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Counting in formulas

Consider an ATM, and the property:
“Three mistakes forbid cash retrieval”

◦ In CTL:

¬EF
(
error ∧ EXEF

(
error ∧ EXEF(error ∧ EFmoney)

))
or: ¬EF

(
error ∧ EFs

(
error ∧ EFs(error ∧ EFmoney)

))
◦ With counting:

¬EF[]error≥3] money
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Counting in formulas

“Whenever the PIN is locked, at least three erroneous attempts
have been made”

◦ In CTL:

¬E¬errorUlock∧
¬E¬errorU(error ∧ EXE¬errorUlock)∧

¬E¬errorU
(
error ∧ EXE¬errorU

(error ∧ EXE¬errorUlock)
)

◦ With counting:
¬EF[]error≤2] lock
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Counting in formulas

Other examples:

EF[]EXPb<2 ∧ ]ok>10]P, EF[]ok−]bad>10]P, AG[10·]ok<300·]bad]⊥, . . .

CCTL = CTL + counting constraints of the form

∑̀
i=1

αi · ]ϕi −
m∑

i=1

βi · ]ψi ∼ k

(and all sensible restrictions: ` = 1,m = 0,m = 1, αi = βi = 1, . . .)
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Counting temporal logics

◦ LTL with regular expressions containing quantitative
constraints [Emerson,Trefler 97]  exponential algorithms in
|Φ| and the value of constants.

◦ CTL with constraints (with parameters) [Emerson, Trefler 99]
Constraints as positive boolean combinations of

∑
i Pi ≤ c

◦ Model-checking E U is NP-complete
◦ Polynomial algorithm given for a restricted logic

◦ Branching-time temporal logic with general counting
constraints (using freeze variables): undecidable [Yang, Mok,
Wang 97].

◦ LTL and CTL with Presburger constraints [Bouajjani,
Echahed, Habermehl 95] for infinite state processes

◦ (timed extensions. . . )
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Outline

1 CCTL

2 Expressiveness

3 Model checking

4 Freeze variables
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Counting CTL

Given `, k ∈ N, k ′ ∈ Z and ∼∈ {<,≤,=,≥, >}, we define:

C0 3 C ::= ]ϕ ∼ k C2 3 C ::= (]ϕ− ]ψ) ∼ k ′

C1 3 C ::= (
∑`

i=1 ]ϕi ) ∼ k C3 3 C ::= (
∑`

i=1±]ϕi ) ∼ k ′

αC1 3 C ::= (
∑`

i=1 αi · ]ϕi ) ∼ k αC3 3 C ::= (
∑`

i=1 βi · ]ϕi ) ∼ k

αi ∈ N βi ∈ Z

For each C, B(C) = boolean combinations of constraints in C

Definition
Let C be a set of constraints as above, the syntax of CCTLC is:

ϕ,ψ ::= P | ϕ ∧ ψ | ¬ϕ | EϕU[C ]ψ | AϕU[C ]ψ

where P ∈ AP (atomic propositions), C ∈ C
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Counting CTL

CCTL formulas are interpreted over states of Kripke structures

S = 〈Q,R, `〉

◦ Q is a finite set of states

◦ R ⊆ Q × Q is a complete edge relation

◦ ` : Q → 2AP is a labeling of states with atomic propositions

No costs, no weights, (no probabilities), no time . . . !
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Counting CTL

Semantics of constraints
Let π be a finite run, π |= C depends on the interpretation of ]ϕ
over π:

|π|ϕ
def
=
∣∣{j | 0 ≤ j ≤ |π| ∧ π(j) |= ϕ}

∣∣
CCTL semantics

q |= EϕU[C ]ψ iff ∃ρ ∈ Runs(q), ∃k ≥ 0, ρ(k) |= ψ,

ρ|k−1 |= C , and ∀0 ≤ i < k, ρ(i) |= ϕ

q |= AϕU[C ]ψ iff ∀ρ ∈ Runs(q), ∃k ≥ 0, ρ(k) |= ψ,

ρ|k−1 |= C , and ∀0 ≤ i < k , ρ(i) |= ϕ
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Examples of formulas

◦ EX ϕ
def
= EF[]>=1] ϕ

◦ EϕU[C ]ψ
def
= EF[C∧](¬ϕ)=0]ψ

◦ EϕU<5ψ
def
= EϕU[]tick<5]ψ – (TCTL over KSs with tick).

