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Counting in formulas

Consider an ATM, and the property:
“Three mistakes forbid cash retrieval”
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Counting in formulas

Consider an ATM, and the property:
“Three mistakes forbid cash retrieval”

o In CTL:
—|EF(error A EXEF (error A EXEF(error A EFmoney)))

or: ~EF(error A EFs(error A EFs(error A EFmoney)))
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Counting in formulas

Consider an ATM, and the property:
“Three mistakes forbid cash retrieval”

o In CTL:
—|EF<error A EXEF (error A EXEF(error A EFmoney)))

or: —\EF(error A EFs(error A EFg(error A EFmoney)))

o With counting:
_‘EF[ﬁerror23] money
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Counting in formulas

“Whenever the PIN is locked, at least three erroneous attempts
have been made”
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Counting in formulas

“Whenever the PIN is locked, at least three erroneous attempts
have been made”

o In CTL:

—E-errorUlockA
—E—errorU(error A EXE-errorUlock)A
—E-errorU (error N EXE—errorU
(error A EXE-errorUlock))
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Counting in formulas

“Whenever the PIN is locked, at least three erroneous attempts
have been made”

o In CTL:

—E-errorUlockA
—E—errorU(error A EXE-errorUlock)A
—E-errorU (error N EXE—errorU
(error A EXE-errorUlock))

o With counting:
_‘EF[ﬂerror§2] lock
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Counting in formulas

Other examples:

EFsexpb<2 A tok>10Ps  EF[tok—tbaa>10/P;  AG[10-tok<300-tbad] L - - -
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Counting in formulas

Other examples:

EFsexpb<2 A tok>10Ps  EF[tok—tbaa>10/P;  AG[10-tok<300-tbad] L - - -

CCTL = CTL + counting constraints of the form

14 m

Z aj - foi — Z Bi - i ~ k

i=1 i=1

(and all sensible restrictions: /=1, m=0,m=1,a;=03;=1,...)
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Counting temporal logics

o LTL with regular expressions containing quantitative
constraints [Emerson, Trefler 97] ~~ exponential algorithms in
|®| and the value of constants.

o CTL with constraints (with parameters) [Emerson, Trefler 99|
Constraints as positive boolean combinations of > . P; < ¢

o Model-checking E_U_is NP-complete
o Polynomial algorithm given for a restricted logic

o Branching-time temporal logic with general counting
constraints (using freeze variables): undecidable [Yang, Mok,
Wang 97].

o LTL and CTL with Presburger constraints [Bouajjani,
Echahed, Habermehl 95] for infinite state processes

o

(timed extensions. . .)
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@ CCTL

@ Expressiveness

© Model checking

O Freeze variables
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Counting CTL

Given (,k € N, k' € Z and ~€ {<,<,=,>,>}, we define:

CodC i=fp~k C23 C = (o — ) ~ K
€13 C o= (Tiy i) ~ k €33 C = (Tiig i) ~ K
aC; > C = (Zle ai - §pi) ~ k aC3 > C = (Zf:l Bi - i) ~ k
a; €N B; € Z
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Counting CTL

Given (,k € N, k' € Z and ~€ {<,<,=,>,>}, we define:

Co>C i=tp~k C23 C u=(fp — ) ~ k'
€13 C o= (Tiy i) ~ k €33 C = (Tiig i) ~ K
al13C = (Zle a; - foi) ~ k aC3 > C = (Zle Bi - 4pi) ~ k
a; €N B; € Z

For each C, B(C) = boolean combinations of constraints in C

Definition
Let C be a set of constraints as above, the syntax of CCTL¢ is:

0, = Pl oAy | = | EpUicy | ApUicy

where P € AP (atomic propositions), C € C
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Counting CTL

CCTL formulas are interpreted over states of Kripke structures

S=(Q,R,?)

o @ is a finite set of states
o RC @ x Q is a complete edge relation

o ¢:Q — 2”P is a labeling of states with atomic propositions

No costs, no weights, (no probabilities), no time ...!
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Counting CTL

