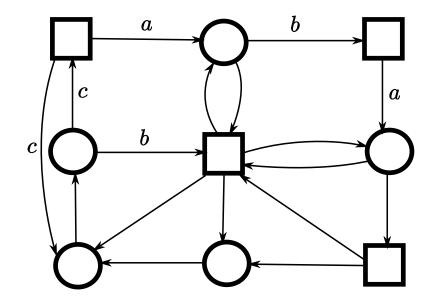
Positional equilibria in infinite perfect information games

Hugo Gimbert (LaBRI, CNRS), Wiesław Zielonka (LIAFA)

ACTS



Transition systems

$$\mathcal{A} = (S, \Delta)$$

S— a finite set of states, C— a set of colors, $\Delta \subset S \times C \times S$ — a finite set of *actions*.

$$e = (s, c, t) \in \Delta$$

s = source(e) — the source, t = target(e) — the target, $c = \gamma_C(e)$ — the colour of e.

$$\Delta(s) = \{ e \in \Delta \mid \text{source}(e) = s \}$$

the set of actions *available at* s.

s a sink state if $\Delta(s) \neq \emptyset$.

Paths/Plays

$$p = e_1 e_2 e_3 \dots$$
 $\forall i \ge 0, \operatorname{target}(e_i) = \operatorname{source}(e_{i+1}).$

$$\gamma_C(p) = \gamma_C(e_1e_2\ldots) = \gamma_C(e_1)\gamma_C(e_2)\ldots$$

Arenas

$$\mathcal{A} = (S, \Delta, \pi)$$

- (S, Δ) a transition system without sink states,
- $\pi: S \to {\min, \max}$ is a mapping designating for each state s the player $\pi(s)$ controlling s.

Outcomes

An outcome of an infinite play p is the $\gamma_C(p)$.

The set of outcomes

$$\mathcal{O}(C) = \bigcup_{\substack{B \subset C \\ B \text{ finite nonempty}}} B^{\omega}.$$

Preference relation

A binary relation \supseteq over the set $\mathcal{O}(C)$ of outcomes

• reflexive, i.e. $u \sqsupseteq u$, for all $u \in \mathcal{O}(C)$,

- transitive, i.e. $u \sqsupseteq v$ and $v \sqsupseteq w$ imply $u \sqsupseteq w$, for $u, v, w \in \mathcal{O}(C)$ and
- total, either $u \sqsupseteq v$ or $v \sqsupseteq u$, for all $u, v \in \mathcal{O}(C)$.

A preference relation = a total preorder relation over the set $\mathcal{O}(C)$ of outcomes.

Meaning

$$u \sqsupseteq v, \quad u, v \in \mathcal{O}(C).$$

u is no worse than v.

A player strictly prefers u to v, $u \sqsupset v$, if

 $u \sqsupseteq v$ but not $v \sqsupseteq u$.

If $u \sqsupseteq v$ and $v \sqsupseteq u$ — a player is indifferent between u and v.

 \sqsubseteq — the inverse of \supseteq .

Two-person strictly antagonistic game

 $(\mathcal{A}, \sqsupseteq),$

where \mathcal{A} is an arena and \supseteq is a preference relation for Max the preference relation for player Min is \sqsubseteq .

The obvious aim of each player is to obtain the most advantageous outcome with respect to his preference relation.

Preferences versus payoff mappings

Payoff mapping

$$f: \mathcal{O}(C) \to \mathbb{R} \cup \{-\infty, +\infty\}$$

induces preference \Box_f ,

 $u \sqsupseteq_f v$ if $f(u) \ge f(v)$.

Strategies and equilibria

 $\mathcal{A} = (S, \Delta, \pi)$ – an arena.

$$S_{\text{Max}} = \{ s \in S \mid \pi(s) = \text{Max} \}$$

states controlled by player ${\rm Max}$

$$S_{\mathrm{Min}} = S \setminus S_{\mathrm{Max}}$$

states controlled by player Min.

A strategy for player $\mu \in {Max, Min}$ is a mapping

 $\sigma_{\mu}: \{ p \in \mathscr{P}(\mathcal{A}) \mid \operatorname{target}(p) \in S_{\mu} \} \to \Delta,$

such that $\sigma_{\mu}(p) \in \Delta(s)$, where s = target(p).

Plays consistent with a strategy

 $p=e_0e_1e_2\ldots$ is consistent with player μ 's strategy σ_μ if, for each factorization p=p'p'', such that

• p'' is nonempty

• and $\operatorname{target}(p') = \operatorname{source}(p'')$ is controlled by player μ ,

 $\sigma_{\mu}(p')$ is the first action in p''.