◦ For an ATM: “it is not possible to get money when three
mistakes are made in the same session”:

AG
(
¬EF[]error≥3∧]reset=0]money

)
◦ AG ( EF[](EXalarm)≤5]init ) “It is always possible to reach
init along a path where less than 5 states have an alarm
state as successor.”
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Examples of formulas

◦ The bounded waiting property with bound 10 for a mutual
exclusion algorithm with n processes:

AG
∧
i

(
requesti ⇒ ¬EF[

P
j 6=i ]CSj>10∧]CSi=0]>

)

◦ “The number of receive events can not exceed the number of
send events”:

AG[]send−]receive<0]⊥

◦ Quantitative fairness: “The ϕi ’s occur infinitely often along
every run and there is no sub-run where ϕ1 holds for more
than 10 states and ϕ2 holds for less than 4 states”:

AG AF[
V

i 5≤]ϕi≤10]>
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Outline
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Expressiveness

B(αC1) :
∧∨∑`

i=1 αi · ]ϕi ∼ k αC2 : ]ϕ− ]ψ ∼ k

Proposition

Any CCTLB(αC1) formula can be translated into CTL.

Idea: manually count occurrences of events using nested U
modalities and consider all possible shuffles of such occurrences.

Proposition

The CCTLC2 formula ϕ = AG[]A−]B<0]⊥ cannot be translated into
CTL.

Idea: the set of models of any CTL formula can be recognized by
an alternating tree automaton. This is not the case for ϕ.
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Succinctness

B(αC1) :
∧∨∑`

i=1 αi · ]ϕi ∼ k

CCTLB(αC1) formulas can be translated into CTL, but in these
constraints, there are three potential sources of concision:

◦ Binary encoding of constants

◦ Boolean combinations in constraints

◦ Sums of counting expressions

Only the first two yield an exponential improvement in succinctness
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Succinctness – Binary encoding

C0 : ]ϕ ∼ k

The previous translation of EF[]A=k]B into CTL yields an
exponential formula (it uses k nested modalities)

Proposition

CCTLC0 can be exponentially more succinct than CTL

Idea: TCTL formulas EF<kA and EF>kA do not admit any
equivalent CTL formula of temporal height less than k
[Laroussinie, Schnoebelen, Turuani 01]
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Succinctness – Boolean combinations

B(C0) :
∧∨

]ϕ ∼ k

Proposition

CCTLB(C0) with unary encoding of integers can be exponentially
more succinct than CTL.

Idea: any CTL formula equivalent to ψ:

ψ = E(F P0 ∧ . . . ∧ F Pn)

must be of length exponential in n [Wilke 99, Adler, Immerman 03]

ψ ≡ EF[
V

i ]Pi≥1]>

(binary encoding of constants not needed)
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Succinctness – Sums

C1 :
∑

i ]ϕi ∼ k

Proposition

For every formula Φ ∈ CCTLC1 with unary encoding, there exists
an equivalent CTL formula of DAG-size polynomial in |Φ|.

Example: Φ = EFP
i ]Pi=KA is equivalent to ΨK with:

Ψk
def
= E

(∧
i P̄i

)
U
(∨

i Pi ∧ βk,1,⊥
)

(k > 0)

Ψ0
def
= E

(∧
i P̄i

)
U A Ψ−1

def
= ⊥

βk,i ,ε
def
= (Pi ∧ βk−1,i+1,>) ∨ (P̄i ∧ βk,i+1,ε) (i < n)

βk,n,>
def
= (Pn ∧ EX Ψk−1) ∨ (P̄n ∧ EX Ψk)

βk,n,⊥
def
= Pn ∧ EX Ψk−1
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Comparison with Past

Counting constraints deal with past events !

We could use past-time modalities:

AG
(
money ⇒ ¬ F−1

s (error ∧ F−1
s (error ∧ F−1

s error))
)

+ Past-time modalities allow us to express properties over the
ordering of the events.

+ They (often) increase the expressive power (compared to
CTL).

+ Boolean combinations are directly handled. . .

− Counting constraints are still more succinct.

− Complexity (model-checking CTL + F−1 is PSPACE-complete)
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Model checking CCTLC0 and CCTLC1

CCTLC0 : ]ϕ ∼ k CCTLC1 : (
∑`

i=1 ]ϕi ) ∼ k

Theorem
Model-checking CCTLC1 and CCTLC0 is P-complete

Idea: Reduction to a model-checking problem for TCTL formulas
over Kripke structures with 0/1 durations
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Model checking CCTLC0 and CCTLC1