Semantics of constraints
Let 7 be a finite run, 7 |= C depends on the interpretation of f¢

over .
def

|7r\¢ =

{lo<j<ln| Aw()E e}

CCTL semantics
q = EpUicyp iff 3p € Runs(q), 3k > 0, p(k) = ¢,
pl—1 = C, and YO < i < k, p(i) = ¢

q = ApUiay iff Vp € Runs(q), 3k =0, p(k) =,
pl—1 = C, and YO < i < k, p(i) ¢
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Examples of formulas

o EXp £ EFp o9
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Examples of formulas

o EXp £ EFp o9

def

° BV = EFpcns-p)-q¥
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Examples of formulas

o EXp £ EFp o9

def

° BV = EFpcns-p)-q¥
o EpUcstp & E@Upickos1 — (TCTL over KSs with tick).
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Examples of formulas

def

EXQD = EF[tT:l] %)

o

def

EpUic1d = EFfcns-o)—¢

EoU_sy) & E@Upickos1 — (TCTL over KSs with tick).
For an ATM: "“it is not possible to get money when three
mistakes are made in the same session”:

[¢]

[¢]

o

AG <_‘ EF[jerrorZ?m/\treset:O]moneY)
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Examples of formulas

def

o EXp = EFpr_q¢

def

° BV = EFpcns-p)-q¥

o EpUcstp & E@Upickos1 — (TCTL over KSs with tick).

o For an ATM: “it is not possible to get money when three
mistakes are made in the same session” :

AG (_‘ EF[jerror23/\treset:0]moneY)

o AG (EF(exararn)<5)init ) “It is always possible to reach
init along a path where less than 5 states have an alarm
state as successor.”
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Examples of formulas

o The bounded waiting property with bound 10 for a mutual
exclusion algorithm with n processes:

AG /\ (request,- = _‘EF[Zm ;csj>10/\:cs;:o]T)

]
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Examples of formulas
o The bounded waiting property with bound 10 for a mutual
exclusion algorithm with n processes:
AG /\ (request,- = —'EF[Z#,. ;cs/->10/\:cs,-:o]T)
1

o “The number of receive events can not exceed the number of
send events":

AG [tsend —treceive<0] 1
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Examples of formulas

o The bounded waiting property with bound 10 for a mutual
exclusion algorithm with n processes:

AG /\ (request,- = _‘EF[Zﬁ; ;csj>10/\:cs;:o]T)

o “The number of receive events can not exceed the number of
send events":

AG [tsend —treceive<0] 1

o Quantitative fairness: “The ;'s occur infinitely often along
every run and there is no sub-run where ¢ holds for more
than 10 states and 5 holds for less than 4 states”:

AGAF[p 5<0 <10 T
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Expressiveness

B(aC1) : AV St o - oy ~ k aCy o —tp ~ k

Proposition
Any CCTLp(ac,) formula can be translated into CTL.

Idea: manually count occurrences of events using nested U
modalities and consider all possible shuffles of such occurrences.
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Expressiveness

B(acy) : /\\/Z, 1@ i~k aCy e — i ~ k

Proposition
Any CCTLp(ac,) formula can be translated into CTL.
Idea: manually count occurrences of events using nested U

modalities and consider all possible shuffles of such occurrences.

Proposition

The CCTlL¢, formula ¢ = AGpa_:5-0)-L cannot be translated into
CTL.

Idea: the set of models of any CTL formula can be recognized by
an alternating tree automaton. This is not the case for ¢.
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Succinctness

BaCy): AV iy ai - Bpi ~ k

CCTLp(ac,) formulas can be translated into CTL, but in these
constraints, there are three potential sources of concision:

o Binary encoding of constants
o Boolean combinations in constraints

o Sums of counting expressions
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Succinctness

BaCy): AV iy ai - Bpi ~ k

CCTLp(ac,) formulas can be translated into CTL, but in these
constraints, there are three potential sources of concision:

o Binary encoding of constants
o Boolean combinations in constraints

o Sums of counting expressions

Only the first two yield an exponential improvement in succinctness
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Succinctness — Binary encoding

Co:fip~k

The previous translation of EF[; 4B into CTL yields an
exponential formula (it uses k nested modalities)
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Succinctness — Binary encoding

Co:fip~k

The previous translation of EF[; 4B into CTL yields an
exponential formula (it uses k nested modalities)

Proposition
CCTL¢, can be exponentially more succinct than CTL

Idea: TCTL formulas EF-xA and EF< A do not admit any

equivalent CTL formula of temporal height less than k
[Laroussinie, Schnoebelen, Turuani 01]
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Succinctness — Boolean combinations

B(Co) : AV e ~ k

Proposition
CCTLp(cy) with unary encoding of integers can be exponentially
more succinct than CTL.
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Succinctness — Boolean combinations

B(Co) : AV e ~ k

Proposition
CCTLp(cy) with unary encoding of integers can be exponentially
more succinct than CTL.