Positional strategies

A *positional* (or memoryless) strategy for player μ

$$\sigma_{\mu}: S_{\mu} \to \Delta$$

such that, for all $s \in S_{\mu}$,

 $\sigma_{\mu}(s) \in \Delta(s)$

A strategy profile is a pair (σ, τ) of strategies.

 $p_{\mathcal{A},s}(\sigma,\tau)$

unique play with source s consistent with σ and $\tau.$

Equilibria

A Nash equilibrium $(\sigma^{\#}, \tau^{\#})$ if for all states $s \in S$ and all strategies σ and τ ,

$$\gamma_C(p_{\mathcal{A},s}(\sigma^{\#},\tau)) \sqsupseteq \gamma_C(p_{\mathcal{A},s}(\sigma^{\#},\tau^{\#})) \sqsupseteq \gamma_C(p_{\mathcal{A},s}(\sigma,\tau^{\#}))$$

An equilibrium $(\sigma^{\#}, \tau^{\#})$ is said to be *positional* if the strategies $\sigma^{\#}$ and $\tau^{\#}$ are positional.

Mean-payoff games

$$C = \mathbb{R} \times \mathbb{R}_+$$

$$(r_1, t_1)(r_2, t_2)(r_3, t_3) \dots \supseteq (r'_1, t'_1)(r'_2, t'_2)(r'_3, t'_3) \dots$$

if

$$\lim_{n} \frac{r_1 t_1 + r_2 t_2 + \dots + r_n t_n}{t_1 + t_2 + \dots + t_n} \ge \lim_{n} \frac{r'_1 t'_1 + r'_2 t'_2 + \dots + r'_n t'_n}{t'_1 + t'_2 + \dots + t'_n}$$

17

But then

 $1000, 1000, ..., 1000, 0^{\omega} \approx 0^{\omega}$

Overtaking

$$(r_1, t_1)(r_2, t_2)(r_3, t_3) \dots \sqsupseteq (r'_1, t'_1)(r'_2, t'_2)(r'_3, t'_3) \dots$$
 if

$$\exists N, \forall n > N, \quad \frac{r_1 t_1 + r_2 t_2 + \dots + r_n t_n}{t_1 + t_2 + \dots + t_n} \ge \frac{r'_1 t'_1 + r'_2 t'_2 + \dots + r'_n t'_n}{t'_1 + t'_2 + \dots + t'_n}$$

Weighted limits

$$C = \mathbb{R}, \quad \alpha \in [0, 1]$$

$$f_{\alpha}(r_1r_2r_3\ldots) = \alpha \cdot \limsup_i r_i + (1-\alpha) \cdot \liminf_i r_i$$

Extended preference relation and \succeq - equilibria

The extended preference relation \succeq is defined as follows:

for $x, y \in \mathcal{O}(C)$, $x \succeq y$ if $\forall u \in C^*, ux \sqsupseteq uy$.

Obviously, if $x \succeq y$ then $x \sqsupseteq y$.

 \succeq is transitive and reflexive, but maybe not total.

\succeq -equilibria

A strategy profile $(\sigma^{\#}, \tau^{\#})$ is a \succeq -equilibrium if for all strategies σ , τ

$$\gamma_C(p_{\mathcal{A},s}(\sigma^{\#},\tau)) \succeq \gamma_C(p_{\mathcal{A},s}(\sigma^{\#},\tau^{\#})) \succeq \gamma_C(p_{\mathcal{A},s}(\sigma,\tau^{\#})) \quad .$$

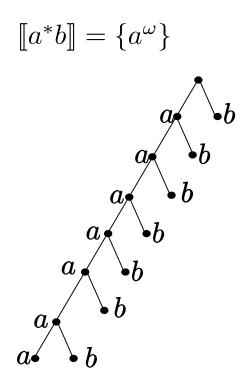
Adherence operator

$$\llbracket \ \rrbracket: 2^{C^*} \to 2^{C^\omega}$$

For $L \subseteq C^*$,

 $\llbracket L \rrbracket = \{ u \in C^{\omega} \mid \operatorname{Pref}(u) \subset \operatorname{Pref}(L) \} .$

Exercise



Why adherence?

 $\mathcal{A} = (S, \Delta)$ an arena. Then

$$L_s^{\omega}(\mathcal{A}) = \llbracket L_s(\mathcal{A}) \rrbracket$$

If $L \in \operatorname{Rec}(C^*)$ then $L_s^{\omega}(\mathcal{A}) = \llbracket L \rrbracket$ for some arena \mathcal{A} .