Example: S = (Q,R, `), and Φ = EϕU[]P1+]P2∼k]ψ

|= P1 |= P1 ∧ P2

• •
•

•
••

•

••

•
•

1

1
1

1
1

Antoine Meyer Counting CTL – 40



Model checking CCTLC0 and CCTLC1

Example: S = (Q,R, `), and Φ = EϕU[]P1+]P2∼k]ψ

|= P1 |= P1 ∧ P2

• •
•

•
••

•

••

•
•

1

1
1

1
1

Antoine Meyer Counting CTL – 41



Model-checking CCTLC1

Proof: S = (Q,R, `), and Φ = EψU[C ]ψ
′ with C

def
=
∑`

i=1 ]ϕi ∼ k

∀q ∈ Q: |q|C
def
=
∣∣{i | q |= ϕi}

∣∣
We build the DKS0/1 S ′ = (Q ′,R ′, `′) as follows:

◦ Q ′
def
= Q ∪

⋃
q∈Q{qi | 0 ≤ i ≤ |q|C},

◦ R ′
def
= {q 0−→ q0} ∪ {qi

1−→ qi+1 | i < |q|C}
∪ {qn

0−→ q′ | (q, q′) ∈ R, n = |q|C},
◦ `′(qi ) = ∅ and `′(q) = `(q) ∪ {ok}

ρ |=S ψU[C ]ψ
′ if and only if ρ̃ |=S′ (ok⇒ ψ)U[∼k](ok ∧ ψ′)
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Model-checking CCTLC2

CCTLC2 : (]ϕ− ]ψ) ∼ k

Theorem
The model-checking problem for CCTLC2 is P-complete

Let S def
= (Q,R, `)

Case 1: Φ
def
= Eϕ′U[C ]ψ

′ with C
def
= (]ϕ− ]ψ) ∼ k

∀q ∈ Q, we define |q|C ∈ {−1, 0, 1}
Let GS = (S ′,R ′,w) be the weighted graph such that:

◦ S ′ contains only S states satisfying Eϕ′Uψ′;

◦ R ′ is R restricted to S ′ × S ′;

◦ w(q, q′)
def
= |q|C if q |= ϕ′, and 0 otherwise

Antoine Meyer Counting CTL – 43



Model-checking CCTLC2

CCTLC2 : (]ϕ− ]ψ) ∼ k

Theorem
The model-checking problem for CCTLC2 is P-complete

Let S def
= (Q,R, `)

Case 1: Φ
def
= Eϕ′U[C ]ψ

′ with C
def
= (]ϕ− ]ψ) ∼ k

∀q ∈ Q, we define |q|C ∈ {−1, 0, 1}
Let GS = (S ′,R ′,w) be the weighted graph such that:

◦ S ′ contains only S states satisfying Eϕ′Uψ′;

◦ R ′ is R restricted to S ′ × S ′;

◦ w(q, q′)
def
= |q|C if q |= ϕ′, and 0 otherwise

Antoine Meyer Counting CTL – 44



Model-checking CCTLC2

C
def
= (]ϕ− ]ψ) ≤ k : shortest paths in GS + reachability of

negative cycles

C
def
= (]ϕ− ]ψ) = k : with k ≥ 0

Compute Rk
def
= {(q, q′) ∈ S ′2 | ∃σ, |qσq′|C = k} as follows:

◦ Rk = Rbk/2c · Rbk/2c · R(k mod 2)

◦ R1
def
= R0·

1−→ ·R0

◦ R0 is the least solution of:

X = (
0−→)∗ ∪ X · ( 1−→ ·X · −1−→ ∪ −1−→ ·X · 1−→) · X

⇒ q |= Φ iff (q, q′) ∈ Rk for some q′ satisfying ψ′

Case 2: Φ
def
= EG[C∧]ϕ′=0]ψ

′: . . .
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Model-checking CCTLC3

CCTLC3 : (
∑`

i=1± · ]ϕi ) ∼ k

Theorem
The model-checking problem for and CCTLC3 is P-complete

Each state contributes to a cost d ∈ {−M, . . . ,M} with M ≤ |C |:
same technique as previously
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Model-checking CCTLB(C0)

B(C0) :
∧∨

]ϕ ∼ k

Theorem
The model-checking problem for CCTLB(C0) is ∆P

2 -hard

Reduction from SNSAT (derived from the reduction done for
CTL+ [Laroussinie, Markey, Schnoebelen 01]

SNSAT: collection of equations zi = ∃X̄ .ϕi (z1, . . . , zi−1, X̄ )
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Model-checking CCTLαC1

αC1 : (
∑`

i=1 αi · ]ϕi ) ∼ k, αi ∈ N

Theorem
The model-checking problem for CCTLαC1 is ∆P

2 -hard

Reduction from the model-checking problem for TCTL over Kripke
structures with integer durations (DKS)