Idea: any CTL formula equivalent to :
¥ = E(FPoA...AF P,)
must be of length exponential in n [Wilke 99, Adler, Immerman 03]
¥ = EFp epg T
(binary encoding of constants not needed)
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Succinctness — Sums

Cr: Z,’ i~ k
Proposition

For every formula ® € CCTL¢, with unary encoding, there exists
an equivalent CTL formula of DAG-size polynomial in |®|.
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Succinctness — Sums
C1: Zi i~ k

Proposition
For every formula ® € CCTL¢, with unary encoding, there exists
an equivalent CTL formula of DAG-size polynomial in |®|.

Example: ® = EFs- 4p_kA is equivalent to Wk with:

v, & E(A; POU(V, Pi A G t) (k> 0)

def

Vo ZE(\,PHIUA W = L

Bric = (PiA Bk 1i017) V (PiABkiin) (i < n)
BinT 2 (P ANEX V1) V (Py AEX W)

def

Br,n, L = Pn NEX W,
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Comparison with Past

Counting constraints deal with past events !

We could use past-time modalities:

AG(money = - F;'(error A F;'(error A F;'error)))
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Comparison with Past

Counting constraints deal with past events !

We could use past-time modalities:
AG(money = - F;'(error A F;'(error A F;'error)))

+ Past-time modalities allow us to express properties over the
ordering of the events.

+ They (often) increase the expressive power (compared to
CTL).

+ Boolean combinations are directly handled. ..

— Counting constraints are still more succinct.
— Complexity (model-checking CTL + F~ is PSPACE-complete)
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Model checking CCTL¢, and CCTLg,

CCTLe, : o ~ k CCTle, : (Xiey fpi) ~ k

Theorem
Model-checking CCTL¢, and CCTL¢, is P-complete

Idea: Reduction to a model-checking problem for TCTL formulas
over Kripke structures with 0/1 durations
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Model checking CCTL¢, and CCTLg,

Example: § = (Q, R, ), and ® = EpUpp, . p, ¥

@~ @=FP1 AP

Antoine Meyer Counting CTL — 40



Model checking CCTL¢, and CCTLg,

Example: § = (Q, R, ), and ® = EpUpp, . p, ¥
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Model-checking CCTL,

Proof: § = (Q, R, {), and ® = EypU[)’ with C = Zf:l fpi ~ k

def

Vae Q: [qlc = [{il gk v}

We build the DKSY? &' = (Q', R', ') as follows:
° Q F QUUgeolai|0<i<lglc}.

o RE{q-% qo} U{g — gis1 | i <lalc}
0
U{g — q |(g9.49") € R,n=q|c},
o l'(g)) =2 and {'(q) = £(q) U {ok}
p s YUy’ if and only if § s (ok = 1)Uy (ok A 9)
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Model-checking CCTLe,

CCTLe, = (bp — ) ~ k

Theorem
The model-checking problem for CCTLc, is P-complete
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Model-checking CCTLg,

CCTLe, = (B —t) ~ k

Theorem
The model-checking problem for CCTLc, is P-complete

Let S € (Q,R,0)

Case 1: ® = E¢/Ujqy’ with C = (fp — £0) ~ k

Vg € Q, we define |q|¢c € {-1,0,1}
Let Gs = (S', R', w) be the weighted graph such that:

o S’ contains only S states satisfying E’Uv)/;
o R"is R restricted to S’ x §;
o w(q,q") = |g|c if g |= ¢/, and 0 otherwise
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Model-checking CCTLg,

C (4o — #1)) < k: shortest paths in Gg + reachability of
negative cycles

C = (o — ) = k with k >0

Compute Ry = {(q,q') € S | 3o, |qoq'|c = k} as follows:
° Rk = Rik2) - Rik2) - Rk mod 2)
o RLE R, X R
o Ry is the least solution of:

X=(S)uX (-5 x —Su=tx 5. x

= q = $iff (q,q") € Rk for some ¢’ satisfying ¢’
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Model-checking CCTLe,

C (4o — #1)) < k: shortest paths in Gg + reachability of
negative cycles
C = (o — ) = k with k >0

Compute Ry = {(q,q') € S | 3o, |qoq'|c = k} as follows:
° Rk = Rik2) - Rik2) - Rk mod 2)
o RLE R, X R
o Ry is the least solution of:

