pi')$.

ightharpoonup Project K^i to Tr(G).

Corollary. In $Tr(G, (K^i)_{i < n})$ the grand coalition has a memoryless (observation-based) strategy.

Proof (3) - automata for knowledge tracking

Lemma. For any game with finite tracking, there exists an automaton that recognises $K^{i}(\pi)$ upon input of the action and observation sequence of player i.

States are \approx^i -classes; construction on-the-fly.

▶ If the coalition has a winning strategy on *G*, this automaton yields a finite-memory implementation.

Conclusion

- Semidecision algorithm for *n*-player games with imperfect information
- Explanation for some known solvable instances:
 - one player against environment;
 - players with hierarchical observations: $\beta^i(v) = \beta^i(v') \implies \beta^j(v) = \beta^j(v')$, for all j > i;
 - halting Turing machines
- The question whether the tracking of the game is finite is undecidable.

Outlook

Result is not yet tight.

Revision of classical impossibility notion:

- optimal strategies do exist and can be constructed for any finite stage;
- infinite memory may be simple (one-counter?)