Properties of the adherence

Lemma 1. Let $L, M \subseteq C^*$ be finitely generated and $u \in C^*$. Then

$$\llbracket uL \rrbracket = u \llbracket L \rrbracket, \tag{1}$$

$$\llbracket \operatorname{Pref}(\llbracket M \rrbracket) \rrbracket = \llbracket M \rrbracket, \tag{2}$$

$$\llbracket L \cup M \rrbracket = \llbracket L \rrbracket \cup \llbracket M \rrbracket, \tag{3}$$

$$\llbracket LM \rrbracket = \llbracket L \rrbracket \cup L \llbracket M \rrbracket, \tag{4}$$

$$\llbracket L^* \rrbracket = (L \setminus \epsilon)^{\omega} \cup L^* \llbracket L \rrbracket \quad .$$
(5)

Conditions for positional equilibria

Let $u \in \mathcal{O}(C)$ and $X \subset \mathcal{O}(C)$.

Notation.

 $u \succeq X$

if, for all $x \in X$, $u \succeq x$.

Ultimately periodic infinite words

Let $u, w \in C^*$ and $v \in C^+$.

An infinite word of the form

 $uv^{\omega},$

is called *ultimately periodic*.

Simple periodic languages

Let $u, w \in C^*$ and $v \in C^+$.

 uv^*

Note

 $\llbracket uv^* \rrbracket = \{uv^\omega\}$

Union selection.

 \succeq satisfies *union selection* condition if, for all ultimately periodic words $u_1u_2^{\omega}$ and $v_1v_2^{\omega}$, either

$$u_1 u_2^{\omega} \succeq v_1 v_2^{\omega}$$

or

$$v_1 v_2^{\omega} \succeq u_1 u_2^{\omega}$$

We can rewrite this condition as

$$\exists x \in \{u_1 u_2^{\omega}, v_1 v_2^{\omega}\}, \quad x \succeq \llbracket u_1 u_2^* \cup v_1 v_2^* \rrbracket.$$

Product selection.

We say that \succeq satisfies *product selection* condition for player Max if, for all $u, v, w, z \in C^*$ such that |v| > 0 and |w| > 0,

$$\exists x \in \{uv^{\omega}, uwz^{\omega}\}, \quad x \succeq \llbracket uv^*wz^* \rrbracket.$$

Note that

$$\{uv^{\omega}, uwz^{\omega}\} \subset uv^{\omega} \cup uv^*wz^{\omega} = \llbracket uv^*wz^* \rrbracket.$$

Star selection.

 \succeq satisfies star selection condition for player ${\rm Max}$ if for each nonempty language $L\in {\rm Rec}(C^+)$

$$\exists x \in \llbracket L \rrbracket \cup \{ u^{\omega} \mid u \in L \}, \quad x \succeq \llbracket L^* \rrbracket.$$

Note

$$\llbracket L \rrbracket \cup \{ u^{\omega} \mid u \in L \} \subset \llbracket L \rrbracket \cup L^{\omega} = \llbracket L^* \rrbracket$$

Remark

If \succeq satisfies all three selection conditions then for each $L \in \text{Rec}(C)$, if $[\![L]\!] \neq \emptyset$ then

 $\exists uv^{\omega} \in \llbracket L \rrbracket$ such that $uv^{\omega} \succeq \llbracket L \rrbracket$

One player Max games

 $\succeq \text{ satisfies all three selection conditions} \\ \text{if and only if} \\ \text{one-player Max games have optimal positional strategies for player Max.} \\$

Dual conditions.

$$\succeq \quad \leftrightarrow \quad \preceq \, .$$

Main result

Theorem 2. Let \supseteq be a preference relation over $\mathcal{O}(C)$ and let \succeq be the corresponding extended preference relation. The following conditions are equivalent:

- (1) There exist positional equilibria for all games (\mathcal{A}, \supseteq) over finite arenas.
- (2) There exist positional \succeq -equilibria for all games $(\mathcal{A}, \sqsupseteq)$ over finite arenas.
- (3) \succeq satisfies union selection, product selection and star selection conditions for player Max and player Min.

- (4) For all one-player games (\mathcal{A}, \supseteq) the player controlling the arena \mathcal{A} has an optimal positional strategy.
- (5) For all one-player games (\mathcal{A}, \supseteq) the player controlling the arena \mathcal{A} has a \succeq -optimal positional strategy.