Let S = (Q,RS , `) be a DKS

For every transition q
k−→ q′ in S, we add a new state between q

and q′ and labeled with only Pk

The TCTL formula EϕU∼mψ is replaced by:

E(ok⇒ ϕ̃) U[C ] (ok ∧ ψ̃) with C
def
=
∑
d∈W

d · ]Pd ∼ m
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and q′ and labeled with only Pk

The TCTL formula EϕU∼mψ is replaced by:

E(ok⇒ ϕ̃) U[C ] (ok ∧ ψ̃) with C
def
=
∑
d∈W

d · ]Pd ∼ m
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Model-checking CCTLB(αC1)

B(αC1) :
∨∧

(
∑`

i=1 αi · ]ϕi ) ∼ k, αi ∈ N

Theorem
The model-checking problem for CCTLB(αC1) is in ∆P

2

Based on the Parikh image of the runs satisfying EF[C ]ψ

◦ we can assume that |ρ| is in O(|Q| · 2|C |);

◦ check in polynomial time that a guessed Parikh image
corresponds to some path;

◦ check that it verifies the formula

For EG[C ]ψ we are looking at infinite runs, but (
∑
αi · ]ϕi ) ∼ k

may change its truth value at most twice
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Model-checking CCTLB(C2)

B(C2) :
∧∨

(]ϕ− ]ψ) ∼ k

Theorem
The model-checking problem for CCTLB(C2) is undecidable

Reduction from the halting problem of a two-counter machine M :
M does not halt if and only if q1 |=SM EG[C ]⊥ with:

C
def
= (]halt ≥ 1) ∨ Cbad

Cbad
def
=
∨

X∈{C,D}
(

(]ϕ+
X − ]ϕ

−
X < 0)

∨ (]ϕ+
X − ]ϕ

−
X > 0 ∧ ]koX − ]okX > 0)

)
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CCTL with freeze variables

Definition
Let V be a set of variables.

CCTLv 3 ϕ,ψ ::= P | ϕ∧ψ | ¬ϕ | z [ψ].ϕ | C | EϕUψ | AϕUψ

where P ∈ AP and C is a constraint
∑`

i=1 αi · zi ∼ c
with zi ∈ V , αi , c ∈ N, and ∼∈ {<,≤,=,≥, >}.

For example:

EF[]P≤5∧]P′>2]A ≡ z [P].z ′[P ′].EF(z ≤ 5 ∧ z ′ > 2 ∧ A)

Theorem
Model checking closed CCTLv formulas is PSPACE-complete.

Antoine Meyer Counting CTL – 55



CCTL with freeze variables

Definition
Let V be a set of variables.

CCTLv 3 ϕ,ψ ::= P | ϕ∧ψ | ¬ϕ | z [ψ].ϕ | C | EϕUψ | AϕUψ

where P ∈ AP and C is a constraint
∑`

i=1 αi · zi ∼ c
with zi ∈ V , αi , c ∈ N, and ∼∈ {<,≤,=,≥, >}.

For example:

EF[]P≤5∧]P′>2]A ≡ z [P].z ′[P ′].EF(z ≤ 5 ∧ z ′ > 2 ∧ A)

Theorem
Model checking closed CCTLv formulas is PSPACE-complete.

Antoine Meyer Counting CTL – 56



CCTL with freeze variables

Definition
Let V be a set of variables.

CCTLv 3 ϕ,ψ ::= P | ϕ∧ψ | ¬ϕ | z [ψ].ϕ | C | EϕUψ | AϕUψ

where P ∈ AP and C is a constraint
∑`

i=1 αi · zi ∼ c
with zi ∈ V , αi , c ∈ N, and ∼∈ {<,≤,=,≥, >}.

For example:

EF[]P≤5∧]P′>2]A ≡ z [P].z ′[P ′].EF(z ≤ 5 ∧ z ′ > 2 ∧ A)

Theorem
Model checking closed CCTLv formulas is PSPACE-complete.

Antoine Meyer Counting CTL – 57



Conclusion

P-complete ∆P
2 -complete

Undecidable

EXPTIME 3

]ϕ ∼ k

(]ϕ− ]ψ) ∼ k

(Σ]ϕ) ∼ k

(Σ± ]ϕ) ∼ k

(Σα]ϕ) ∼ k

(Σ± α]ϕ) ∼ k

V
]ϕ ∼ k

V
(]ϕ− ]ψ) ∼ k

V
(Σα]ϕ) ∼ k

V
(Σ± ]ϕ) ∼ k

V
(Σα]ϕ) ∼ k

V
(Σ± α]ϕ) ∼ k
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