X=(S)uX (-5 x —Su=tx 5. x

= q = $iff (q,q") € Rk for some ¢’ satisfying ¢’

Case 2: & & EGcagpr=o¥s - ..
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Model-checking CCTL,

CCTLe, : (X, £ - o)) ~ k

Theorem
The model-checking problem for and CCTL¢, is P-complete

Each state contributes to a cost d € {—M, ..., M} with M < |C|:
same technique as previously
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Model-checking CCTLB(CO)

B(Co) : AV iy ~ k

Theorem
The model-checking problem for CCTLp ) is A2P -hard

Reduction from SNSAT (derived from the reduction done for
CTL™ [Laroussinie, Markey, Schnoebelen 01]

SNSAT: collection of equations z; = 3X.p;(z1,...,z_1,X)
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Model-checking CCTL,¢,
aCy (Zle aj-foi) ~ k, ajeN

Theorem
The model-checking problem for CCTLyc, is A2P -hard
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Model-checking CCTL,¢,
aCy (lele aj-foi) ~ k, ajeN

Theorem
The model-checking problem for CCTLyc, is A2P -hard

Reduction from the model-checking problem for TCTL over Kripke
structures with integer durations (DKS)

Let S = (Q, Rs, ¢) be a DKS

For every transition g LN g  in S, we add a new state between g
and ¢’ and labeled with only P,
The TCTL formula EpU.m is replaced by:

E(ok = @) Ui (okA%)  with Cd:ede-ijde
dew
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Model-checking CCTLg(ac;)

B(aC1) : V N(Zizy i - tpi) ~ k, aj € N

Theorem
The model-checking problem for CCTLgc,) Is in AP
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Model-checking CCTLB(ch)

BaCy) - VA(Tiy i i) ~ ko € N

Theorem
The model-checking problem for CCTLgc,) Is in AP

Based on the Parikh image of the runs satisfying EFj¢

o we can assume that |p| is in O(|@| - 2/¢1);

o check in polynomial time that a guessed Parikh image
corresponds to some path;

o check that it verifies the formula

For EG[¢jY we are looking at infinite runs, but (3 a; - §i) ~ k
may change its truth value at most twice
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Model-checking CCTLB(C2)

B(Ca) - ANV (tp — 1) ~ k

Theorem
The model-checking problem for CCTLgc,) is undecidable

Reduction from the halting problem of a two-counter machine M :
M does not halt if and only if g1 =s,, EGjc)L with:
C ¥ (thalt > 1) V Cpag

\/Xe{c,D}( (Hox — fex < 0)
V (e — fox > 0 A tkox — fokx > 0))

def
Chad =
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O Freeze variables
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CCTL with freeze variables
Definition
Let V be a set of variables.
CCTLY > g, = P [ oAy | —p | z[Y].o | C | EpUy | ApUy

where P € AP and C is a constraint Zle o zZp~C
with z; € V, aj,c € N, and ~€ {<,<,=,>,>}.
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CCTL with freeze variables
Definition
Let V be a set of variables.
CCTL > 9,0 u= P [ oAY | = | z[v].p | C | EoUy | ApUy

where P € AP and C is a constraint Zle o zZp~C
with z; € V, aj,c € N, and ~€ {<,<,=,>,>}.

For example:

EFppsnip-oA = 2[Pl.Z[PEF(z <572 > 21 A)
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CCTL with freeze variables

Definition
Let V be a set of variables.

CCTL > 9,0 u= P [ oAY | = | z[v].p | C | EoUy | ApUy

where P € AP and C is a constraint Zle o zZp~C
with z; € V, aj,c € N, and ~€ {<,<,=,>,>}.

For example:

EFppsnip-oA = 2[Pl.Z[PEF(z <572 > 21 A)

Theorem
Model checking closed CCTLY formulas is PSPACE-complete.
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Conclusion

P-complete AS-complete
4 N N
b~k At ~ k
T~ T Undecidable
(B — ) ~ k A — ty) ~ k
(Ztp) ~ k N(Zate) ~ k
\ \
\
T + ) ~ k T + ) ~ k
9 (Z+tp) . A(Z £ )
N ~ k N .y
(e AEate) ~ |
/ ~ - " \\ \
EXPTIME 5 | (X £ aftp) ~ k - N(E £ afp) ~ k
S ____ 4 .
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